Experiment Overview on Meson Spectroscopy: Current and Future

Curtis A. Meyer - Carnegie Mellon University

2014 Long-range plan Joint Town Meeting on QCD

Outline

- Mesons and Gluonic Excitations.
- Experimental Status.
- Jefferson Lab at 12-GeV.
- The Charm Sector.
- The International Scene.

Mesons and QCD

Bound states of quarks and glue with baryon number zero.

 $qar{q}$ Mesons

q ar q g Hybrid mesons

 $q\bar{q}q\bar{q}$ 4-quark states/molecules

gg + ggg Glueballs

Characterize by (IG)JPC

Isospin (I), G-parity, Total Spin (J), Parity (P), Charge Conjugation (C) u, d, s, c and b quarks can form mesons.

``onium'' $s\bar{s}$ $c\bar{c}$ bb light-quark mesons: u, d, s

Beyond the Quark Model

Other configurations can be color-neutral:

- Hybrid Mesons where the gluonic field plays an active role.
- 4-quark states

Should we expect to see these?

MIT Bag Model – quarks confined to a finite space, add a TE gluon $J^{PC}=1^{+\cdot}$. This leads to four new nonets of "hybrid mesons" **1**⁻⁻ **0**⁻⁺ **1**⁻⁺ and **2**⁻⁺. Mass(**1**⁻⁺) = 1.0 – 1.4 GeV

QCD spectral sum rules – a two-point correlator related to a dispersion relation. This predicts a 1^{-+} hybrid meson.

$$Mass(1^{-+}) = 1.0 - 1.9 \text{ GeV}$$

Flux-tube Model – model the gluonic field as $1^{+\cdot}$ and $1^{\cdot+}$ objects. This leads to eight new nonets $0^{+\cdot}$ 0^{-+} 1^{-+} $1^{++\cdot}$ $1^{+-\cdot}$ $1^{++\cdot}$ $1^{-+\cdot}$ and $1^{-+\cdot}$ Mass($1^{-+\cdot}$) = 1.8 - 2.0 GeV

QCD Coulomb Gauge Hamiltonian: Lightest hybrids not exotic, need to go to L=1 to get 1-+ 3-+ and 0--.

$$Mass(1^{-+}) = 2.1 - 2.3 \text{ GeV}$$

9/15/14

Lattice QCD

Light-quark Mesons (u,d,s)

Lattice QCD

Light-quark Mesons (u,d,s)

Spectroscopy and QCD

Phys. Rev. D84 (2011) 074023

"Constituent gluon" behaves like it has $J^{PC} = 1^{+-}_{2.5 \text{GeV}}$ Mass ~ 1-1.5 GeV
Lightest hybrid nonets: 1", (0-+,1-+, 2-+)

The 0+- and two 2+- exotic nonets and also a second 1⁻⁺ nonet p-wave meson plus a "gluon"

Several nonets predicted

Pion peripheral production:

The most extensive data sets to date are from the **BNL E852 experiment**. There is also data from the **VES experiment** at Protvino and from the **COMPASS** experiment at CERN.

Proton-antiproton annihilation:

There is data from the **Crystal Barrel** experiment at LEAR. This is also one of the pushes of the future **PANDA** experiment.

Charmonium Decays:

There is data from the **CLEO-c** at Cornell. This is also an area of interest of the **BES III** experiment in Beijing. This will also be part of the **PANDA** program at FAIR.

Pion peripheral production on nucleon and nuclear targets:

VES at Protvino

E852 at BNL

COMPASS at CERN

Largest statistics and most

most decay modes studies.

Three π_1 states reported.

J/ψ Decays:

CLEO-c

One decay mode studied.

BES-III

One π_1 state reported.

Proton-antiproton annihilation at rest:

Crystal Barrel at LEAR \cap One π_1 state reported.

Obelix at LEAR

No η_1 or η_1' seen.

π1	(1	600))
1	- /		"

Mode	Mass
3π	1598 ±8+29-47
η ' π	1597±10+45-10
$b_1\pi$	1664±8±10
$f_1\Pi$	1709±24±41
3π	1660 ±10+64-0

Width 168±20+150-12 340±40±50 185±25±38 403±80±115 269+21+42-64

Production 1+,0-,1- E852 1+ E852,VES,CLEO-c 0-,1+ E852,VES,CBAR 1+ E852,VES

COMPASS

3π Decay mode sensitive to model

But not in COMPASS

Exactly the same mass and width as the $\pi_2(1670)$

Confused production in E852??

This is consistent with a hybrid meson

QCD Town Meeting

$\pi_1(2015)$	Mode	Mass
m1(2020)	$b_1\pi$	2014±20±16
	$f_1\pi$	2001±30±92

$$\pi_1(2000) \rightarrow b_1 \pi$$

 $M = 2014 \pm 20 \pm 16 \text{ MeV/c}^2$
 $\Gamma = 230 \pm 32 \pm 73 \text{ MeV/c}^2$

Seen primarily in natural parity exchange.

The natural dominates

Seen in one experiment with low statistics It needs confirmation. If this exists, it is also a good candidate for an exotic hybrid meson.

QCD Exotics

Lattice QCD suggests 5 nonets of mesons with exotic quantum number:

- 1 nonet of 0⁺⁻ exotic mesons
- 2 nonets of 1⁻⁺ exotic mesons
- 2 nonets of 2⁺⁻ exotic mesons

Experimental evidence exists for π_1 states.

Making Progress

- Large and uniform acceptance detectors.
- Photon and charged particle reconstruction.
- Very high statistics.
- Multiple production mechanisms.
- Consistent analyses and theoretical support.
- Independent confirmation.

12-GeV CEBAF – Photoproduction γ

Diamond crystal

QCD Town Meeting

Photo Production:

There are limited results from the **CLAS** at 6 GeV from Jefferson Lab. No π_1 that decays to $\rho\pi$ produced in π exchange.

Unexplored production mechanism.

Photoproduction

More likely to find mesons with spin-aligned quarks using photons.

Simple (0⁺⁺) exchange with L=1: 0^{+-} , 1^{+-} , 2^{+-} Simple (0⁻⁺) exchange with L=1: 0^{-} , 1^{--} , 2^{--} Simple (1⁻⁻) exchange with L=1: 0^{-+} , 1^{-+} , 2^{-+}

Dudek (2009) Radiative decays in charmonium to normal and hybrid mesons have comparable rates.

8.4-9 GeV tagged, linearly polarized photon beam, up to 108/s

The CLAS12 Experiment at Jefferson Lab

Quasi-Real Photo Production

Light-quark Mesons

Physics in 2017

The GlueX Experiment at Jefferson Lab

Physics in 2015

Expected Decay Modes

$$π1 → πρ, πb1, πf1,πη', ηα1
η1 → ηf2,α2π,ηf1, ηη', π(1300)π, α1π,
η1' → K*K, K1(1270)K, K1(1270)K, ηη'$$

$$b_2 \rightarrow \omega \pi, a_2 \pi, \rho \eta, f_1 \rho, a_1 \pi, h_1 \pi, b_1 \eta$$

 $h_2 \rightarrow \rho \pi, b_1 \pi, \omega \eta, f_1 \omega$
 $h'_2 \rightarrow K_1(1270)K, K_1(1270)K, K_2^*K, \phi \eta, f_1 \phi$

$$b_0 \rightarrow \pi (1300)\pi$$
 , $h_1\pi$, $f_1\rho$, $b_1\eta$ $h_0 \rightarrow b_1\pi$, $h_1\eta$ $h'_0 \rightarrow K_1(1270)K$, $K(1460)K$, $h_1\eta$

Early Reach With Statistics Hard

Kaons do not have exotic QN's

9/15/14 19

Amplitude Analysis

Describe the process of producing a particular final state as a set of possible amplitudes : $\mathcal{A}_j(\gamma p \to p \pi^+ \pi^- \pi^0)$

E.g.
$$\mathcal{A}_1(\gamma p \to p X_i \to p \rho^+ \pi^- \to p \pi^+ \pi^- \pi^0)$$

Build a total amplitude by coherently summing all the individual amplitudes. This total amplitude yields a probability that the given sum describes a particular event k'.

 \mathcal{N} is a normalization factor and $P(e_k) = \frac{1}{\mathcal{N}} |\sum_j a_j \mathcal{A}_j(e_k)|^2$ are complex coefficients.

Form the likelihood and then minimize the natural log of it with respect to the $\,a_j\,$. This is a CPU-intensive

problem
$$\ln \mathcal{L} = \sum_{k} \ln P(e_k)$$

that we have found scales very well on graphical processor units (GPUs). To

do this requires the four-vectors of all events plus a comparable Monte Carlo data sample to do the normalization.

9/15/14

GlueX Physics Analysis

Strong theoretical support from the Jefferson Lab and international theory community.

- Very strong and integrated presence at Jefferson Lab.
- Series of Workshops and Summer Schools.
- Strong desire work with the experimentalists.

A strong Lattice QCD Effort.

- Important results on the meson spectrum that guide the experimental program.
- Ongoing work focused on production and decay.

Very important for the success of the entire program.

Physics in GLUE X

8.4-9.0 GeV linearly polarized photons from 12 GeV electrons in a thin diamond wafer

$$\gamma p \to X(J^{PC})(p,n)$$

$$\pi_1(1^{-+}) \to \rho \pi \to \pi \pi \pi$$

$$h_0(0^{+-}), \pi_1(1^{-+}), h_2(2^{+-})$$

$$\to b_1 \pi \to \omega \pi \pi \to 5\pi$$

electron

beam

Charged particle tracking + timing and photon detection in a 2T magnetic field.

$$\pi^{+}\pi^{-}\pi^{0}p = \pi^{+}\pi^{+}\pi^{-}\pi^{0}$$

$$\pi^{+}\pi^{+}\pi^{-}\pi^{0}$$

$$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}p$$

$$\pi^{0}\pi^{0}\pi^{0}\eta p$$

Fully reconstruct final states •

- These channels have been studied in Monte Carlo to understand the acceptance.
- These studies stress the offline reconstruction software.

GlueX Physics Analysis

GlueX ready to do physics, analyses being worked out in advance using the full suite of GlueX/Hall-D software and data from large-scale data challenges.

Physics reactions of interest:

Understand the detector

$$\gamma p \rightarrow \pi^0 p$$
 $\gamma p \rightarrow \eta p$
 $\gamma p \rightarrow \rho p$
 $\gamma p \rightarrow \omega p$
 $\gamma p \rightarrow \eta' p$
 $\gamma p \rightarrow \phi p$

Initial exotic hybrid searches

$$\gamma p \to \eta \pi(n, p)$$
 $\gamma p \to \eta' \pi(n, p)$
 $\gamma p \to \rho \pi(n, p)$
 $\gamma p \to \omega \pi(n, p)$
 $\gamma p \to \omega \pi(n, p)$
 $\gamma p \to \omega \pi(n, p)$
 $\gamma p \to \eta \pi(n, p)$

Strange Baryons

$$\gamma p \to K^+ \Lambda$$
 $\gamma p \to K \Sigma$
 $\gamma p \to K K \Xi$

Activity in the physics working group has shifted to physics analysis.

Other Physics Interests

 η Decays

 η Primakov

J/ψ Production

. . .

Lattice QCD

Charmonium States ($c\bar{c}$)

Charmonium: Many Discoveries

$$\begin{array}{l} \text{X J}^{\text{PC}} <> 1-\\ \text{Y J}^{\text{PC}} = 1-\\ \text{Z } c\bar{c}\pi^{\pm} \end{array}$$

What are these States?

4-quark state

$$Z^{-}(4430) \to \psi' \pi^{-} \ (c\bar{c}d\bar{u}) \ J^{P} = 1^{+}$$

Non-exotic Hybrid?

$$Y(4260) \to \psi \pi^+ \pi^- \quad J^P = 1^{--}$$

Near DD* Threshold

$$X(3872) \to \psi \pi^+ \pi^- \quad J^P = 1^{++}$$

$$Z^{\pm}(3900) \to \psi \pi^{\pm} \qquad Z^{\pm}(4020) \to \eta_c \pi^{\pm}$$

What about strange-quark States?

Does something similar happen in the 2-GeV mass range for strangeonium states?

Non-exotic Hybrid?

$$Y(2170)/\phi(2170) \to \phi \pi^+ \pi^-$$

Do "Z" states exist?

$$Z^{\pm} \to \phi \pi^{\pm}$$

What about strange-quark States?

The relevant data are part of nominal running.

QCD Town Meeting

Experimental Program

Light-quark sector

- COMPASS @ CERN (analyzing data)
- GlueX @ 12-GeV Jefferson Lab (2015)
- CLAS-12 @ 12-GeV Jefferson Lab (2017)
- PANDA @ FAIR (2019)

Charmonium – X,Y,Z states

- BES III @ Bejing (now)
- LHCb @ CERN (now)
- PANDA @ FAIR (2019)

The COMPASS Detector at CERN

Light-quark Mesons

COMPASS: 180 GeV/c π beam. Detects photons and charged particles in the final state.

$$\pi^-(p, Pb) \to X(p, A)$$

BES III in Beijing

Charmonium States Glueballs

X,Y,Z States

Running

9/15/14 31

The LHCb Experiment at CERN

X,Y,Z States

Running

PANDA @ FAIR

$$\bar{p}p \to X(J^{PC})\pi$$

Light-quark Mesons Charmonium States Glueballs

Physics in 2019?

Summary

- Where are the QCD states with static glue?
- Photoproduction programs starting in 2015.
- Very exciting meson program over the next 10 years.
- Charmonium is very intriguing. Does it carry over to lighter quarks? Is it a heavy-quark phenomena?