
First Measurements of the Polarized Spin Density
Matrix Elements along with a Partial-Wave

Analysis for γp → pω using CLAS at Jefferson Lab

by

Brian Vernarsky

A dissertation submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

in the Department of Physics

Carnegie Mellon University

April 28, 2014





Abstract

This work presents measurements of the spin density matrix elements for the reaction γp→ pω. The
data were collected using the CLAS detector in Hall B at Jefferson Lab, from two different datasets,
g1c and g8b. The results from the g1c dataset cover the energy range 1720 MeV ≤

√
s ≤ 2470

MeV, and, due to a circularly polarized photon beam, allow access to the ρ3 spin density matrix
elements. The results from the g8b dataset cover the energy range 1720 MeV ≤

√
s ≤ 2210 MeV,

and, due to a linearly polarized photon beam, allow access to the ρ1 and ρ2 spin density matrix
elements. The results presented here include the first measurements, at any energy, of the ρ1−3

elements. Therefore, our results significantly increase the world’s data on ω photoproduction spin
dependence.

We have also performed a mass-independent partial-wave analysis to determine the dominant
resonances involved in ω photoproduction. The addition of polarization information is shown to
increase our analyzing power over experiments without polarization information. However, it has
not allowed us to determine the mass and width of the resonances involved. It may be necessary to
modify the models for non-resonant production to be able to determine those.
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Chapter 1

Introduction

Since at least the 5th century BC, when the atomic theory was first proposed by Leucippus and
Democritus, scientists have been interested in determining the fundamental particles of the universe.
In the centuries since Leucippus and Democritus, scientists have discovered atoms, realized they were
not fundamental particles, but are in fact made of protons, neutrons, and electrons, and then further
determined that the nucleons (protons and neutrons) were themselves made of smaller particles as
well.

A major goal of medium energy physics is then to understand what is happening inside of
a nucleon. We have some knowledge of how nucleons interact with each other and with other
particles, such as electrons, and we know what the constituent particles of the nucleons are; but
our understanding of nucleons is considerably less complete than our understanding of atoms and
molecules. In order to discover what we do not yet know about about nucleons, it is instructive to
first consider what we do know about nucleons. In order to make it easier to comprehend that, we
will present our knowledge of nucleons in comparison to our knowledge of atoms.

1.1 Quantum Chromodynamics

Atoms can be considered particles that are made up of smaller, constituent particles. These con-
stituent particles are known as protons and neutrons, which constitute the nucleus, and electrons.
The nucleus and the electrons are bound to each other by the electromagnetic force, which is me-
diated by a massless spin-1 (vector) boson known as the photon. The theory that describes the
electromagnetic interaction is known as Quantum Electrodynamics (QED). Different combinations
of these three types of particles behave differently and have different characteristics. The photon is
able to interact with charged particles, however it does not carry a charge itself and thus two pho-
tons cannot couple directly to each other An atom generally interacts with a photon by absorbing
or emitting a photon.

Nucleons are members of a group of particles known as baryons, which we think of as particles
characterized by three constituent particles known as quarks. Quarks are (currently thought to be)
fundamental particles, that is, they are not themselves composed of constituent particles. There are
six flavors of quarks with ridiculous names. The quarks are held together by the strong force, which
is mediated by a massless vector boson known as the gluon. The theory that describes the strong
interaction is known as Quantum Chromodynamics (QCD). The term chromodynamics comes from
the fact that the charge term for QCD is known as a color charge and comes in three types, often
denoted red, green, and blue. Quarks carry electromagnetic charge as well as a color charge. One
significant difference between QCD and QED is that the gluon also carries color charge, while the
photon does not carry electromagnetic charge. Unlike in QED, where the photon cannot, to lowest
order, interact with other photons, in QCD the gluon can interact with other gluons. Thus, quarks
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2 CHAPTER 1. INTRODUCTION

can not only emit or or absorb a gluon, but gluons can also emit or absorb another gluon, and two
gluons can interact directly with each other. Because of those last two possibilities, it is not possible
to calculate a complete, analytic, solution to QCD and new techniques are required to approximate
a solution.

1.1.1 Spectroscopy

One of the easiest ways atoms have been studied to obtain information about the electromagnetic
force was to create interactions between photons and atoms. One way to study this consisted of
shining light through a gas and observing what came out on the other side (practically, this was
accomplished by studying the spectra of starlight which passed through clouds of gas in space).
What was found when experiments like this were conducted was that if light containing many
different wavelengths (starlight) was shone through the gas, the resulting spectrum of light after
passing through the gas would no longer contain the full spectrum that was passed into it, certain
wavelengths were missing. This discrete set of missing wavelengths, coupled with other results, led
to the idea that the energy levels of an atom are discrete and thus quantum mechanics was born.

If we tried a completely analogous approach to studying the strong force, we would need to shine
a beam of gluons at nucleons in an attempt to excite them and then observe the absorption spectrum
coming out the other side. We take as a given that, due to the nature of quantum mechanics, the
energy spectrum for the excited states of nucleons will be discrete and there will be a limited number
of excited states. There are several difficulties in this approach, the main being that a beam of gluons
is not possible. We can, however, approach the problem by recalling that quarks and gluons can
interact not only via the strong force, but also via the electromagnetic force, which allows them to
interact with photons. Since the goal is simply to excite the nucleons, it does not matter where the
energy is coming from. In fact, a beam of any type of particles could be used, but only a few are
practical. There is still a difficulty associated with this method. While atoms can be excited by
photons with relatively low energies, nucleons can only be excited by much higher energies, and this
requires a particle accelerator.

There are still many details that need to be worked out in order to determine the spectrum of
excited nucleons. First of all, because of the method we are using, and the energy of the photons
involved, it is not possible to simply measure an absorption spectrum, or look for an emission
spectrum. Excited nucleons do not simply re-emit a photon of the same energy as the one that
excited them, as atoms usually do. Instead, they often decay by releasing at least one other particle,
and that particle may subsequently decay into other particles before being detected. The excited
nucleons (also referred to as N∗s or resonances) decay into combinations of baryons and mesons.
While baryons are characterized by three constituent three quarks held together by the strong force,
mesons are characterized by a quark and an anti-quark, also held together by the strong force. The
ω meson is such a particle, and will be the subject of this work.

Another problem is the fact that resonances are very short-lived, on the order of 10−23 s. Heisen-
berg’s uncertainty principle tells us that we can only determine the energy of a state to be within a
range, ∆E, given by

∆E ∼ ~
τ
, (1.1)

where τ is the mean lifetime of the particle. As a result of this, there will always be some uncertainty
in the exact excitation energy of the particular N∗ state. Fortunately, the width of these lines is
still narrow enough that it is often possible to separate out one state from another.

One final issue is that photons are not the only particles that can be used to excite a nucleon;
for instance, beams of pions, kaons, electrons or other particles can be used for exciting the nucleon.
Many early experiments to measure nucleon excitation used a pion beam. Due to different properties
of pions and photons, some of the excited nucleon states may be more likely to form if they are excited
with pions instead of photons, and vice versa. It is also possible to use either unpolarized or polarized
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Figure 1.1: Nucleon resonances with a **** rating from the PDG [3]. The notation is N(M), where
N indicates that it is an excited nucleon with spin=1

2 and M is the mass in (MeV/c2). There are
also five *** states which are not shown here [1].

beams. Polarized-beam experiments will provide more information and be more sensitive to certain
properties of the resonances. Thus, to get the best measure of the spectrum of excited nucleon
states, it is necessary to perform experiments with as many types of beam as are possible.

Figure 1.1 shows the cross section, as a function of center-of-mass energy, for two different types
of beams interacting with a proton. The black points show the cross section for a beam of positively
charged pions, π+, and the red points represent the results from a beam of negatively charged pions,
π−. It is clear from the figure that there are several peaks present in the data, and these peaks
are indicative of the presence of a resonance. From this figure, it is possible to see many of the
properties of resonances mentioned above. Notice that some of the peaks are very broad, see the
peak around 1.9 GeV, while others are much narrower, see the peak near 1.2 GeV. Also note that
the cross sections from the two different pion beams are different, indicating that some resonances
couple more strongly to pπ+, see the peak near 1.9 GeV, while others couple more strongly to pπ−,
see the peaks near 1.52 GeV and 1.675 GeV.

In a similar way to how resonances couple differently to initial states involving photons or pions,
each resonance has a different likelihood of decaying into certain particles. Thus, if one limits
attention to only resonances that decay into one particular meson or baryon, many resonances may
be missed. That being said, each meson or baryon has its own properties and features that make
studying each independently a logical step. In the present analysis, the ω meson resulting from the
decay of a resonance will be studied. The hope is that this study will allow us to determine which
resonance(s) is responsible for the production of ω mesons in a given energy range. It is unlikely that
it will be possible to fully determine this because multiple resonances are likely to decay to produce
an ω. However, it might be possible to determine several states that contribute to ω production in
a given energy range. The method used here for searching for which resonances are important for
production of a given particle is known as partial-wave analysis and will be explained in Chapter 6.
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1.2 The Missing Baryon Problem

In baryon spectroscopy, as well as atomic spectroscopy and many other fields, there are two separate
yet equally important groups, those who run experiments and physically measure results, and those
who make theories based on those results. Ideally, once enough data have been collected, a theory
can be formed which will not only explain what has been measured but will be able to predict results
that have not yet been measured. In the case of baryon spectroscopy these theories should be able to
predict N∗ states that have not been measured yet, and then experiments should be able to confirm
or disprove their existence.

The particle physics community has an international collaboration which collects and catalogs
all of the current results from particle physics experiments; they are known as the Particle Data
Group. This group publishes a book, containing all of this collected data, known generally as the
PDG [3]. When listing excited nucleon states they have a star system to determine how certain they
are that a state is known to exist based on current measurements. The best rating is a four star
(****) rating, which denotes that existence is certain, and properties are at least fairly well explored
[3]. Currently there are ten N∗ states with a **** rating, other than the proton and neutron, along
with an additional five states with a *** rating, indicating existence is likely, but not all properties
have been confirmed.

Recently, the list of resonances has undergone a transformation, as several new states have been
added to the list of experimentally observed states, other states have been removed, and several
others have gained or lost stars, indicating more or less reliability in their existence. The list of
of currently accepted states can be seen in Table 1.1, which highlights the differences between the
2010 and 2012 versions of the PDG. Also indicated on the table are the type of final states that the
resonance has been seen in, graded using the same star system. Many of the changes to the list came
as a result of adding in recent studies of the KΛ and KΣ channels. One of the reasons that those
studies are important is that they added new polarization observables, which were able to refine the
partial-wave analysis. Note that the Nω final state is only seen for four of the states, and each at
only the one- or two-star level. This is because precise measurements of the polarization observables
for the ω have not yet been performed. This study will provide the first measurements of several
new polarization observables for the ω meson.

Even with all of these states observed, theorists expect many more states than just these. Table
1.2 shows all of the states predicted to exist based on a certain model, the Constituent Quark Model
by Capstick and Roberts [5], as well as which states have been observed in experiments accepted
by the PDG. This model is based on simple harmonic oscillations and includes relativistic effects,
but is not carried out in a completely covariant framework. There are approximately twice as many
states theorized to exist as have been discovered; this discrepancy is known as the missing baryon
problem. It is possible that the states simply do not exist and the theory is wrong. But it is also
possible that the states do exist and simply have not yet been seen in experiments, perhaps because
they do not couple to pions and photons. The hope is that by examining a decay particle like
the ω thoroughly, over a wide range of energies, angles, and experimental setups (varying photon
and target polarizations for instance), we will be able to determine the properties of the resonances
which are important in its production. If this can be determined, then it is possible to determine if
these resonances have already been observed or if they are newly measured; and, if they are newly
measured, are they similar to what is predicted by theory. Several of the new states seen in Table
1.1 match up well with formerly missing states.

1.3 The ω Meson

The ω meson is a spin-1 meson. Spin-1 mesons with odd parity are also referred to as vector mesons.
The ω has an observed rest mass of 782.59±0.11 MeV/c2. It is a neutral particle, meaning that its
electromagnetic charge is 0. It has isospin=0, which means that the pω final state can only couple
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As Seen in
N∗ JP 2010 2012 Nη Nσ Nω ΛK ΣK Nρ ∆π
p 1/2+ ∗ ∗ ∗∗ ∗ ∗ ∗∗
n 1/2+ ∗ ∗ ∗∗ ∗ ∗ ∗∗
N(1440) 1/2+ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
N(1520) 3/2− ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
N(1535) 1/2− ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗∗ ∗
N(1650) 1/2− ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗
N(1675) 5/2− ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗
N(1680) 5/2+ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
N(1685) ∗
N(1700) 3/2− ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
N(1710) 1/2+ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗∗
N(1720) 3/2+ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗∗ ∗
N(1860) 5/2+ ∗∗ ∗ ∗
N(1875) 3/2− ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
N(1880) 1/2+ ∗∗ ∗∗ ∗
N(1895) 1/2− ∗∗ ∗∗ ∗∗ ∗
N(1900) 3/2+ ∗∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗∗
N(1990) 7/2+ ∗∗ ∗∗ ∗
N(2000) 5/2+ ∗∗ ∗∗ ∗∗ ∗∗ ∗ ∗∗
————N(2080)
————N(2090)
N(2040) 3/2+ ∗
N(2060) 5/2− ∗∗ ∗ ∗∗
N(2100) 1/2+ ∗ ∗
N(2150) 3/2− ∗∗ ∗∗ ∗∗
N(2190) 7/2− ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗∗ ∗
————N(2200)
N(2220) 9/2+ ∗ ∗ ∗∗ ∗ ∗ ∗∗
N(2250) 9/2− ∗ ∗ ∗∗ ∗ ∗ ∗∗
N(2600) 11/2− ∗ ∗ ∗ ∗ ∗ ∗
N(2700) 13/2+ ∗∗ ∗∗

Table 1.1: Baryon Summary Table for N∗ resonances including recent changes from PDG 2010 [2]
to PDG 2012 [3]. The entries in red highlight significant changes between the 2010 and 2012 editions
of the PDG. This chart was first compiled in [4].



6 CHAPTER 1. INTRODUCTION

JP MCQM MPDG Rating JP MCQM MPDG Rating
1/2− 1460 1535 **** 1/2+ 1540 1440 ****
1/2− 1535 1650 **** 1/2+ 1770 1710 ***
1/2− 1945 1895 ** 1/2+ 1880 1880 **
1/2− 2030 1/2+ 1975
1/2− 2070 1/2+ 2065 2100 *
1/2− 2145 1/2+ 2210
1/2− 2195
3/2− 1495 1520 **** 3/2+ 1795 1720 ****
3/2− 1625 1700 *** 3/2+ 1870 1900 ***
3/2− 1960 1875 *** 3/2+ 1910
3/2− 2055 3/2+ 1950
3/2− 2095 2120 ** 3/2+ 2030 2040 *
3/2− 2165
3/2− 2180
5/2− 1630 1675 **** 5/2+ 1770 1680 ****
5/2− 2080 2060 ** 5/2+ 1860 **
5/2− 2095 5/2+ 1980 2000 **
5/2− 2180 5/2+ 1995 2000 **
5/2− 2235
5/2− 2260
5/2− 2295
5/2− 2305
7/2− 2090 2190 **** 7/2+ 2000 1990 **
7/2− 2205 7/2+ 2390
7/2− 2255 7/2+ 2410
7/2− 2305 7/2+ 2455
7/2− 2355
9/2− 2215 2250 **** 9/2+ 2345 2220 ****
11/2− 2600 2600 ***
11/2− 2670
11/2− 2700
11/2− 2770
13/2− 2715 2700 **

Table 1.2: Constituent Quark Model predictions for the N∗ spectrum from Capstick and Roberts [5].
This model is based on simple harmonic oscillations and includes relativistic effects, but is not
carried out in a completely covariant framework. If a state with properties similar to a predicted
state have been seen in experiments it will have a mass in the MPDG column along with a rating
for that observation. All masses, MCQM and MPDG, are in units of MeV/c2. The ratio of predicted
to observed states is ∼ 2 : 1.
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to states with I=1/2, i.e. N∗ states, and not other states, like the ∆∗ states with I=3/2. It has a
mean width of 8.49 MeV, which corresponds to a lifetime of 7.75x10−23s. This short lifetimes means
that we cannot detect it on its own before it decays, and instead must look for the particles into
which it decays. It decays into a π+, π−, and π0 89.1% of the time, and thus the main way that we
hope to detect it is by detecting these particles.

1.3.1 Physical Observables

The ω meson has two main physical observables that we can measure in a photoproduction exper-
iment. The first is its cross section, which is basically the likelihood of scattering. The second is
the polarization, which is characterized by a spin density matrix. The spin density matrix will be
discussed in depth in Chapter 4; it is a 3x3 matrix with complex elements that vary with angle and
energy. These nine complex values are related to each other, and some are required to be real, which
reduces the total number of independent values in the matrix to five real values. Thus, there are
basically six values that can be measured for this reaction.

However, it is overly simplistic to say that there are only six values to measure. In reality these
six numbers can be measured in a variety of situations and should be different. For instance, the
cross section can be very different depending on the angle under study. Photoproduced ω mesons
are forward-peaked, meaning that it is much more likely for it to be found moving forward, in the
direction of the incident photon, than other directions. Also, depending on the energy of the incident
photon, it may be more or less likely to be forward-peaked. Thus we will break our ω datasets up
based on its direction relative to the photon direction in the center-of-mass frame, cos θω

CM , and the
photon energy, or, more precisely, the center-of-mass energy,

√
s. We will choose the width of each

of these sets of bins based on the amount of data we have.
Also, as will be explained in Chapter 4, the spin density matrix is really a sum of 64 3x3 matrices.

Depending on whether or not the polarization of the photon, target proton, and recoil proton can be
determined in a particular experiment, most of those 64 matrices are not included in the measured
spin density matrix for that experiment, but when more than one of them can be measured, then
we will have more observables. It is this addition of more polarization observables that will be
used to refine the partial-wave analysis and assist in searching for the resonances important in ω
photoproduction.

1.4 Previous γp → pω Measurements

The basis for the current analysis is very heavily influenced by a previous analysis of the properties
of ω photoproduction at the same facility and using (mostly) the same equipment as the present
study. That run period is known as g11a and it was analyzed by Mike Williams for his thesis [1].
The g11a run period used a beam of unpolarized photons incident on an unpolarized target, while
the run periods used for this study utilized beams of polarized photons incident on an unpolarized
target. Because the polarized data contains more information than unpolarized data, the fitting code
has been changed slightly, as will be explained in Chapter 4. Otherwise, the data for both studies
was analyzed in the same way and fit using the same basic framework. Thus, the g11a analysis will
provide a constant check on our results.

In [1] Williams compared his results for the differential cross section and spin density matrix to
previous experiments from SAPHIR [7, 9], CLAS [8], SLAC [10], and Daresbury [11, 12]. He also
compared the results of his partial-wave analysis to those of Zhao [13], Oh, Titov and Lee [14], Titov
and Lee [15], and Penner and Mosel [16, 17], all of whom were mainly using 1998 SAPHIR data
[7] and 2003 SAPHIR data [9]. Because Williams’ results are much more precise (∼250 times more
precise [1]), cover a much wider range in angles and energy, and have been performed with the same
equipment and analysis techniques we choose to compare our results only to these. In Chapters 5
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and 6, it will become clear that the results of this analysis are close enough to Williams’ results that
any comparison between his results and previous experiments will be equally valid for this analysis.

The Williams results include ∼2000 (
√
s,cos θω

CM ) points over the energy range 1720≤
√
s ≤2850

MeV, and all but the most forwards and backwards angles in cos θω
CM . The current analysis contains

data from two different run periods with different energy ranges, however both are completely
contained within the g11a energy range, and the angles measured are the same between the run
periods as well. Thus, at every energy and angle we will be able to compare our results with those
from g11a. However, we will be able to measure more observables than were possible in g11a, all of
them for the first time, and thus we cannot compare these new results to previous measurements.
We will determine the reliability of the new measurements based on how good agreement is between
g11a and each run period for the observables that can be measured in both of them.

The Williams partial-wave analysis indicated the presence of several N∗ states, the ****N(1680),
with JP = 5

2

+, the ***N(1700), with JP = 3
2

−, and the ****N(2190), with JP = 7
2

−. We will at-
tempt to see if the addition of polarization information, and thus extra spin density matrix elements,
will help to confirm these, or other, states.

1.5 Summary

The g11a analysis by Williams provided the first high precision measurements for the polarization
observables for γp→ pω. This analysis will be able to make comparisons to those measurements as
well as add in new measurements. The additional information coming from those new measurements
will be able to further constrain the partial-wave analysis method and help to determine which reso-
nances are present in the production of the ω meson. Ideally, if we can determine which resonances
are present in ω production, we could help to determine whether some of the missing states are
present.

Before extracting the observables and running a partial-wave analysis, we will first cover how
and where the data for this study were collected, in Chapter 2, and how the data were prepared for
fitting, in Chapter 3, before discussing the fitting formulas and the basics of spin density matrices
in Chapter 4. In Chapter 5, the polarization observables will be presented, and in Chapter 6, the
results of the partial-wave analysis will be discussed.



Chapter 2

Jefferson Lab

The data used in this analysis come from datasets collected at the Thomas Jefferson National
Accelerator Facility (TJNAF), commonly known as Jefferson Lab or JLab, which is located in
Newport News, VA. JLab consists of four experimental halls designated as Halls A, B, C and D. The
different halls allow different types of physics experiments to be conducted at the same time, and
allow existing devices to stay in place without having to move them for different types of studies.
The accelerator at JLab is known as the Continuous Electron Beam Accelerator Facility (CEBAF).
JLab is also home to a free-electron laser. A picture of the JLab campus is shown in Figure 2.1.

This analysis uses data from two run periods known as g1c and g8b, as well as the results of a
previous analysis of a run period known as g11a, which were collected in Hall B using the CEBAF
Large Acceptance Spectrometer (CLAS). Both run periods used a liquid hydrogen target and photons
tagged to determine which photon energy is associated with each event. CLAS is intended to detect
multi-particle final states and has a large acceptance to detect all of the particles in that final state.

2.1 Continuous Electron Beam Accelerator Facility (CEBAF)

The halls are delivered a continuous beam of electrons by CEBAF. The electron beam is produced
at the injector with pulsed lasers on a GaAs photocathode. These pulses are timed to give bunches
to each hall every 2 ns. 2 1/4 superconducting RF cryomodules accelerate the electrons extracted
from the photocathode up to 45 MeV [20] before an optical chopper separates the bunches, and they
are sent into the linear accelerators (Linacs). For large-acceptance coincidence experiments, like the
ones analyzed here, a low current is necessary, and the continuous supply of electrons allows high
statistics to be gathered quickly, even under these circumstances. A picture displaying the main
components of the accelerator is shown in Figure 2.2.

The accelerator at JLab is set up like a racetrack, with two long Linacs connected by nine
recirculating arcs. The acceleration occurs along the two Linacs where 168 superconducting Niobium
cavities are set up with standing RF waves in phase with the electron bunches, see Figure 2.3,
providing a continuous positive electric force. The Niobium cavities are kept at their superconducting
temperature of 2 K by liquid Helium. The use of superconducting material allows a 100% duty factor.
Each pass through the length of a Linac provides up to 600 MeV of acceleration (only 400 MeV at
the time of the g1c run period) and bunches can go through the Linacs from 1-5 times, by using
the recirculating arcs, giving a maximum final energy of ∼ 4 GeV for g1c and ∼ 6 GeV for g8b
and g11a. Each hall can select how many passes through the Linacs it desires and the bunches are
extracted after the requested number of passes using RF separator cavities.

9
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Figure 2.1: An aerial view of Jefferson Lab, showing the mile long racetrack accelerator. The two
linear accelerators can be seen in the background, while in the foreground to the right there are
three humps in the ground, which show where the experimental halls A, B, and C are located [18].
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Figure 2.2: Diagram of the CEBAF facility, showing the racetrack accelerator. The electron beam
begins at the injector, near the North Linac, and then is accelerated by the two Linacs up to a
maximum energy of 4 GeV (at the time of g1c) or 6 GeV (at the time of g8b) before being directed
to one of the experimental halls [19].
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Figure 2.3: Superconducting cavities with standing RF waves, which provide an acceleration gradient
for the electrons, such that they always experience a positive force throughout the cavity [21].

2.2 Photon Tagger

Since the g1c and g8b run periods required photons and not electrons, it was necessary to convert
the electrons into photons. This was carried out using bremsstrahlung radiation in conjunction with
a tagging system, which can be seen in Figure 2.4. For the g1c run period, a gold radiator with
a thickness of 1 × 10−4 radiation lengths was used for data production, while a thinner, gold foil
was used for normalization runs [23]. The g8b run period used linearly polarized photons, which
required a thin diamond to generate the photons; some runs, however, were taken with a standard
gold radiator, these runs are known as amorphous runs. The linearly polarized photons are generated
via coherent bremsstrahlung production, which results in a characteristic energy distribution for the
photons, defined by a coherent peak, which is the upper edge of this energy range. The energy
difference from the coherent peak, in part, determines the polarization of the photon. A more
detailed discussion of the linearly polarized photons may be found in Section 3.8.2.

Once the photons have been generated, by either means, a 1.75 T dipole magnet separates the
recoiling electrons, and any electrons that have not interacted with the gold, from the photons,
which pass into the target cryostat. The recoiling electrons are pulled to two hodoscope planes,
which contain overlapping arrays of scintillators.

The first plane of scintillators, known as the E-plane, consists of 384 paddles used to determine
the momentum of the electrons. The paddles are set up in an overlapping fashion, allowing for a
total of 767 logical paddles. Each of these paddles is 20 cm long, 4 mm thick and between 6 and
18 mm wide. Since the trajectory of a charged particle through a magnetic field is determined by
its momentum, it is possible to determine the momentum of the electron based on which paddle
it strikes. The momentum of the recoil electron can then be used to determine the energy of the
photon associated with it. The resolution of the detectors is 0.1% of the electron beam energy. The
second plane, known as the T-plane, is used to collect timing information. This plane is located
20 cm below the E-plane and consists of 61 2-cm thick paddles. This thickness allows for timing
resolution of 110 ps. The tagging system is able to tag photons with between 20 and 95% of the
beam energy.

After being produced, the photons pass through a series of collimators to trim the profile of the
beam. Between the collimators, there are sweeping magnets which remove any remaining charged
particles from the beam before the beam goes to the target.
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Figure 2.4: The Hall B photon tagger. The electrons strike the radiator at the far left and then
proceed to the right, where they are bent by the tagger magnet into the spectrometer. Photons
proceed through the collimator where the sweep magnets remove any charged particles from the
beam, which then proceeds towards the target. [22]

2.3 CEBAF Large Acceptance Spectrometer Detector

The CLAS detector is used to detect charged particles produced from the photons interacting with
the target. CLAS is comprised of several subsystems, which include a start counter, drift chambers
and a wall of time-of-flight (TOF) scintillators. A schematic for CLAS can be found in Figure 2.5.
Charged particles pass through the start counter and then are bent by a magnetic field set up by
a large superconducting torus while they pass through the drift chambers before finally passing
through the time-of-flight scintillators. The magnetic field around the drift chambers allows for
determining the momentum of the particles, while the difference between the times recorded for the
start counter and TOF detectors aids in particle identification. CLAS is split up into 6 segments of
60◦ in φ, known as sectors.

2.3.1 Target

The g1c and g8b run periods used different targets. Both targets were Kapton cylinders made
by Steve Christo of Jefferson Lab and filled with liquid hydrogen. Each had their pressure and
temperature recorded approximately once an hour to determine the density. The g1c target was
17.85 cm long and is shown in Figure 2.6(a), while the g8b target was 40 cm long and can be seen in
Figure 2.6(b). The g1c target was located at the center of CLAS while the g8b target was centered
20 cm upstream. The g8b target was the same target used in the g11a run period.

2.3.2 Start Counter

As its name suggests, the start counter is the first detector to be triggered by a charged particle
and sets the start time for the event. It is used in the Level 1 trigger to determine whether or not



2.3. CEBAF LARGE ACCEPTANCE SPECTROMETER DETECTOR 13

Figure 2.5: A schematic drawing of CLAS showing the location of the toroidal magnet, as well as
the drift chambers and time-of-flight scintillators. The entire detector is around 8m in diameter and
is located in Hall B at Jefferson Lab. [18].

(a) (b)

Figure 2.6: Target cells for the (a) g1c run period [23], and (b) g8b and g11a run periods [25].
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Figure 2.7: Start Counter in use for the g1c run period. [26]

to record an event. However, other than being required for detecting an event, it is not used in our
analysis.

The start counter for g1c consists of three pairs of scintillator coupled-paddle detectors sur-
rounding the target. The coupled paddles allowed for greater acceptance in the forward direction
by linking two paddles together so they could share a set of PMTs, which reduced the total number
of PMTs that would otherwise obscure the area downstream of the target. A diagram of the start
counter can be seen in Figure 2.7.

In the years between the g1c and g8b run periods, a new start counter was installed in CLAS.
The start counter for g8b consists of 6 sets of 4 scintillator paddles. The timing resolution is ∼400
ps. A diagram of the start counter can be seen in Figure 2.8. g8b and g11a used the same start
counter.

2.3.3 Superconducting Toroidal Magnet

The superconducting toroidal magnet, seen in Figure 2.9, is used to bend the trajectories of charged
particles as they pass through the drift chambers, giving them curved paths. As with the tagger
system, the momentum of the particles can be determined from the curvature of their trajectory as
they pass through the drift chambers, given the knowledge of the surrounding magnetic field. The
magnets are cooled to the superconducting temperature of 4.4 K by liquid helium [28]. The field is
generated by six kidney-shaped superconducting coils, set apart in the azimuth by 60◦. The current
running through the coils determines the magnetic field, and the maximum current for the torus is
3861 A, which yields a field of 3.5 T. The g1c and g8b run periods used about half of that current,
only ∼1930 A. This does not provide the best momentum resolution possible, but it improves the
acceptance for negative particles. The magnet bends forward-going, positively-charged particles
away from the axis and negatively charged particles towards the axis. Thus, a high current and field
causes many negatively charged particles to go undetected as they are too close to the beamline to
be detected.

2.3.4 Drift Chambers

The trajectory of the charged particles is determined by a series of three drift chambers. This
trajectory, along with detailed knowledge of the magnetic field maps, is able to determine the
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Figure 2.8: Start Counter in use for the g8b and g11a run periods [27].

Figure 2.9: The CLAS magnet separated from the rest of the detector before installation [18].
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Figure 2.10: Diagram of CLAS showing the location of all of the major detectors. The dashed lines
around the region 2 drift chambers outline the kidney shaped toroidal magnet coils [29].

momentum of these particles. Figure 2.10 shows the location of the drift chambers in CLAS, along
with the extent of the toroidal magnet. Each region of drift chambers is separated into six sectors.
The region 1 drift chambers are located inside of the torus magnet at an area of low magnetic field.
The region 2 drift chambers are mounted on the torus coils and therefore are located at the area of
maximum magnetic field. The region 3 drift chambers are located outside of the torus coils at an
area of weak field. Each region consists of two superlayers, one that is oriented along the magnetic
field and one that is oriented at a 6◦ angle to them. The superlayers consist of 6 layers of hexagonal
drift cells, with each layer offset from the other layers by half a cell width. Each cell has a 20µm-
radius sense wire at the center made of gold-plated tungsten, and is kept at a positive potential.
Around the sense wire are six 140µm field wires made of gold-plated aluminum alloy and kept at a
negative potential. The gas in the drift chambers is mix of 90% Argon and 10% CO2.

2.3.5 Time-of-flight Scintillators

The wall of time-of-flight scintillators is located outside the region 3 drift chambers about 4 m from
the target. Combining the time from the TOF detectors with the time from the start counter allows
for rough particle identification, although we use a different method. The TOF detector is separated
into six sectors as well, each consisting of four panels with 57 2-inch thick bars of varying lengths
and widths distributed among the panels, as is shown in Figure 2.11. The thickness of the bars is
to allow for 100% detection of the charged particles. The TOF detectors have a timing resolution of
80-160 ps, depending on the length of the bars, with the longest bars having the worst resolution.
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Figure 2.11: Diagram of the time-of-flight detector from one sector of CLAS. There are 57 bars
separated into four panels [30].

2.4 Beamline Devices

There are several devices located along the beam, either upstream or downstream, to provide infor-
mation on the beam. Upstream of the target, there are harps and current measuring devices, while
downstream there is a pair spectrometer (PS) and a pair counter (PC), which are used for deter-
mining the photon flux; the total absorption shower counter (TASC) is also located downstream,
which is used in determining a tagging ratio for the T-Counters in the tagger system, used for gflux
[31]. The TASC uses four lead-glass blocks, each with a phototube, to detect 100% of the photons
that pass through it. This device can be used to get an absolute measurement of the photon flux for
currents below 100 pA [22]. This device was not used for the g8b dataset however, and so no gflux
information was recorded for g8b. Low current normalization runs were taken occasionally during
g1c to calibrate the flux measurements.

The g1c run period used a circularly polarized photon beam. To determine the degree of po-
larization for the photons it is necessary to know the polarization of the electron beam. A Møller
polarimeter located just downstream of the target was used to measure the electron polarization.
The polarimeter consisted of a permendur (a cobalt-iron alloy) target, two quadrupole magnets, and
scintillators with photomultiplier tubes.

The polarimeter target was polarized by a Helmholtz coil generating a 100 gauss magnetic field.
Electrons incident on the electrons in the target produced e− + e− → e− + e− events at a rate
measured by the device. The two quadrupole magnets then collected the electrons which were
detected by the scintillators. The asymmetry, A, can then determine the beam polarization, ζbeam,
using

A =
N+ −N−
N+ +N−

= Azζ
z
Beamζ

z
T , (2.1)

where N± are the yields for each helicity, Az = 0.7826 ± 0.0079 is the analyzing power of an ideal
100% polarized target, and ζz

T is the polarization of the target [32].
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Using the Møller polarimeter disrupts the experiment because the radiator must be taken out of
the beam to allow electrons to pass through to the device, and thus no actual events can be recorded
during this time. Only three measurements of the beam polarization were made during the runs
used for this analysis. The measurements were performed by Arne Freyberger of Jefferson Lab and
the average polarization was measured to be ζbeam = 0.654 ± 0.013 for the 2.445 GeV dataset and
ζbeam = 0.641± 0.012 for the 2.897 GeV dataset.

2.5 Trigger and Data Acquisition

A trigger is employed for each run period to determine when to write events to magnetic tape. A
set of trigger criteria was chosen for each run period to ensure that only events of a certain type are
recorded. Both g1c and g8b used a one-track trigger which means that an event is recorded as long
as there is a coincidence of a signal in the start counter and a TOF paddle in the same sector. Once
an event passed this trigger, the event was written out using the data acquisition system (DAQ) for
offline analysis. The DAQ was capable of writing out events at a rate of ∼2.5 kHz during the g1c
run and ∼5 kHz during the g8b run period.

2.6 Summary

In order to perform our analysis of γp→ pω events, we first need to run an experiment and measure
these events. This requires an impressive facility like Jefferson Lab with the means of producing the
electrons and photons to start the reaction and detecting the final particles. This is accomplished
using the injector to put electrons into the linear accelerator, through which they pass several times
before interacting with a radiator to produce photons. The electrons are then bent out of the way
using the tagger magnet and measured using the tagging detector. The tagged photons proceed
through the collimator and interact with the target, in some cases producing our desired output of
pω. These two particles then travel out towards the detector, the ω decays into π+π−π0 and the
three charged particles trigger the start counter and then pass through the drift chambers and the
magnetic field produced by the superconducting toroidal magnet before finally being detected in the
time-of-flight scintillators, indicating an end to the event. As each detector measures data for each
event, it is recorded by the data acquisition system. After the run has ended, we must take that
data and convert it into useful physics observables. That process will be detailed in the following
chapter.



Chapter 3

Data Selection

The data used in the following analysis are taken from two separate run periods conducted by the
CLAS collaboration. The first is denoted g1c and was collected in October and November of 1999.
In the g1c dataset there were approximately 4.5 billion triggers of data collected. It was collected in
three sets of data with different beam energies, though only two of the sets are used in this analysis.
Table 3.1 shows the runs we use in each setting as well as the number of ω signal events collected
in each setting. For this period, circularly polarized photons were incident on an unpolarized liquid
hydrogen target.

The second run period is denoted g8b and was collected from June 28, 2005 to August 31, 2005.
The g8b dataset includes 10.5 billion triggers of data. This period had a linearly polarized photon
beam and an unpolarized target. As will be shown in Section 3.8.2, linearly polarized photons are
produced via coherent bremsstrahlung reactions, by electrons incident on a diamond. The angle with
which the electrons strike the crystal results in a characteristic energy distribution for the outgoing
photons, which is defined by a coherent edge. For the data in g8b, there were five separate coherent
edge settings. These were chosen in 200 MeV increments starting at 1.3 GeV and going up to 2.1
GeV.

The photon beam can be linearly polarized in any direction perpendicular to the beam direction
by adjusting the azimuthal angle of the relevant crystal axes in the diamond. For this run period, two
directions were chosen to reduce systematic errors. These directions were chosen to be parallel to the
floor in the x direction in lab coordinates (this will be denoted as para or horiz ) and perpendicular to
the floor in the y direction in lab coordinates (this will be denoted as perp or verti). Most of the data
were collected in either the para or perp state, but for some runs the direction was automatically
rotated between these two states periodically during the run (these runs are referred to as auto-flip
or just auto). The auto-flip data were later separated into para and perp events which were analyzed
separately.

Data were collected in all five coherent edge settings in both the para and perp alignment, with
roughly equal statistics. Table 3.2 shows the runs used in each setting as well as the number of ω
signal events collected in each of the ten settings. Note that we have separated the auto-flip runs
into their constituent components as noted above.

After the data were collected for each run period, the information from the detectors had to
be converted into a form in which we could perform our analyses. During this process, all of the
detectors and their subsystems were calibrated and the particle paths were determined as well as
their momenta and other kinematics for each event. This process is known as cooking. The g1c data
were cooked by Luminita Todor, a post-doctoral researcher at Carnegie Mellon at the time, and the
g8b data were cooked by Franz Klein, of Catholic University. After those calibrations, the datasets
were still not completely ready to be analyzed until a few more corrections have been applied. We
will determine those corrections in this chapter.

19
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Run Setting Runs Signal Events
√
s Range (MeV)

2.445 GeV 21763-21983 370,430 1720-2290
2.897 GeV 21427-21615 282,172 1720-2470
Total g1c 652,602 1720-2470

Table 3.1: g1c run list

Run Setting Runs Signal Events
√
s Range (MeV)

PARA 1.3 48224-48236, 48255-48262, 48278-48286, 48309-48320 432,378 1720-1840
PARA 1.5 48418-48426, 48445-48455, 48462-48465, 48493-48509 459,665 1810-1940
PARA 1.7 48544-48574 244,010 1910-2030
PARA 2.1 48357-48365, 48388-48408 158,935 2090-2210
PERP 1.3 48240-48251, 48268-48277, 48291-48298, 48321-48330 432,485 1720-1840
PERP 1.5 48431-48444, 48466-48488 353,520 1810-1930
PERP 1.7 48580-48610, 48620-48630 328,803 1910-2030
PERP 2.1 48332-48351, 48366-48377 155,514 2100-2200

48088-48091, 48093-48096, 48098-48100, 48102-48105
48107-48110, 48114-48120, 48126-48132, 48137 133,295 PARA 2010-2120 PARA

AUTO 1.9 48139-48146, 48148-48150, 48152-48154, 48156-48159 206,092 PERP 2010-2120 PERP
48163-48176, 48178-48182, 48185-48187, 48189-48192

48194-48196, 48199-48200
Total g8b 2,904,697 1720-2210

Table 3.2: g8b run list

The present analysis is focused on events of the type γp → pω. However, the ω decays before
it can be detected, so we must look for its decay products. To maximize the statistics of our data,
we have chosen to look for events where the ω decays to π+π−π0, which has an 89.1% branching
fraction. Since the CLAS detector has poor efficiency and resolution for neutral particles, like the
π0, we must look for events that are detected as γp → pπ+π−, and then try to reconstruct the
missing π0 using kinematic fits [33], which enforce the conservation of energy and momentum in the
results. We skim the data looking only for events that have at least two positive tracks and one
negative track detected (+ + −). Further constraints on which events will be used for analysis are
outlined in the following sections.

3.1 Excluded Runs

Data were collected for each of these run periods in chunks of 10-20 million events, on average.
These chunks are called runs and are labeled sequentially. The separation of the data into runs
allows us to change the state of the detectors and easily determine the settings for the events in
question. Sometimes a run needs to be removed from the dataset for various reasons. The runs used
and excluded from each of the two run periods analyzed here are listed below, along with reasons
for exclusion.

3.1.1 g1c

The g1c dataset consists of the runs from 20926 to 21983. There were three different electron beam
energies used during the run period. Runs 20926-21359 used an electron beam energy of 3.115 GeV,
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Run Description
20929-21359 3.115 GeV Electron Beam Energy
21905-21908 Drift Chamber Voltage

21941 DAQ crash
21966 Pretrig1 crash

Table 3.3: g1c runs excluded from our analysis.

runs 21427-21645 used a beam energy of 2.897 GeV, and runs 21763-21983 used a beam energy of
2.445 GeV. This run period was the first at JLab to use circularly polarized photons, and for the
first set of runs, at 3.115 GeV, there was a problem in measuring the polarization properly [23].
Since we wish to study events created with a polarized beam, all runs from the 3.115 GeV dataset
have been excluded from this analysis.

The second set of runs, at 2.897 GeV, had issues measuring the flux for certain runs, and
therefore the total flux cannot be determined from measurements. However, since the overall flux is
not necessary for measuring the spin density matrix elements, it is possible to use this dataset with
only an approximation of the flux. In section 5.1.3 a method for determining the approximate flux
will be discussed.

In the 2.445 GeV dataset, six full runs were excluded: 21905-21908, 21941 and 21966 for various
reasons. Parts of several other runs were also excluded due to corruption of a data file after cooking.
The set of runs used for g1c can be found in Table 3.1. The excluded runs and files are summarized
on Table 3.3.

3.1.2 g8b

The g8b dataset consists of the runs from 47827 to 48657. All of the events used an electron
beam energy of 4.559 GeV. As mentioned above, the data were taken in five different coherent edge
settings, and with the photons polarized in both the parallel and perpendicular mode, or in a mode
that automatically flipped between those two modes. There were also runs that were taken with
a standard gold radiator in place of the diamond radiator, and thus the events coming from these
runs are unpolarized; these runs are referred to as amorphous. The amorphous runs have not been
included in our analysis, although they were used for diagnostic purposes, such as calculating the
tagger and momentum corrections. The runs that are included in each setting are shown in Table
3.2. Several of the runs have been excluded for various reasons; they are summarized on Table 3.4.
The auto-flip runs at 1.3 GeV and 1.5 GeV have not been analyzed because of issues with finding
their polarization values. Also, the auto-flip runs at 1.7 GeV have not been analyzed because of
difficulties encountered while trying to cook the files and since they would only increase statistics in
a range already covered, not add to our range.

3.2 Energy and Momentum Corrections

3.2.1 Energy Loss Corrections

The particles that we detect, and whose momenta we are able to reconstruct, have traveled from
the target to the detectors, a distance of roughly 4 m, through various materials both in the target
and the detector, as well as other equipment in the lab. As charged particles pass through this
material they lose some of their energy due to ionization and atomic excitations [3]. The initial
reconstruction of the momentum for the particle does not take this energy loss into account. Thus,
a package called ELoss was developed by Eugene Pasyuk to account for this energy loss in the CLAS
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Run Description
48208-48218 Auto 1.3 No polarization info
47924-47944 Auto 1.5 No polarization info

47946 AMOTAC
47953-47954 Not found on silo

48201 DTAC (0 current)
48325 Not found on silo
48331 Not found on silo
48334 Not found on silo
48334 Changing torus current
48378 DTESTL2 (changed L2, and then torus)

48410-48411 Normalization run
48521 Testing new settings

48523-48527 Testing new settings
48539-48543 Bad T-counters 41-44

48606 Bad T-counters 41-44
48613 Testing new settings

48616-48619 Testing new settings, current 1
48625 Small Run Perp 1.7

48645-48657 End of run tests

Table 3.4: g8b runs excluded from our analysis.

detectors [34]. This correction is applied to all charged particles in a given event before any further
analysis is performed.

3.2.2 Tagger Corrections

In 2003, it was discovered that the photon tagger’s focal plane was sagging, causing alignment issues
which resulted in the photon’s energy being calculated incorrectly from the measured tagger data
[35, 36, 37]. The method which we have used to correct for this sag was developed by Mike Williams
[1], which we will summarize below. The corrections are generally on the order of 10 MeV.

We start by selecting events which have a detected proton, π+, and π−, with no other particles
detected. We then apply the energy loss corrections to the events. Then, we perform a kinematic fit
which ignores the tagger’s measurement of the photon energy and fits to the hypothesis of (γ)p →
pπ+π−. The fit yields a calculated photon energy and a confidence level. Only events with a
confidence level of more than 10% are used to determine the correction. For events that pass this
confidence level cut the difference between the kinematically fit photon energy and the measured
photon energy is determined,

∆Eγ = Ekinfit
γ − Emeasured

γ . (3.1)

These differences are then binned by the tagger E-counter that measured the electron energy, and
for each bin a Gaussian mean is determined. This number will be added to the photon energy
depending on which E-counter the measurement came from.

g1c Even though the g1c dataset was taken before the tagger-sag problem was first identified in
2003, the problem was already present, and therefore we correct for it. The process was straightfor-
ward for this dataset, and the results can be seen in Figure 3.1.
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Figure 3.1: Tagger Corrections: (a) ∆Eγ/Ebeam vs E-counter for (γ)p → pπ+π− events in g1c
with the Gaussian mean for each E-counter shown in black. Notice the humped structure of the
Gaussian means, indicating that the data have not been properly calibrated. (b) g1c events after
the corrections from (a) are applied. Notice that the humped structure is removed and the Gaussian
mean for each E-counter is at 0. (c) ∆Eγ/Ebeam vs E-counter for g8b, calculated from the amorphous
dataset to be applied to all of the data. (d) The four horizontal datasets from g8b after corrections
have been applied. (e) The four vertical datasets from g8b after corrections have been applied. (f)
The amorphous and auto-flip datasets from g8b after corrections have been applied. The error bars
are quite large for E-counters below 400 in g8b because the statistics are low, which is why the
amorphous dataset was used to calculate the corrections.
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Figure 3.2: ∆Eγ (GeV) vs E-counter for (γ)p→ pπ+π− events in g11a (black), g8b (red), the 2.445
GeV dataset of g1c (blue), and the 2.897 GeV dataset of g1c (cyan). These are absolute corrections,
not relative corrections as in Figure 3.1. The g11a and g8b datasets have very similar corrections,
and the two g1c datasets are similar to each other, but there is a distinct difference between the
corrections for g11a and g8b vs the corrections for g1c.

g8b For g8b, the ten different datasets created a problem because some of the datasets did not have
enough statistics to allow determination of the corrections. Having so many different corrections
was not desirable. However, we were able to obtain corrections from the amorphous dataset, which
suitably corrected all of the datasets. Each of the datasets was examined on its own to see if the
corrections worked, and the results of those corrections are shown in Figure 3.1. It is clear that the
corrections do a very good job on all of the datasets. Note the large error bars for E-counters below
400, these are due to low statistics. This lack of statistics is why the amorphous dataset was used.

Comparing the Tagger Corrections From the corrections shown in Figures 3.1 (a) and (c) it
is apparent that the corrections are not the same for the g1c and g8b datasets. Figure 3.2 shows the
corrections for g8b and the two g1c datasets on a single plot, along with the corrections for g11a used
as a point of reference. It is clear that g8b corrections are nearly the same as the g11a corrections,
but that the g1c corrections are both quite different from the g11a corrections. This difference could
arise because of uncertainties in the end-point energy for the electron beam, or because of some
change in hardware between the g1c runs in 1999 and the g11a and g8b runs in 2004-2005. This
difference is the reason why each run period should generate its own set of tagger corrections.

3.2.3 Momentum Corrections

The measured momenta for the detected particles also require small corrections, due to various dif-
ferences between the toroidal field map and the drift chamber survey information. These corrections
are generally less than 20 MeV for the measured momentum, and on the order of hundredths of a
radian for angles. The method we use to determine these corrections was also developed by Mike
Williams [1], however we differ slightly in carrying out the procedure he detailed.

Once again, we choose events with a final state of pπ+π−, with no other detected particles. Then,
we apply the energy loss and tagger corrections. Next, we run three separate kinematic fits, each
ignoring one of final state particles and fitting to the hypothesis γp→ (p)π+π−, γp→ p(π+)π− and
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γp→ pπ+(π−). We cut any event which has a confidence level for any of the three fits of less than
10%.

The kinematic fit has given an estimate for the value of each of the three tracking parame-
ters (p, λ, φ), which correspond to the magnitude of momentum, polar angle, and azimuthal angle
respectively, for each of the three particles. Following the method of (3.1), we define

∆px = pkinfit
x − pmeasured

x (3.2a)
∆λx = λkinfit

x − λmeasured
x (3.2b)

∆φx = φkinfit
x − φmeasured

x , (3.2c)

where x is the excluded particle.
Each of the variables defined in (3.2) is a function of the particle’s magnitude of momentum, p,

the lab coordinates θlab and φlab, the CLAS sector it is detected in, and the particle’s charge. In
order to account for all of these dependencies, we have binned the data in each of these variables.
Each sector is separated into twelve 5◦ bins in the azimuthal angle φlab. There are fifteen bins for
the polar angle θlab, but they are not equally spaced. There are nine 5◦ bins for θlabε[5◦, 50◦), four
10◦ for θlabε[50◦, 90◦) and two 25◦ bins for θlabε[90◦, 140◦). This leads to a total of 180 bins in each
of the six CLAS sectors or 1080 bins overall for each particle.

In each of these (sector, θlab, φlab) bins we create a histogram of ∆Xx vs px, where X refers to
p, λ or φ, and x refers to either the proton, π+ or π−. Since our tracking is done in terms of q

p ,
we bin the magnitude of momentum p in 20, equally-sized 1

p bins. Then, in each of these bins the
Gaussian mean of ∆Xx is calculated. Finally, a 3rd order or lower polynomial is fit to the means
obtained in the bin. This function will be used to determine the final correction.

There are two ways in which our method differs from that outlined by Mike Williams. The first
is that we treat the proton and the π+ separately instead of combining them together as positive
particles. The second is that we iterated the process, correcting one of the nine variable in each
iteration. Subsequent iterations include all previous corrections. This approach was chosen after
suitable corrections could not be obtained even after many iterations while changing all variables at
once. The order in which we iterate the corrections does not have an effect on the final result.

g8b Once again g8b needs separate mention because of the ten different datasets. In the same way
as the tagger corrections were obtained, we used the amorphous dataset to find corrections and then
applied them to each of the datasets independently. Due to the fine binning, most of the bins did
not have enough statistics to allow full determination of the success of corrections, but in the bins
with sufficient statistics the corrections were very successful. For bins without sufficient statistics,
we used a broader binning method to check the results, which also looked good.

3.2.4 Final Corrections

As mentioned above, this was an iterative process. Starting from no corrections, other than ELoss,
first a tagger correction was obtained, and then each of the nine momentum variables was corrected.
Once that first iteration was complete, the tagger corrections were again calculated, and any further
corrections were added to the previous iteration’s correction. Then, the momentum corrections were
again calculated and combined with the previous iteration. This process was repeated until all of
the variables converged at a satisfactory level. This level was determined both by trying to keep
∆Xx ≤ 0.01, where X refers to the variable and x refers to the particle in (3.2), in as many bins as
possible, and also by noting when further iterations either had no effect, or made things worse for
the other variables.
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Figure 3.3: (a) Confidence levels from the kinematic fit of γp → pπ+π−(π0), for all events in runs
21763-21791 from g1c. (b) Missing mass off the proton for all events in runs 21763-21791 in g1c,
the shaded area are those events that pass a 10% confidence level cut. The background has clearly
been greatly reduced.

3.3 Kinematic Fit of γp → pπ+π−(π0)

We have elected to use the covariance matrix that was built for the g11a dataset [1], as testing
revealed no need to make any changes. Now we can move on to selecting the events which we will
use for the analysis. We begin by selecting events that have two positive tracks and one negative
track detected. We then assume the negative track is the π− and choose one of the positive tracks
as the proton and the other one as the π+. Then, we apply the energy loss, tagger, and momentum
corrections to each particle in the event. At this point, we remove any events which have a proton
with magnitude of momentum less than 350 MeV. This cut is based on the work of Matt Bellis, who
showed that low momentum protons are not possible to accurately model in CLAS. We then require
the total missing mass to be between 0 and 450 MeV, and that the total missing mass off the proton
be within 150 MeV of the ω mass of 782 MeV. Notice that these are very wide cuts, and, at this
point, no other cuts are placed on the data. Later, we will place a tighter cut on the mass off the
proton, within 25 MeV, but for now, we want a very loose cut for our signal-background separation
method, which will be detailed in Section 3.7.

Each event is kinematically fit to the hypothesis γp→ pπ+π−(π0). This fit will yield a confidence
level, and we discard events with a confidence level less than 10%. We now try the same event with
the positive particles switched, so that both combinations of the positive particles are tested. Only
one version of each event could pass the confidence level cut, as misidentifying the positively charged
particles will lead to a lower confidence level.

The confidence levels for events in the 2.445 GeV dataset of g1c are shown in Figure 3.3(a). The
effect of the 10% CL cut, which is what we will use as our final cut, on the signal can be seen, in
Figure 3.3(b) for g1c, by looking at the missing mass off the proton. The unshaded histogram is all
events before the CL cut, and the shaded histogram is after the cut. This cut greatly reduces our
background, while cutting away little of our signal, just slightly more than 10%.

3.4 Particle Identification

The next cut that we place on the data is a particle identification cut. This cut takes the events
that pass the previous confidence level cut, and tries to determine if the positive tracks are correctly
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associated with a proton and π+. This cut depends on the quantity

∆tof = tofmeasured − tofcalculated, (3.3)

where tofmeasured is the measured time of flight, the difference between the time at which the
particle struck the CLAS TOF scintillator and the time the photon was projected to have been at
the interaction vertex, based on which R.F. bucket the event is associated with, and

tofcalculated =
L

v
=

L

cp/E
=
L

c

√
p2 +m2

p
=
L

c

√
1 + (

m

p
)2 , (3.4)

where L is the distance from the TOF scintillator to the interaction vertex, v is the velocity of the
particle, c is the speed of light, and m and p are the mass and momentum of the particle.

Figure 3.4 shows ∆tofπ+ vs ∆tofp for both datasets. The region near the origin shows correctly
identified events. The regions near (±2,±2), (±4,±4), etc, come from events that have particles
associated with a wrong RF bucket. These events need to be removed and will not remove any of
our signal. Our cut takes the shape of a cross that removes the bad events away from the axes. This
cut has been shown, by the method of Feldman and Cousins [38], to remove on the order of 1.3% of
the signal [1].

3.5 Detector Performance Cuts

The next set of cuts is required due to issues with the detectors that cannot be modeled in the
Monte Carlo. The cut placed on low momentum protons, already mentioned, is an example of this
kind of cut.

3.5.1 Fiducial Cuts

Matt Bellis studied the regions of the detectors that could not be modeled in the Monte Carlo, and
developed cuts based on the results [1]. Regions very close to the torus coils show changes in the
acceptance that are too rapid to be modeled, and so events with a particle too close to the torus
coils are removed. This is most severe in the forward direction, i.e. closer to the coils. The same
cuts that were used for g11a were used again here for both g1c and g8b. Figure 3.5 shows the results
of this cut for both g1c and g8b

3.5.2 TOF Paddle Cuts

In each CLAS run period, there have been some problems with certain TOF paddles, however the
exact paddles are highly variable from run period to run period, as paddles are fixed and new
ones fail. Thus, the list of paddles that must be removed from g1c and g8b are quite different.
The removed paddles are listed by sector in Table 3.5 for g1c. There are no time-of-flight paddles
removed from the g8b analysis, however, for a detailed discussion of the time-of-flight paddles in g8b
please see Appendix A.

3.6 The Cut on cos θπ
0

CM

Continuing to follow the example of Mike Williams in his g11a analysis, we remove events with
kinematically fit values of cos θπ0

CM > 0.99 in order to limit contamination from γp→ pπ+π− events
[1]. Figure 3.6 shows the distribution of cos θπ0

CM in g1c and g8b. From this it is clear that we could
have made the cut even tighter, perhaps at 0.995, but to stay consistent with g11a, we have chosen
to keep the cut at 0.99.
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Figure 3.4: ∆ TOF π+ (ns) vs ∆ TOF proton (ns). (a) All events in runs 21763-21983 in g1c passing
a 10% CL cut. (b) All events for the same runs that also pass our timing cut. (c) All events in the
PARA 1.5 dataset of g8b passing a 10% CL cut. (d) All events for the same runs that also pass our
timing cut.

Sector Removed Paddles
1 44,29
3 45
4 21,23
6 32

Table 3.5: Time-of-flight paddles removed from the g1c analysis.



3.6. THE CUT ON COS θπ0

CM 29

 (radians)φ
-3 -2 -1 0 1 2 3

 (
ra

d
ia

n
s)

θ

0

0.5

1

1.5

2

2.5

3

0

20

40

60

80

100

120

140

160

(a)

 (radians)φ
-3 -2 -1 0 1 2 3

 (
ra

d
ia

n
s)

θ

0

0.5

1

1.5

2

2.5

3

0

20

40

60

80

100

120

140

(b)

 (radians)φ
-3 -2 -1 0 1 2 3

 (
ra

d
ia

n
s)

θ

0

0.5

1

1.5

2

2.5

3

0

20

40

60

80

100

120

140

160

180

200

220

240

(c)

 (radians)φ
-3 -2 -1 0 1 2 3

 (
ra

d
ia

n
s)

θ

0

0.5

1

1.5

2

2.5

3

0

20

40

60

80

100

120

140

160

180

200

(d)

Figure 3.5: θlab (radians) vs φlab (radians). (a) All events in runs 21763-21983 in g1c passing the
10% CL cut and the PID cut. (b) All events for the same runs that also pass the fiducial cuts. (c)
All events in the PARA 1.5 dataset of g8b passing a 10% CL cut and the PID cut. (d) All events
for the same runs, that also pass our timing cut.
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Figure 3.6: cos θπ0

CM for (a) all events in runs 21763-21983 in g1c, passing the 10% CL cut, the PID
cut, the fiducial cut and the TOF paddle knock out; (b) all events in the PARA 1.5 dataset of g8b
passing the 10% CL cut, the PID cut, the fiducial cut and the TOF paddle knock out. The large
number of events at very forward angles come from γp→ pπ+π− events.
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3.7 Signal-Background Separation

Lastly, we need to determine which events are signal events and which are background. To do this,
we follow the method developed by Williams in [1] to obtain a signal weight for every event, known
as the Q-value. In this method, we define a metric to determine the distance between events. The
metric we define here will be based on four kinematic variables for each

√
s bin, the ω production

angle, cos θω
CM , the decay helicity angles, cos θHEL and φHEL, and the quantity

λ α |~pπ+ × ~pπ− |2 (3.5)

where the pion momenta are here measured in the rest frame of the ω. We then define the distance
metric in the space created by these variables as

d2
ij =

4∑
k=1

[
ξi
k − ξj

k

rk
]2, (3.6)

where ξi
k is the value of one of the four kinematic variables for the ith event, and rk is the range of

that variable, where ~r = (2, 2, 2π, 1), although other choices could be made for the weighting [39].
We will also use the variable m, which is the invariant mass of the 3π system for each event, in our
calculations.

Next, for each event, with ~ξ0 and m0, in a given
√
s bin, we calculate the distance to every other

event in that bin and choose the Nc closest events to it (we use Nc = 100). These events should
form a very small region around ~ξ0 in our space.

Now we define a signal and a background function that we can use to describe the data. The
signal function we will take to be a Voigtian scaled by an unknown function, Fs(ξ), which contains
the dependence on the kinematics for the signal function, such that

S(m, ~ξ) = Fs(~ξ)V (m,µ, σ,Γ) (3.7)

where
V (m,µ, σ,Γ) =

1√
2πσ

Re[w(
1

2
√
σ

(m− µ) + i
Γ

2σ
√

2
)], (3.8)

and σ is the Gaussian width of the Voigtian, Γ is the width of the non-relativistic Breit-Wigner
function with a mean of µ, and w(z) is the complex error function. The background is simply
referred to as B(m, ~ξ) since we don’t know its form. If we did know the form of the background, we
would not need this method.

Now, since our Nc events are in a small region around ~ξ0, we can approximate our signal and
background functions as

S(mi, ~ξi) = Fs(~ξ0)V (mi, µ, σ,Γ) ≈ A ∗ V (mi, µ, σ,Γ) , (3.9)

B(mi, ~ξi) = Fs(~ξ0)V (m,µ, σ,Γ) ≈ ami + b , (3.10)

where A, a, and b are fit parameters. The choice of a linear background function can be justified
because we are considering a small slice of phase space.

Now we fit the Nc closest events to a function that combines the signal and background functions
to obtain A, a and b. From this, we can calculate the the expected number of signal events, si, and
background events, bi, at m0 to obtain our Q-value

Qi =
si

si + bi
. (3.11)

This number will be used in subsequent chapters to weight each event based on its likelihood of
being a signal event.
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Figure 3.7: Signal-Background in the
√
s = 1855 MeV bin. The shaded region is all events passing

our cuts (wider mass cut), the blue line is the sum of the Q-values for all events in the bin (signal),
the red line in the sum of 1-Q for all events (background). (a) g1c events. (b) g8b events.

Figure 3.7 shows the missing mass of the proton for the 1855 MeV bin in both the g1c and
g8b datasets. A blue line represents the signal, or sum of the Q-values, in the bin, and a red line
represents the background, or sum of 1-Q. It seems clear that this method is correctly weighting the
signal and background in this bin.

3.7.1 Near Threshold Bins

For
√
s bins that are near the ω threshold, the CLAS detector does not have acceptance for events

that are on the high side of the ω mass peak. With only events on one side of the peak, it is not
possible to extract the shape of the background. To deal with the bins below

√
s = 1.77 GeV, we

developed a new method.
The method used is a slightly modified version of the one utilized by Mike Williams [1]. For each

event in a sub-threshold bin, we find the Q-value of the closest event in each of the bins in the range
1770 ≤

√
s ≤ 1900 MeV, using the distance function in (3.6) with the same four kinematic variables,

but also adding in the ω mass as a kinematic variable, with rmω ≡ 25.5 MeV, three times the width
of the ω. The final Q-value for the event was then the weighted average of each of the values of Q
just obtained, where the weights were equal to 1/d2, in order to weight the closer events more than
the far events. In the case of 10-MeV-wide bins, we use 13 bins in the range 1770 ≤

√
s ≤ 1900

MeV.
In the case of g8b, only the horizontal and vertical datasets with a coherent edge of 1.3 GeV

contained these near-threshold bins. Since those datasets only went up to
√
s = 1840 MeV, there

were only 7 bins to use for our method, since we used 10-MeV-wide bins.
Figure 3.8 shows the modified background subtraction for the

√
s=1735 MeV bin from g1c and

the 1755 MeV bin from g8b. Note in the 1735 MeV bin that there is significant background on
the low side of the ω mass peak and almost none above the peak. It appears there is still some
background getting through on the low end, however this is much improved from using the standard
method for this bin. The difficulty in finding good Q-values in this bin, in both g1c and g8b, will
affect the quality of the fits that we are able to obtain in these bins. The 1755 MeV bin shows much
less background on the low side of the mass peak and a little bit more of both signal and background
above the mass peak. We are able to do a better job of separating the signal and background in
these bins.
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Figure 3.8: Signal-Background in near-threshold bins. The notation is the same as in Figure 3.7.
(a) g1c events for

√
s = 1735. (b) g8b events for

√
s = 1755.

3.8 Polarization

Both of the run periods under study here utilize polarized photon beams. The g1c dataset had
a circularly polarized photon beam, and the g8b dataset used a linearly polarized photon beam.
In order to use this extra information in our fits, we need to be able to determine the degree of
polarization and, for g1c, the helicity of the photon.

3.8.1 Circular Polarization in g1c

A circularly polarized electron beam with an energy of 2.445 GeV or 2.897 GeV was delivered to
the hall, then passed through a gold radiator to produce polarized photons. The polarization of the
photon for a given event can then be calculated using the Maximon and Olson relation [40],

ζc =
k(εbeam + 1

3εrecoil)ζbeam

ε2beam + ε2recoil −
2
3εbeamεrecoil

, (3.12)

where εbeam is the energy of the electron beam, εrecoil is the energy of the recoiling electron, k is
the energy of the outgoing photon, and ζbeam is the polarization of the electron beam. εbeam and
ζbeam are constants, and clearly εbeam = εrecoil + k, thus the polarization of the photon is equal to
that of the electron beam when the energy is completely transferred to the photon and falls off as
the photon energy decreases.

Determination of the polarization of the electron beam was discussed in Section 2.4. The helicity
of each event was determined from the helicity of the incident electron, which was recorded for each
event. In the following chapters, we will want to use one number that contains both the helicity and
polarization of the photon so we introduce the variable

ηc ≡ h ∗ ζc. (3.13)

Figure 3.9 shows ηC from events in g1c which have passed all of our cuts.

3.8.2 Linear Polarization in g8b

For the g8b run period, the linearly polarized photons were produced via coherent bremsstrahlung
reactions, using a 50 µm-thick diamond radiator. This process produces photons in a tighter energy
range, generally around 200 MeV wide, than is produced from a standard radiator. The upper edge
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Figure 3.9: ηc measured from all events in runs 21763-21983 in g1c which have passed all listed cuts.

of this energy range is known as the coherent edge, and photons are not generated with energies
beyond the coherent edge. The majority of the photons are produced by the electron’s interaction
with the (022) plane of the diamond radiator; by adjusting the azimuthal angle, in lab coordinates,
of this plane, we can set the polarization direction of the photons, and we can set the coherent edge
energy by adjusting the angle between the electron beam direction and the diamond [41].

The polarization, ζ, of the photons is related to measurable variables by the following equation
[41],

ζ(x,G, θ) = −φtot(x,G, θ)
[
1− 1

ξtot(x,G, θ)

]
, (3.14)

where we define the following variables:

x =
Eγ

Ee
, (3.15a)

θ =
mea

4
√

2πgEe

[
1

xd
g
− 1

] , (3.15b)

ξtot(x,G, θ) =
Iincoherent(x) + Icoherent(x)

mea
4
√

2π
Iamorphous(x)

, (3.15c)

where G is the maximum lattice vector (0GG), Eγ is the photon energy, Ee is the electron energy,
me is the mass of the electron, a is the diamond lattice constant, xd

g are the discontinuities for the
vector g (0gg), φtot is the upper limit on the polarization, and the Ix are the intensities coming from
coherent or incoherent scattering off the diamond or scatting off of the amorphous radiator. Under
ideal circumstances, (3.14) could be used to calculate the polarization of the photons. However, the
diamond radiator was not completely stable in its location during the runs, and even very small
movements can affect the position of the discontinuities, xd

g, which affects the angle, θ, between the
beam and the (022) plane of the diamond, and thus the polarization. In order to account for this,
it is necessary to smear the enhancement spectrum, ξtot, assuming a Gaussian form around θ with
the width σ. Using these now smeared functions, it is possible to calculate the polarization.

For g8b, the polarization is determined by consulting tables, compiled by Ken Livingston of the
University of Glasgow, that require only the instantaneous coherent edge position at the time of
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Figure 3.10: ηL measured from all events in the PARA 1.5 dataset of g8b which have passed all
listed cuts.

the event and the energy of the photon. Subsequent corrections to these values were calculated by
Michael Dugger and Barry Ritchie of Arizona State University [42], which are also applied.

In addition to setting the values of the polarization, we also remove events at this point that
are above the instantaneous coherent edge, or more than 200 MeV below the coherent edge. There
should not be events above the coherent edge, and any events that have an energy above the edge
will not have the polarization properly defined. Events with a photon energy more than 200 MeV
below the instantaneous coherent edge position also show inconsistencies in their polarization values
and thus are removed [42]. In order to be consistent with the notation from g1c, we define define
ηL ≡ ζ. Figure 3.10 shows ηL for events from the para 1.5 dataset of g8b.

3.9 Monte Carlo

Now that we have the data in a form acceptable for our fits, we must account for the inefficiencies in
the detectors used to measure the data. The detectors have a limited ability to gather data, whether
due to the extent that they span, the acceptance,or problems with the detector hardware. The
likelihood that a given particle will be detected by the hardware, processed properly, and admitted
into the dataset is known as the efficiency. In order to perform our fits, we will need to have a model
of our detectors’ acceptance and efficiency, and then we can use simulated (or Monte Carlo) data to
normalize our results.

The model for the acceptance of each detector comes from detailed measurements made through-
out the experiment. These measurements determine, for instance, if certain wires in a detector are
inactive, or malfunctioning. During the cooking process, all of this information is fed into a database
so that results from malfunctioning detectors are not accepted into the data stream.

Monte Carlo data for γp → pω → pπ+π−π0 was generated for both the g1c and g8b datasets
using the beam energies appropriate for each dataset. For g1c, there were two separate Monte Carlo
datasets created because there were two separate beam energies. All of the g8b measurements were
generated with a single beam energy, although the photon energy depended on the coherent edge
setting. However, only one Monte Carlo dataset was generated for g8b. The number of events
generated was chosen so as to get roughly 100,000 events in each

√
s bin. In all kinematic variables,

other than photon energy, the events were thrown according to pω and ω → π+π−π0 phase space,
which included the Breit-Wigner width of the ω.
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3.9.1 GSIM

After we generated the Monte Carlo data, it was processed using the CLAS GSIM package [43],
which is a GEANT-based simulation of the CLAS detectors. The generated Monte Carlo data
contains only the four-vectors for each particle in the reaction; GSIM takes these four-vectors and
propagates them through the CLAS detectors, generating a set of detector signals for each track
in the simulated event. It also will simulate any particle decays, scattering, energy loss, and any
other interactions the particle may have as it passes through the detectors. These results are then
processed by another CLAS package, known as GPP, which smears simulated measurements to
match the detector resolutions according to what was measured during the actual experiment. It
is at this point that signals from parts of the detectors that were inactive or malfunctioning during
the actual experiment are removed from the simulation data.

Once the simulated data passes through these two packages, it is in the same form as the raw
experimental data, and is cooked with the same software that was used to cook the corresponding
experimental data. At this point, the Monte Carlo data undergoes the exact same cuts as were
detailed for the experimental data in this chapter. There are several checks in place to assure that
the Monte Carlo data is accurately mimicking the experimental data. If the detector acceptances
are not properly modeled, the results from our analysis will be affected. To see a more detailed
discussion of this, see Appendix A, which details a problem with the acceptance for the time-of-
flight scintillators that could not be properly modeled in the Monte Carlo, but which was later
corrected.

3.9.2 Polarization Values

The Monte Carlo data does not have any polarization information included when it is generated. As
a result, we need to add in that information after generation. For the circularly polarized data, this
is accomplished by calculating the polarization using the Maximon and Olson equation (3.12), which
depends only on values present in the Monte Carlo data. The helicity for each event is randomly
decided.

For the linearly polarized data, however, the polarization cannot be determined for each event.
This is because the polarization depends on the instantaneous coherent edge, and other factors, that
are not present in the Monte Carlo data. Instead of assigning each event a unique polarization, it
is necessary to give each event in a given

√
s bin the average polarization of all of the experimental

events in that bin. This approximation will be valid so long as all of the events in a given bin lie
within a fairly tight range. The range of polarizations in two

√
s bins from the para 1.5 GeV dataset

in g8b can be seen in Figure 3.11. Notice that, for most events, the average polarization is less than
0.05 away from the average.

3.10 Summary

We have now outlined how the data has gone from the values measured in the CLAS detectors
to the final form that will be used to generate our amplitudes. The criteria used to select which
events will be used in our fits has also been discussed. As mentioned earlier, in order to perform the
signal-background separation, a wide mass cut was placed around the ω mass. Now that we have
the Q-values for each event, we place a much tighter, 25 MeV, cut around the ω mass. The total
signal for each

√
s bin for both datasets can be seen in Figure 3.12. The total signal from the g1c

dataset is 652,603; the total signal from the g8b dataset is 2,904,701.
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Figure 3.11: ηL for all events in the (a) 1825 MeV and (b) 1925 MeV bins from the PARA 1.5 GeV
dataset in g8b. The red line indicates the average of all of the ηL measurements in that bin, which
will be used as the polarization for all Monte Carlo events in that bin.
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Figure 3.12: Signal Events vs
√
s (MeV): (a) Signal Events from g1c after all cuts detailed in this

chapter have been applied. The total number of signal events is 652,603. (b) Signal events from
g8b after all cuts detailed in this chapter have been applied. The total number of signal events is
2,904,701.



Chapter 4

Partial-Wave Analysis Formulas

In this chapter, we will follow the method set forth by Mike Williams in his thesis [1] to develop the
formulas necessary for our partial-wave fits, and we will extend them to deal with both photon and
target polarization. Though we will not be analyzing any experiments with a polarized target, the
method used to incorporate photon polarization is easily generalized to the case of target polarization
so we have included it here as well. The formulas in this chapter are derived assuming all the data
in a given fit falls within a narrow

√
s bin. Our data have been binned in either 10 MeV- or 30

MeV-wide bins in
√
s.

4.1 Notation

In this chapter, the four-momenta of the four particles involved in the reaction will be denoted as
k, pi, pf and q for the photon, initial proton, final proton and ω respectively. We choose to work
in the γ-p CM frame, see Figure 4.1, choosing the photon direction, k̂, as the z-axis, and the y-axis
normal to the production plane; this is known as the Adair frame [47]. The x-axis is perpendicular
to both the z- and y-axes. We define the directions to be

X̂ = (~k×~q)×~k

|(~k×~q)×~k|
=

1√
q2x + q2y

(qx, qy, 0) (4.1a)

Ŷ =
~k×~q

|~k×~q|
=

1√
q2x + q2y

(−qy, qx, 0) (4.1b)

Ẑ = ~k

|~k|
= (0, 0, 1), (4.1c)

as can be seen in Figure 4.1
For a given particle x, all spin projections are along the beam direction of the incident photon

and are denoted by mx, and the mass is denoted by wx. The Mandelstam variables are given in
terms of the four-momenta of the particles as

s = (pi + k)2 = (pf + q)2 , (4.2a)
t = (q − k)2 = (pi − pf )2 , (4.2b)
u = (pi − q)2 = (pf − k)2. (4.2c)

Let us consider a set of n events, the ith event of which has kinematics denoted by Xi, and the
set of all kinematics is denoted simply as X. In a fit, the set of the fit parameters is denoted as ~x.
The partial-wave amplitudes used here are generated following the method described in [1]. They

37
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Figure 4.1: Axes in the Adair frame. The Ẑ direction corresponds to the photon direction.

may be written in several ways throughout this chapter. Amplitudes written with three indices have
include the decay of the ω → π+π−π0, and are written as

Amγ ,mi,mf
=

∑
a

αa(~x,X)Aa
mγ ,mi,mf

(X), (4.3)

where α(~x,X) is a complex function of the fit parameters, and the sum over a indicates a sum over
all such amplitudes with the same set of spin projections, mγ , mi, and mf . Amplitudes written
with four indices are calculated without the ω decaying and thus the fourth index is for the spin of
the ω, which is -1, 0 or 1,

Amγ ,mi,mf ,mω =
∑

a

αa(~x,X)Aa
mγ ,mi,mf ,mω

(X). (4.4)

Note that αa(~x,X) does not depend on the particle spin states. This means that we can fit using
amplitudes of the type Amγ ,mi,mf

, and use the parameters from that fit with amplitudes of the type
Amγ ,mi,mf ,mω to calculate observables, such as the spin density matrix elements. If the amplitudes
are missing an index it should be assumed that it has been summed over.

4.2 Extended Maximum Likelihood Method

To perform our fits, we make use of the extended maximum likelihood method, which is a fit to
both the shape and the number of events in a given data distribution. This method allows us to do
event-based fits in each

√
s bin [1, 44].

We begin with the likelihood function

L =
(
n̄n

n!
e−n̄

) n∏
i

P(~x,Xi), (4.5)
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where the factor in the parentheses is the Poisson distribution for the probability of n total events
given n̄ expected events, and P(~x,Xi) is the probability distribution function. The probability
distribution function for an event with an acceptance, defined by η(Xi), phase space element φ(Xi),
a Lorentz invariant transition amplitude M, which depends on the amplitudes weighted by the fit
parameters and will be defined in Section 4.4, and normalization N (~x), can be written as

P(~x,Xi) =
|M(~x,Xi)|2η(Xi)φ(Xi)

N (~x)
. (4.6)

The normalization is chosen such that ∫
P(~x,X)dX = 1. (4.7)

The goal then is to maximize L to find the best set of fit parameters.

4.2.1 Normalization

In order to properly normalize the likelihood function, it is necessary to be able to calculate the
number of expected events, n̄, in each

√
s bin. To that end, we introduce the cross section, which

is defined to be the transition rate per unit of incident flux per target particle [45]. In terms of
observable quantities, we can write it as

σ =
N

Fρtarget`targetNA/Atarget
, (4.8)

where N is the total number of scattering events, F is the integrated incident photon flux, ρtarget,
`target and Atarget are the density, length and atomic weight of the target, and NA is Avogadro’s
number.

We can also write the cross section in terms of the Lorentz invariant transition amplitude, M,
in the following form [3]

σ =
1
4

(2π)4

2(s− w2
p)

∫
|M(~x,X)|2dΦ(X), (4.9)

where the factor of one quarter in front comes from averaging over the spin states of the initial
particles, the photon and the target proton. Setting (4.8) and (4.9) equal to each other and solving
for N we get the total number of scattering events to be

N =
(
Fρtarget`targetNA

Atarget

)
(2π)4

8(s− w2
p)

∫
|M(~x,X)|2dΦ(X), (4.10)

which can be converted into the number of expected (detected) events by including the acceptance
of the detector into the integral

n̄ =
(
Fρtarget`targetNA

Atarget

)
(2π)4

8(s− w2
p)

∫
|M(~x,X)|2η(X)dΦ(X). (4.11)

The integral in (4.11) must be calculated numerically as our detectors, and the topology of the
event, have too complicated of an acceptance to be described by a simple function. So we take
Monte Carlo events and run them through our detector simulation software, GEANT and GSIM, to
model the effect of the acceptance. Then, we must replace the integral by a discrete sum over all
the Monte Carlo events that were generated, called the raw Monte Carlo events, normalizing by the
total number of raw Monte Carlo events. This yields∫

|M(~x,X)|2η(X)dΦ(X) ≈
∫
dΦ(X)
Nraw

Nraw∑
i

|M(~x,Xi)|2η(Xi). (4.12)
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The simulation software either accepts an event or rejects it, thus η(Xi) is either a 1 or a 0, so we can
take our Monte Carlo dataset and separate the accepted events from the rejected ones and change
our sum to a sum over only the accepted Monte Carlo, removing the acceptance, which yields∫

|M(~x,X)|2η(X)dΦ(X) ≈
∫
dΦ(X)
Nraw

Nacc∑
i

|M(~x,Xi)|2. (4.13)

In (4.13) we still have the integral over phase space to calculate:∫
dΦ(X) =

∫
δ4(pi + k − pf − q)

d3 ~pf

(2π)32Ef

d3~q

(2π)32Eω

=
1

4(2π)6

∫
δ(
√
s− Ef − Eω)

|~pf |2dΩ
EfEω

=
1

4(2π)6

∫
|~pf |dΩ√

s

=

[
(s− (wp + wω)2)(s− (wp − wω)2)

]1/2

8(2π)5s
, (4.14)

Now, we can rewrite (4.11), substituting (4.13) and (4.14) to obtain

n̄ ≈ S(s)
Nraw

Nacc∑
i

|M(~x,Xi)|2, (4.15)

where

S(s) =
Fρtarget`targetNA

Atarget

[
(s− (wp + wω)2)(s− (wp − wω)2)

]1/2

64πs(s− w2
p)

. (4.16)

We can now determine N (~x) in (4.6), using the normalization in (4.7) and (4.11) we can write

N (~x) = C(s)n̄, (4.17)

where

C(s) =
8(s− w2

p)
(2π)4

Atarget

Fρtarget`targetNA
. (4.18)

We can define the total cross section, σ, by inserting (4.12) and (4.14) into (4.9), leaving out the
detector acceptance, yielding

σ =

[
(s− (wp + wω)2)(s− (wp − wω)2)

]1/2

64πs(s− w2
p)

1
Nraw

Nraw∑
i

|M(~x,Xi)|2. (4.19)

4.2.2 Log Likelihood

Since minimization functions rather than maximization functions exist, it is desirable to derive our
equations such that they can be minimized rather than maximized. Given that the natural logarithm
is a monotonically increasing function, we choose to minimize the negative of the natural logarithm
of the likelihood function, which will turn our product of probabilities into a sum over the logs of
the probabilities. The fit parameters which minimize − lnL will maximize L. Taking the natural
logarithm of (4.5), we get

− lnL = −n ln n̄+ lnn! + n̄−
n∑
i

lnP(~x,Xi). (4.20)
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Plugging in (4.6) for P(~x,Xi) we obtain

− lnL = −n ln n̄+ lnn! + n̄−
n∑
i

ln
[
|M(~x,Xi)|2η(Xi)φ(Xi)

]
+ n lnN (~x). (4.21)

Utilizing (4.17), we can further simplify to

− lnL = −
n∑
i

ln
[
|M(~x,Xi)|2η(Xi)φ(Xi)

]
+ n̄+ lnn! + n ln C(s). (4.22)

Given that we are only trying to minimize − lnL, without caring about the actual value of the
function at the minimum, we can ignore all terms which do not depend on ~x, treating them simply
as constants, so that

− lnL = −
n∑
i

ln |M(~x,Xi)|2 + n̄+ const. (4.23)

To obtain the final form of the log likelihood function, we substitute (4.15) for n̄, and add in the
Q-values from our background-subtraction method to weight the experimental data, which yields

− lnL = −
n∑
i

Qi ln |M(~x,Xi)|2 +
S(s)
Nraw

Nacc∑
i

|M(~x,Xi)|2 + const , (4.24)

where the first sum is over the data events, and the second sum is over the accepted Monte Carlo
events. This is the final form, but recall that we still have not calculated the Lorentz invariant
transition amplitude, M yet.

4.3 Spin Density Matrices

In order to calculate the Lorentz invariant transition amplitude, M, for events generated with a
polarized photon beam and polarized target, it will be necessary to calculate the photon and target
spin density matrices first.

We shall briefly look at density matrices in general, before constructing the specific ones required
here. Density matrices can be used to represent particles that exist in a statistical ensemble of
states. If the density matrix for a particle is known, then all quantum mechanical observables can
be calculated. For a particle with n states, in a given basis, each having wave function |ψi >, the
density matrix can be constructed as [46]

ρ =
n∑

i,i′

aii′ |ψi′ >< ψi|. (4.25)

Diagonal elements of the matrix, aii, represent the probability that the particle is in state |ψi >.
Density matrices are Hermitian and have a trace of 1. As a result of this, for particles which can exist
in only two distinct states, it is always possible to write a density matrix as a linear combination of
the identity matrix and the Pauli matrices [47].

For our purposes, the spin density matrix is constructed in the spin space. Spin 1
2 particles, as

well as photons, have only two spin states, and thus can be written as a linear combination of the
identity matrix and the Pauli matrices, where a vector, ~P , related to the polarization vector, will
provide the weights for the Pauli matrices. The general case for a particle with only two states then
can be written as

ρx =
1
2
I +

1
2
~P · ~σ. (4.26)

One quick result of this is that unpolarized particles will have the identity matrix as their spin
density matrix.
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4.3.1 Photon Spin Density Matrix

Photons have two spin states, denoted as |mγ = + > and |mγ = − >, which are states of pure +
circular polarization and pure - polarization, respectively. The wave function for linearly polarized
photons is a linear combination of the two circular polarization spin states. Linearly polarized
photons have a polarization vector that is defined, in the X̂, Ŷ , Ẑ basis, as

~ε = (cosα, sinα, 0), (4.27)

where α is the angle between ~ε and the X̂ axis in the production plane [47]. The vector ~P in (4.26)
for polarized photons in the center of mass is the Stoke’s vector,

~P γ
CM = (−ηγ

L cos(2α),−ηγ
L sin(2α), ηγ

C), (4.28)

where ηL/C are as defined in Section 3.8; ηL is the degree of linear polarization, such that 0 ≤ ηγ
L ≤ 1;

and ηC is the degree of circular polarization multiplied by the helicity of the photon, such that
−1 ≤ ηγ

C ≤ 1. Following (4.26) the photon density matrix is written

ργ =
1
2

[(
1 0
0 1

)
− ηγ

L cos 2α
(

0 1
1 0

)
− ηγ

L sin 2α
(

0 −i
i 0

)
+ ηγ

C

(
1 0
0 −1

)]
(4.29)

or more compactly,

ργ =
1
2

(
(1 + ηγ

C) −ηγ
Le

−2iα

−ηγ
Le

2iα (1− ηγ
C)

)
. (4.30)

4.3.2 Target Spin Density Matrix

Though we will not be analyzing an experiment with a polarized target here, it is worthwhile to
follow through with this method to extend it to experiments with a polarized target. Run periods
at CLAS such as FROST and HD-ICE with polarized targets may find them useful.

In a similar way, the target spin density matrix can be written, taking into account the two pos-
sible spin states, and the options of having either transversely or longitudinally polarized nucleons.
The vector ~P in (4.26) for a polarized target in the center of mass is

~PT
CM = (−ηT

T cos(2β),−ηT
T sin(2β), ηT

L ), (4.31)

where ηT
T is the degree of transverse polarization and, 0 ≤ ηT

T ≤ 1; and ηT
L is the degree of longitudinal

polarization multiplied by the helicity of the target nucleon, such that −1 ≤ ηT
L ≤ 1; and β is the

angle between the polarization vector of the target nucleon and the X̂ axis in the production plane
of the vector meson. This leads to the following spin density matrix for the target,

ρi =
1
2

[(
1 0
0 1

)
− ηT

T cos 2β
(

0 1
1 0

)
− ηT

T sin 2β
(

0 −i
i 0

)
+ ηT

L

(
1 0
0 −1

)]
(4.32)

or more compactly,

ρi =
1
2

(
(1 + ηT

L ) −ηT
T e

−2iβ

−ηT
T e

2iβ (1− ηT
L )

)
(4.33)

4.3.3 Vector Meson Spin Density Matrix

The spin density matrix for the vector meson (the ω meson in the present case) is related to the
density matrices for the photon and target by a matrix of the production amplitudes, J . The
relationship, assuming an unpolarized recoil nucleon, is [47]

ρV = J (ργ ⊗ ρi) J†. (4.34)
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The direct product between (4.29) and (4.32) leads to 16 4x4 matrices of complex numbers (the
number to the top right of each matrix is simply a label to keep track of all 16 matrices)

(ργ ⊗ ρi) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


0

−ηγ
L cos 2α


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


1

− ηγ
L sin 2α


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0


2

+ ηγ
C


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


3

−ηT
T cos 2β


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


4

− ηT
T sin 2β


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


5

+ ηT
L


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


6

+ηγ
Lη

T
T cos 2α cos 2β


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


7

+ ηγ
Lη

T
T cos 2α sin 2β


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0


8

−ηγ
Lη

T
L cos 2α


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


9

+ ηγ
Lη

T
T sin 2α cos 2β


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


10

+ηγ
Lη

T
T sin 2α sin 2β


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


11

− ηγ
Lη

T
L sin 2α


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0


12

−ηγ
Cη

T
T cos 2β


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


13

− ηγ
Cη

T
T sin 2β


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


14

+ηγ
Cη

T
L


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


15

. (4.35)

We shall refer to the matrices from (4.35) as ρa
V where a can range from 0-15. These can be combined

together into a single matrix as:

(ργ ⊗ ρi) =


(1 + ηγ

C)(1 + ηT
L ) −(1 + ηγ

C)ηT
T e

−2iβ −(1 + ηT
L )ηγ

Le
−2iα ηγ

Lη
T
T e

−2i(α+β)

−(1 + ηγ
C)ηT

T e
2iβ (1 + ηγ

C)(1− ηT
L ) ηγ

Lη
T
T e

−2i(α−β) −(1− ηT
L )ηγ

Le
−2iα

−(1 + ηT
L )ηγ

Le
2iα ηγ

Lη
T
T e

2i(α−β) (1− ηγ
C)(1 + ηT

L ) −(1− ηγ
C)ηT

T e
−2iβ

ηγ
Lη

T
T e

2i(α+β) −(1− ηT
L )ηγ

Le
−2iα −(1− ηγ

C)ηT
T e

2iβ (1− ηγ
C)(1− ηT

L )


(4.36)

The J in (4.34) is a matrix of the 24 production amplitudes. Since the recoil proton’s spin is
not measured, it is summed over, reducing the number of production amplitudes to 12, which will
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be labeled as Amγ ,mi,mV
. The J matrix then is

J =

 A+++ A+−+ A−++ A−−+

A++0 A+−0 A−+0 A−−0

A++− A+−− A−+− A−−−

 (4.37)

The vector meson’s spin density matrix then can be calculated using either (4.35) or (4.36), but
it is more useful to see it as the sum of the 16 matrices. Those 16 matrices then read:

ρ0
mV mV ′ =

1
2N

∑
mγmimf

Amγ ,mi,mf ,mV
∗ A†mγ ,mi,mf ,mV ′ (4.38a)

ρ1
mV mV ′ =

1
2N

∑
mγmimf

Amγ ,mi,mf ,mV
∗ A†−mγ ,mi,mf ,mV ′ (4.38b)

ρ2
mV mV ′ =

1
2N

∑
mγmimf

i ∗ (−mγ)Amγ ,mi,mf ,mV
∗ A†−mγ ,mi,mf ,mV ′ (4.38c)

ρ3
mV mV ′ =

1
2N

∑
mγmimf

mγAmγ ,mi,mf ,mV
∗ A†mγ ,mi,mf ,mV ′ (4.38d)

ρ4
mV mV ′ =

1
2N

∑
mγmimf

Amγ ,mi,mf ,mV
∗ A†mγ ,−mi,mf ,mV ′ (4.38e)

ρ5
mV mV ′ =

1
2N

∑
mγmimf

i ∗ (−mi)Amγ ,mi,mf ,mV
∗ A†mγ ,−mi,mf ,mV ′ (4.38f)

ρ6
mV mV ′ =

1
2N

∑
mγmimf

miAmγ ,mi,mf ,mV
∗ A†mγ ,mi,mf ,mV ′ (4.38g)

ρ7
mV mV ′ =

1
2N

∑
mγmimf

Amγ ,mi,mf ,mV
∗ A†−mγ ,−mi,mf ,mV ′ (4.38h)

ρ8
mV mV ′ =

1
2N

∑
mγmimf

i ∗ (−mi)Amγ ,mi,mf ,mV
∗ A†−mγ ,−mi,mf ,mV ′ (4.38i)

ρ9
mV mV ′ =

1
2N

∑
mγmimf

miAmγ ,mi,mf ,mV
∗ A†−mγ ,mi,mf ,mV ′ (4.38j)

ρ10
mV mV ′ =

1
2N

∑
mγmimf

i ∗ (−mγ)Amγ ,mi,mf ,mV
∗ A†−mγ ,−mi,mf ,mV ′ (4.38k)

ρ11
mV mV ′ =

1
2N

∑
mγmimf

(−mγ ∗mi)Amγ ,mi,mf ,mV
∗ A†−mγ ,−mi,mf ,mV ′ (4.38l)

ρ12
mV mV ′ =

1
2N

∑
mγmimf

(−mγ ∗mi)Amγ ,mi,mf ,mV
∗ A†−mγ ,mi,mf ,mV ′ (4.38m)

ρ13
mV mV ′ =

1
2N

∑
mγmimf

mγAmγ ,mi,mf ,mV
∗ A†mγ ,−mi,mf ,mV ′ (4.38n)

ρ14
mV mV ′ =

1
2N

∑
mγmimf

(−mγ ∗mi)Amγ ,mi,mf ,mV
∗ A†mγ ,−mi,mf ,mV ′ (4.38o)

ρ15
mV mV ′ =

1
2N

∑
mγmimf

mγ ∗miAmγ ,mi,mf ,mV
∗ A†mγ ,mi,mf ,mV ′ . (4.38p)

The total spin density matrix for the vector meson is then found by adding together the ρa
V , weighted
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by the same factors multiplying the ρa
V in (4.35). If we define a new vector

~P16 = (−ηγ
L cos 2α,−ηγ

L sin 2α, ηγ
C ,−η

T
T cos 2β,−ηT

T sin 2β, ηT
L ,

ηγ
Lη

T
T cos 2α cos 2β, ηγ

Lη
T
T cos 2α sin 2β,−ηγ

Lη
T
L cos 2α, (4.39)

ηγ
Lη

T
T sin 2α cos 2β, ηγ

Lη
T
T sin 2α sin 2β,−ηγ

Lη
T
L sin 2α,

−ηγ
Cη

T
T cos 2β,−ηγ

Cη
T
T sin 2β, ηγ

Cη
T
L )

then we can further define a more compact way to write this as

ρV = ρ0 +
15∑

a=1

~P a
16ρ

a. (4.40)

Note, that in experiments with an unpolarized target, such as g1c and g8b, only elements in the
first four of these matrices can be measured.

4.3.4 Symmetries in the Spin Density Matrix of Vector Mesons

The Hermitian nature of the density matrices implies some symmetries for the vector meson’s spin
density matrix. Being Hermitian itself, ρV ′V = ρ†V V ′ . There is also a relationship between the
amplitudes such that [47]

A−mγ ,−mi,−mf ,−mV
= (−1)mV −mγ−mf +miAmγ ,mi,mf ,mV

, (4.41)

which leads to several more properties. To refer to individual spin density matrix elements (SDMEs),
we will adopt the notation ρi

mV mV ′ , where i indicates which spin density matrix the element belongs
to, and the subscript indicates the indices for the element. Thus, ρ0

00 is the 00 element from the ρ0

matrix. For a = 0, 1, 5, 8, 10, 13, 14 and 15,

ρa
00 6= 0 (4.42a)

ρa
0−1 = −ρa†

10 (4.42b)
Im{ρa

1−1} = 0 (4.42c)
ρa
11 = ρa

−1−1. (4.42d)

For a = 2, 3, 4, 6, 7, 9, 11 and 12,

ρa
00 = 0 (4.43a)

ρa
0−1 = ρa†

10 (4.43b)
Re{ρa

1−1} = 0 (4.43c)
ρa
11 = −ρa

−1−1. (4.43d)

4.3.5 Schilling’s Method

It is possible to constrain the SDMEs from the decay distribution of the vector meson. This method
was discussed by Schilling in [47]. In this method, the decay angular distribution, W (cos θ, φ), is
related to the spin density matrix of the vector meson by a matrix of the decay amplitudes

W (cos θ, φ) = MρV M
† = D1†

mV 0(φ, θ,−φ)ρV D
1
mV ′0(φ, θ,−φ). (4.44)
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Here, the D1
ii′ are the Wigner rotation functions, which can be used to replace the decay amplitudes

because all of the decay particles are spin 0. This leads to the full function for W

W (cos θ, φ) =
3
4π

(
1
2
(ρ11 + ρ−1−1) sin2 θ + ρ00 cos2 θ

+
1√
2
(−Re(ρ10) +Re(ρ−10)) sin 2θ cosφ+

1√
2
(Im(ρ10)− Im(ρ0−1)) sin(2θ) sin(φ)

−Re(ρ1−1) sin2 θ cos 2φ+ Im(ρ1−1) sin2 θ sin 2φ). (4.45)

This full expression can of course be split up into 16 separate equations by replacing the full vector
meson spin density matrix in (4.47) with the ρa

V , such that

W (cos θ, φ) = W 0(cos θ, φ) +
16∑

a=1

~P a
16W

a(cos θ, φ), (4.46)

where
W a(cos θ, φ) = Mρa

V M
† = D1†

mV 0(φ, θ,−φ)ρa
V D

1
mV ′0(φ, θ,−φ). (4.47)

We can write the first four, exploiting the symmetries in (4.42) and (4.43), as

W 0(cos θ, φ) =
3
4π

(
1
2
(1− ρ0

00) sin2 θ + ρ0
00 cos2 θ

−
√

2Re(ρ0
10) sin 2θ cosφ− ρ0

1−1 sin2 θ cos 2φ) (4.48a)

W 1(cos θ, φ) =
3
4π

(ρ1
11 sin2 θ + ρ1

00 cos2 θ

−
√

2Re(ρ1
10) sin 2θ cosφ− ρ1

1−1 sin2 θ cos 2φ) (4.48b)

W 2(cos θ, φ) =
3
4π

(
√

2Im(ρ2
10) sin 2θ sinφ+ Im(ρ2

1−1) sin2 θ sin 2φ) (4.48c)

W 3(cos θ, φ) =
3
4π

(
√

2Im(ρ3
10) sin 2θ sinφ+ Im(ρ3

1−1) sin2 θ sin 2φ). (4.48d)

Since these equations get their form from the symmetries among the ρa matrices, the remaining
W a follow the pattern above, where they match W 1 for a = 5, 8, 10, 13, 14 and 15, and they match
W 2 for a = 4, 6, 7, 9, 11 and 12. Looking at these equations, it is apparent that the consequence of
the symmetry properties in (4.42) and (4.43) is that some of the SDMEs cannot be measured, for
instance the Im(ρ0

10) element.
Given the equations in (4.48), it is possible to extract some information about the SDMEs using

only the decay distribution of the data. To do so, first construct the full equation for W (cos θ, φ)
following (4.46). This will serve as the fitting function with the SDMEs as the fitting parameters and
the data providing the raw values for cos(θ) and φ in the Adair frame for each event, along with the
polarization values. This method does not rely on the amplitudes, though it does use the Q-values
to weight the signal and background. This method for extracting the SDMEs is thus independent
of the previous method and will provide a good check on the results we obtain from that method.

4.3.6 Measurable Elements

We can write out the first four spin density matrices in terms of their elements as

ρ0 =


1
2 (1− ρ0

00) Re(ρ0
10) + iIm(ρ0

10) Re(ρ0
1−1)

. ρ0
00 −Re(ρ0

10) + iIm(ρ0
10)

. . 1
2 (1− ρ0

00)

 (4.49a)
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ρ1 =

 ρ1
11 Re(ρ1

10) + iIm(ρ1
10) Re(ρ1

1−1)
. ρ1

00 −Re(ρ1
10) + iIm(ρ1

10)
. . ρ1

11

 (4.49b)

ρ2 =

 ρ2
11 Re(ρ2

10) + iIm(ρ2
10) iIm(ρ2

1−1)
. 0 Re(ρ2

10)− iIm(ρ2
10)

. . −ρ2
11

 (4.49c)

ρ3 =

 ρ3
11 Re(ρ3

10) + iIm(ρ3
10) iIm(ρ3

1−1)
. 0 Re(ρ3

10)− iIm(ρ3
10)

. . −ρ3
11

 (4.49d)

where the underlined entries can be measured, and the others cannot. The bottom half of the
matrices are the Hermitian conjugates of the upper half. The remaining ρa matrices follow the same
pattern as with the W equations and other symmetries, that is they look like ρ1 for a = 5, 8, 10,
13, 14 and 15, and they look like ρ2 for a = 4, 6, 7, 9, 11 and 12. Note that the ρ0

11 element is a
function of the ρ0

00 because we require that Trρ0 = 1.

4.3.7 Relationship to Vector and Tensor Polarizations

The overall spin density matrix elements give information about the likelihood of finding the vector
meson in a given state, along the diagonal, but it can also be linked to the vector and tensor
polarizations of the vector meson. Biplab Dey, in his thesis [48], derived the spin density matrix
for a vector meson in terms of the vector, ~P , and tensor, T2µ, polarizations, which we have shown
below, after imposing the Hermicity requirements which force T2−1 = −T21, T2−2 = T22, and each
of those T2µ values to be real,

ρ =
1
3


1− 3

2Pz +
√

1
2T20

3
2
√

2
(Px − iPy) +

√
3
2T21

√
3T22

3
2
√

2
(Px + iPy) +

√
3
2T21 1−

√
2T20

3
2
√

2
(Px − iPy)−

√
3
2T21

√
3T22

3
2
√

2
(Px + iPy)−

√
3
2T21 1 + 3

2Pz +
√

1
2T20

 . (4.50)

Comparing this to the matrices in (4.49), it is clear that some values can only be measured with
polarization of either the target or photon. For instance, in an experiment with unpolarized beam
and unpolarized target the vector polarization cannot be measured [48], as symmetry requirements
force Px = Pz = 0 and the Py term can only be measured by the Im(ρ10) term, which cannot be
measured in such an experiment. Adding polarization to the experiment allows us to gain some
knowledge of these values.

4.3.8 Summary

This section has given an overview of the spin density matrices of the photon, target and final vector
meson for the case of photoproduction off of a nucleon. There is also a spin density matrix associated
with the recoiling nucleon, however we are aware of no such experiment that is capable of measuring
this for vector mesons and so have chosen to omit it. However, from the method that we have set
here, it is very easy to produce all of the additions to the vector meson’s spin density matrix. There
would be an additional 48 matrices, three from the polarized recoil nucleon with no other polarized
particles, nine each from pairing with one additional polarized particle, and 27 from having all three
particles polarized. The form of each of these matrices is easy to guess from the form of (4.38), and
their prefactors will follow the form of P16 given in (4.40).

The full form of the spin density matrix is good for reference, but, for the run periods under
analysis here, only elements of the first four will be measured. Full knowledge of the vector meson’s
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spin density matrix would require an experiment that could measure all three particle polarizations
at the same time and such an experiment is not likely to be run any time soon. Even with full
knowledge of the measurable portions of the density matrix, there would still be elements which
could not be fully known, at least not solely with photoproduction experiments.

The spin density matrices are also necessary to determine the likelihood equations as will be seen
in the next section.

4.4 Likelihood Equations

The Lorentz invariant transition amplitude, M, is related to the cross section by (4.9). However,
we can also determine the cross section from the density matrices [6],

σ = σ0
Tr[ρfinal]
Tr[ρinitial]

, (4.51)

where ρinitial/final are the direct products of the density matrices of all the initial/final state par-
ticles, and σ0 is a constant of proportionality. This means ρinitial is just ργ ⊗ ρi which we have
already calculated in (4.35) and

ρfinal = JρinitialJ
†, (4.52)

though here note that we can simplify the J matrix by summing over the mf and mω indices that
are not measured, and we get

J =
(
A++ A+− A−+ A−−

)
. (4.53)

If we now set (4.9) and (4.51) equal to each other we find that

σ0
Tr[J(ργ ⊗ ρi)J†]

Tr[(ργ ⊗ ρi)]
=

1
4

(2π)4

2(s− w2
p)

∫
|M(~x,X)|2dΦ(X). (4.54)

Following the same path as we did for the Monte Carlo, we can turn the integral into a sum over
the events in the data, yielding

σ0Tr[J(ργ ⊗ ρi)J†] =

[
(s− (wp + wω)2)(s− (wp − wω)2)

]1/2

64πs(s− w2
p)

∑
data

|M(~x,X)|2, (4.55)

where we have applied the fact that Tr[ρinitial] = 1. From this equation, it seems clear that every-
thing except the |M|2 is a constant and thus can be labeled as σ0, and so we get the equation for
M to be ∑

data

|M(~x,X)|2 = Tr[J(ργ ⊗ ρi)J†]. (4.56)

It is now only necessary to substitute (4.29) and (4.32) into (4.56). For simplicity we have separated
these into four general cases presented below.

4.4.1 Unpolarized Photons

If neither the beam nor the target is polarized (4.56) can be written as

|M|2 =
1
4

∑
mγmi,mf

|Amγmi,mf
|2. (4.57)
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4.4.2 Polarized Photons

If we now consider the case with a polarized beam and unpolarized target, (4.56) can be written as

|M|2 =
1
4

∑
mi,mf

( (1 + ηγ
C)|A+,mi,mf

|2 + (1− ηγ
C)|A−,mi,mf

|2 −

ηγ
L(e−2iαA+,mi,mf

A†−,mi,mf
+ e2iαA−,mi,mf

A†+,mi,mf
)). (4.58)

It is clear from this equation that when ηγ
C = ηγ

L = 0 we have the unpolarized case. The term
multiplying the ηγ

L has two terms which are the Hermitian conjugates of each other that are being
added, so we have a purely real result.

4.4.3 Polarized Target

If we now consider the case with an unpolarized beam and a polarized target, (4.56) can then be
written as

|M|2 =
1
4

∑
mγ ,mf

( (1 + ηT
L )|Amγ ,+,mf

|2 + (1− ηT
L )|Amγ ,−,mf

|2 −

ηT
T (e−2iβAmγ ,+,mf

A†mγ ,−,mf
+ e2iβAmγ ,−,mf

A†mγ ,+,mf
)). (4.59)

4.4.4 Polarized Photons and Polarized Target

Lastly, when we consider the case of both the photon beam and the target being polarized, (4.56)
can then be written as

|M|2 =
1
4

∑
mf

( (1 + ηγ
C)(1 + ηT

L )|A+,+,mf
|2 + (1 + ηγ

C)(1− ηT
L )|A+,−,mf

|2 +

(1− ηγ
C)(1 + ηT

L )|A−,+,mf
|2 + (1− ηγ

C)(1− ηT
L )|A−,−,mf

|2

−ηγ
L(1 + ηT

L )(e−2iαA+,+,mf
A†−,+,mf

+ e2iαA−,+,mf
A†+,+,mf

)

−ηγ
L(1− ηT

L )(e−2iαA+,−,mf
A†−,−,mf

+ e2iαA−,−,mf
A†+,−,mf

)

−(1 + ηγ
C)ηT

T (e−2iβA+,+,mf
A†+,−,mf

+ e2iβA+,−,mf
A†+,+,mf

)

−(1− ηγ
C)ηT

T (e−2iβA−,+,mf
A†−,−,mf

+ e2iβA−,−,mf
A†−,+,mf

)

+ηγ
Lη

T
T (e−2i(α+β)A+,+,mf

A†−,−,mf
+ e2i(α+β)A−,−,mf

A†+,+,mf

+e−2i(α−β)A+,−,mf
A†−,+,mf

+ e2i(α−β)A−,+,mf
A†+,−,mf

+e−2i(β−α)A−,+,mf
A†+,−,mf

+ e2i(β−α)A+,−,mf
A†−,+,mf

). (4.60)

This equation is the most general form of the likelihood function, with no recoil polarization, and
all the other cases can be taken as special cases of it.

4.5 The Angles α and β

In the preceding sections, we have used the angles α and β with only a brief description of their form.
Here, we will calculate them precisely. Both α and β describe the angle between a polarization vector
and the vector meson production plane. Let us first recall our center of mass frame and polarization
plane. Recall that (4.1) defines the center-of-mass coordinates and these coordinates are simply a
rotation of the lab coordinates about the z axis, see Figure 4.1.
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The angle α then is just the angle between the photon polarization vector, ~P , and the the X̂
axis in the production plane. Thus, we can define α as:

P̂ · X̂ = cosα (4.61)

or
P̂ × X̂ = sinαẑ (4.62)

or, more usefully,

α = arctan
P̂ × X̂

P̂ · X̂
. (4.63)

In the experiments run using CLAS, the photon polarization is chosen to be along either the x or y
lab axes. Thus, we can write out the two common cases. For horizontal polarization we get

P̂ · X̂ =
qx√
q2x + q2y

(4.64a)

P̂ × X̂ =
qy√
q2x + q2y

ẑ (4.64b)

α = arctan
qy
qx
, (4.64c)

and for vertical polarization we get

P̂ · X̂ =
qy√
q2x + q2y

(4.65a)

P̂ × X̂ =
−qx√
q2x + q2y

ẑ (4.65b)

α = arctan
−qx
qy

. (4.65c)

If the target is polarized, the transverse polarization requires calculating the angle β. For trans-
verse polarization, the same formulas for α work here as well.

For polarization that is not along one of the axes, one can simply find the angle between the
x̂lab-axis and the polarization vector, and then the angle between the x̂lab-axis and the X̂-axis and
then find the difference between the two of them, as can be seen in Figure 4.1.

4.6 Coupling Multiple Datasets

Both of the datasets under analysis are composed of multiple smaller datasets. Since these small
datasets require their own corrections and cuts and background subtraction, we need to be able to
combine the datasets together in the fitting process.

In order to combine the datasets, it is simply necessary to minimize the sum of our −lnL,

−lnL =
Nd∑
d

−lnLd, (4.66)

where Nd is the number of datasets summed over. Thus, we find a single set of parameters that
minimizes the collective dataset. This can be expanded to include datasets with different types of
polarization as well. This requires that all of the datasets be properly normalized according to the
same set of criteria. In Section 5.1.3 we discuss how we adjust the flux for the g8b datasets and the
g1c 2.897 GeV dataset that did not have proper flux measurements.
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4.7 Summary

We have now derived the extended maximum likelihood function that will be used to perform all of
the fits that we will perform in subsequent chapters. This method had been well known before for
the case of unpolarized photon and target experiments, but has been expanded here to deal with
polarized photon beams and polarized targets. This analysis will only make use of the polarized
photon equations, but the others are useful to see how the formalism generalizes, and will be useful
for future run periods from CLAS, such as the FROST (g9a and g9b) and HD-ICE (g14) run periods.
Additionally, the spin density matrix for the vector meson has been derived and expanded beyond
what was seen in [47] and elsewhere.
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Chapter 5

Spin Density Matrix Elements

In this chapter, we will present the spin density matrix elements (SDMEs) that have been measured
in the g1c and g8b datasets, including the first-ever measurements of elements of the ρ1, ρ2, and ρ3

matrices. Before presenting these results, we will demonstrate the quality of the fits by comparing
certain observables with previous measurements. We will compare the cross sections, as well as the
three ρ0 SDMEs, with the results from another run period using CLAS at JLab, g11a, that had an
unpolarized target and unpolarized photon beam. The g11a run period covered the

√
s range from

threshold for the ω at 1720 MeV up to 2840 MeV, more than the range of either the g1c or g8b run
periods, allowing for comparisons at all energies. The ρ0 elements can obtained from all experiments
of this kind, regardless of the beam and target polarization. They can therefore act as an excellent
means of comparison, and as a check of systematic errors between run periods.

5.1 The Mother of All Fits

The results in this chapter all come from a fit known as the Mother of All Fits, which consists of
all s-channel waves with J ≤ 11/2. The purpose of using so many waves is to provide a complete
enough basis to allow the fit to fully describe the data. The results of this fit should NOT be taken
as physics, only a very accurate description of the data.

The g8b dataset contains 2.9×106 signal events in the energy range 1720 MeV ≤
√
s ≤ 2210 MeV,

which is sufficient statistics to be binned in 10-MeV-wide bins. The g1c dataset contains 6.5x105

signal events in the energy range 1720 MeV ≤
√
s ≤ 2470 MeV. For the purpose of extracting the

spin density matrix elements, this is insufficient to be binned in 10-MeV-wide bins, so it is binned in
30-MeV-wide bins. Both widths are sufficiently narrow to ensure that the physics does not change
significantly over the width of the bin.

5.1.1 Partial Wave Amplitudes

The partial wave amplitudes that are used in this analysis are calculated following the formalism
set up in Mike Williams thesis [1], which covers both resonant and non-resonant amplitudes. This
analysis has not changed anything with respect to the generation of the amplitudes.

The amplitudes generated in [1] include both the production and decay of a JP state. Each
amplitude for a given JP state can be characterized by six variables: the production multipole
(MP); the orbital angular momentum of the pω system (L); the spin of the pω system (S); and the
spin projections along the beam direction of the incident photon, target proton, and recoil proton
(mγ , mi and mf respectively). Thus, we can write the amplitudes as AMP,L,S,mγ ,mi,mf

. The
amplitudes include the decay of the ω → π+π−π0.

53
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Each
√
s bin will be fit independently. To perform our fits, we need to provide enough freedom

to fully describe the data and thus we write the amplitudes in each
√
s bin as

Aγp→JP→pω→pπ+π−π0 = fMP (θJP )rJP LSe
iφJP ωµ(pπ+ , pπ− , pπ0)Aµ

MP,L,S,mγ ,mi,mf
, (5.1)

where the parameters for the fit are rJP LS , corresponding to the decay of the JP state into a pω
state with quantum numbers L and S, θJP , the multipole production angle, and φJP , the phase.
Each of these parameters is free to vary with no limits and are real-valued. θJP and φJP are angles,
so the lack of bounds does not affect them. We also define the function

fMP (θJP ) =
{

cos θJP , for electric multipoles
sin θJP , for magnetic multipoles

}
, (5.2)

which automatically normalizes the contribution from each multipole. The ωµ(pπ+ , pπ− , pπ0) term
handles the direct decay of the ω → π+π−π0.

5.1.2 Maximum Likelihood Fit

For the mother fits, we will use the maximum likelihood function method, which was detailed in
Chapter 4. In that method, we attempt to minimize the negative log likelihood

− lnL = −
n∑
i

Qi ln |M(~x,Xi)|2 +
S(s)
Nraw

Nacc∑
i

|M(~x,Xi)|2 + const. (5.3)

Since the datasets to be analyzed here, g1c and g8b, had polarized photons and unpolarized targets,
we will use the Lorentz invariant transition amplitude

|M|2 =
1
4

∑
mi,mf

( (1 + ηγ
C)|A+,mi,mf

|2 + (1− ηγ
C)|A−,mi,mf

|2 −

ηγ
L(e−2iαA+,mi,mf

A†−,mi,mf
+ e2iαA−,mi,mf

A†+,mi,mf
)), (5.4)

which was originally written in (4.58). The amplitudes above are indexed only by the three spin
projections and are given by (4.4).

Recall, from Section 3.9, that, for the circularly polarized g1c data, the polarization is calculated
using (3.12), depending only on the electron beam energy, the photon energy and the polarization of
the beam. Thus, the polarization of the Monte Carlo can be calculated for each event; the helicity is
randomly assigned. For the linearly polarized g8b data, the polarization is calculated using (3.14),
which cannot be calculated for the Monte Carlo events, and so each Monte Carlo event in a given√
s bin is assigned the average polarization of all of the data events in that bin.

Each
√
s bin contains between one and four datasets, depending on the energy range covered by

each dataset. The log likelihoods are added together for each of the datasets as described in Section
4.6. Each

√
s bin is then fit separately at least five different times. Each of these iterations starts

the fit with random values for each parameter, and then proceeds to minimize the value of the log
likelihood. The reason for these iterations is to make sure that the overall minimum is found, and
not a false minimum. Ideally, if there is one true minimum, then all five random starting points
would lead to this one minimum. However, there may be local minima that will cause a fit to stop
before reaching the true minimum. By using several different, and random, starting points we hope
to be able to find the overall minimum. Thus, after performing all iterations of the fit we choose the
parameters from the iteration with the best likelihood to extract our measurements.
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5.1.3 Differential Cross Sections

There are several quality checks in place to ensure that the results of the fit are correct and reliable.
One benefit of analyzing data from CLAS is that there are many other run periods that have been
run using the same equipment under similar conditions. For our purposes, the g11a run period
from 2004 is the best comparison. This run period was run with an unpolarized photon beam on
an unpolarized target and was analyzed for the ω by Mike Williams [1], using the same techniques
and software as the present analysis. It contained ∼ 10.1 million signal events covering the energy
range 1720 MeV ≤

√
s ≤ 2840 MeV, which completely covers the energy range of both g1c and g8b,

allowing for comparison at all energies. In the next section, we will show comparisons for the ρ0 spin
density matrix elements between the g11a dataset and each of the datasets under analysis here. In
this section, we will show the comparison between those datasets for the differential cross sections.

The g8b run has been taken without gFlux measurements, which means that we were unable to
measure exact flux values in each

√
s bin. Additionally, the 2.897 GeV data from the g1c dataset did

not take reliable flux measurements. For the purposes of obtaining the spin density matrix elements,
the absolute flux is not required, but for the cross sections it is necessary. Since we did not have
measurements, we were required to come up with a different way of calculating the fluxes for these
datasets. The following method was used to determine the flux. We start by setting an arbitrary
value for the flux in each bin. Then, we perform our fits and calculate the cross sections from these
fits. We can then compare the values of the cross section at a certain number of values of cos θω

CM

to the values reported from g11a. We then scale the flux by the ratio of the g11a values to the g8b
or g1c values, averaged over that bin. Using these adjusted flux values we then redo the fits and
recalculate the cross sections. This method does not affect the shape of the cross sections, only the
overall scale. Each g8b dataset and the single g1c dataset were treated separately and the cross
sections are calculated for each dataset separately, even though the mother fit may contain several
datasets in a single

√
s bin.

Figure 5.1 shows the comparison between g11a and the 1.5 GeV PARA dataset from g8b. The
agreement is excellent everywhere. The other g8b datasets show similarly good agreement. The
results for the g1c 2.897 GeV dataset can be seen in Figure 5.2 and show similarly good agreement,
with the exception of the first bin. The agreement over the entire range in all datasets is a good
indication that our fits are reliable, however we also want to check that the results from the ρ0 spin
density matrix match what we see in g11a as well. The results of that check can be seen in the next
section.

5.2 Spin Density Matrix Elements

The method of calculating the SDMEs can be seen in Section 4.3.3. The results for g1c and g8b can
be seen on the following pages. For the ρ0 elements, we can compare the results to those from g11a;
for the other elements, these are the first measurements produced, so the points of comparison will
be the values calculated from the same data using the Schilling Method, explained in Section 4.3.5,
and shown in Section 5.3.

5.2.1 Errors

The errors on the SDMEs cannot be calculated in a standard way, as the amplitudes and parameters
that they are calculated from do not have standard errors. Previously [1, 48, 49], the errors have
been calculated on a point-by-point basis by computing the standard deviation of a given point in
cos θω

CM in the current
√
s bin and the energy bins on either side of it. However, a statistically-more-

correct method has been used here to estimate the errors on these points, the so-called Bootstrap
Method [50].
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Figure 5.1: dσ
dcos(θω

CM ) (µb) vs cos θω
CM in bins of

√
s. The results from the PARA 1.5 GeV dataset from

g8b (black) are shown in comparison to the g11a (red) values. The g8b run period did not record
flux values and so an approximate flux was calculated using a normalization factor to minimize the
difference with the g11a data. Agreement is excellent in all bins.
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Figure 5.2: dσ
dcos(θω

CM ) (µb) vs cos θω
CM in bins of

√
s. The results from the 2.445 GeV dataset from

g1c (black) are shown in comparison to the g11a (red) values. Other than the first energy bin,
agreement is excellent.
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Figure 5.3: ρ0
00 element vs cos θω

CM for all 100 bootstrap iterations. Almost all of the fits lie on top
of each other. Three bad fits can be seen; they are removed before calculating the errors.

The Bootstrap Method consists of performing our fits in each bin Nboot times, using a sampled
with replacement version of our data. We describe that method as follows. Consider a

√
s bin

consisting of N events. From those N events, we construct a bootstrap copy by randomly selecting
N events from our dataset, allowing some events to be chosen more than one time and some events
to be omitted. In practice, this is accomplished by using a random number generator that picks a
number between 0 and N-1, a total of N times. This bootstrap copy will then be fit in the same
way as the normal dataset. We then construct Nboot bootstrap copies, and run fits on each of them.
We can calculate the SDMEs for each of these bootstrap fits according to (4.38). Then, for each
cos θω

CM point, the error is estimated to be the standard deviation of the bootstrap values for that
point.

We have chosen Nboot = 100. For each bootstrap copy, at least two iterations were run to
minimize the chance that a fit would fail to converge. Since each bin requires 100 fits, it is very
computationally expensive, and so only two iterations could be run. Thus, it is still possible that a
fit could fail to converge in both iterations. In that case, that bootstrap copy is thrown out, and not
used for calculating the error bars. It is generally not possible to tell if a fit has failed from the values
of the parameters, or the final log likelihood value. However, it is readily apparent when looking at
the spin density matrix elements, particularly the ρ0

00 element. Figure 5.3 shows the ρ0
00 element for

all 100 bootstrap copies for a single
√
s bin. Each copy is given it’s own combination of shape and

color to differentiate them. The vast majority of the results lie directly on top of each other and are
indistinguishable. However, there are three, clearly visible, bad fits that would be removed before
calculating the error bars for each SDME in this bin. As a result of this, most bins have between 95
and 100 bootstrap copies used in calculating the error bars; this is more than sufficient to calculate
the error bars consistently.
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5.2.2 ρ0 Elements in g1c and g8b

The ρ0 elements are calculated using the amplitude-based expression

ρ0
mV mV ′ =

1
2N

∑
mγmimf

Amγ ,mi,mf ,mV
∗ A†mγ ,mi,mf ,mV ′ , (5.5)

note that we are using amplitudes that do not include the decay of the ω → π+π−π0. These
unpolarized elements can be obtained from any ω photoproduction experiment. There are three
elements that can be measured: ρ0

00; Re(ρ0
10); and ρ0

1−1. On the following pages we present the ρ0

elements from g1c and then g8b, together with the measurements from g11a. We will present a brief
discussion of the agreement between the two datasets after each set of plots.
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Figure 5.4: ρ0
00 element vs cos θω

CM in bins of
√
s. The results from g1c (black) are shown in

comparison to the g11a (red) values. The errors for g1c are as calculated in Section 5.2.1.

The ρ0
00 element is the largest element and also has the smallest fractional error bars. As

such, it is particularly well-suited to determining the agreement between the two datasets and
estimating systematic errors. Agreement overall is excellent. In many cases, the two sets of points
are indistinguishable from each other, for instance the 1855 MeV bin. In some bins, particularly
from 1915-2035 MeV, there is a small difference between the datasets, particularly near cos θω

CM = 0.
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Figure 5.5: Re(ρ0
10) element vs cos θω

CM in bins of
√
s. The results from g1c (black) are shown in

comparison to the g11a (red) values. The errors for g1c are as calculated in Section 5.2.1.

The ρ0
10 element contains both real and imaginary parts, however it is only possible to measure

the real part in these experiments, it is shown in Figure 5.5. These values are smaller than the ρ0
00

elements, and the error bars tend to be larger as well. This element also shows more structure, with
multiple changes of direction as it evolves in cos θω

CM . Again, the overall agreement is excellent.
Almost all differences between the datasets are within the error bars. There are a few bins, the 1825
MeV and 2365 MeV bins for example, where there is a significant difference between the two datasets,
again it is mainly near cos θω

CM = 0. The 1735 MeV bin shows particularly poor agreement. The
near-threshold bins have low statistics and the background subtraction is the most difficult, which
could explain the poor fit.
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Figure 5.6: ρ0
1−1 element vs cos θω

CM in bins of
√
s. The results from g1c (black) are shown in

comparison to the g11a (red) values. The errors for g1c are as calculated in Section 5.2.1.

The ρ0
1−1 element is purely real. The imaginary component must be 0 due to symmetries men-

tioned in Section 4.3.4. It is also a small element that shows multiple changes of direction, as seen
in Figure 5.6. This element has the worst agreement between the two datasets among the three ρ0

elements, however it is still quite good. The shape in each bin is the same between datasets. In a
few bins, 1885 MeV and 2035 MeV, the g1c result is systematically lower than the g11 result across
the entire range. The 2335 MeV and 2455 MeV bins also show significant discrepancies. Despite
these differences, the agreement everywhere else is very good.

Summary

Having looked at all three ρ0 elements, the agreement between the g1c dataset and g11a is excellent,
apart from a few anomalies. This agreement is important because the ρ0 elements should match,
regardless of the polarization of the photon beam. This indicates that the fits are reliable, and that
the newly measured ρ3 elements are similarly robust.
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Figure 5.7: ρ0
00 element vs cos θω

CM in bins of
√
s, up to 1965 MeV. The results from g8b (black)

are shown in comparison to the g11a (red) values. The errors for g8b are as calculated in Section
5.2.1. Agreement is generally excellent, with the exception of the first bin at 1725 MeV, where poor
statistics lead to a poor fit result.
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Figure 5.8: ρ0
00 element vs cos θω

CM in bins of
√
s, beyond 1965 MeV. The results from g8b (black)

are shown in comparison to the g11a (red) values. The errors for g8b are as calculated in Section
5.2.1.

The ρ0
00 element for g8b, in Figures 5.7 and 5.8, shows very good agreement with the g11a results

as well. With the exception of the first bin at 1725 MeV, the shape and scale of the data are in good
agreement. The poor fit in the first bin is likely due to statistics and the difficulty of separating the
signal and background. The large error bars attest to the fact that the fit is poor in this bin. There
is a very slight systematic offset between the datasets near cos θω

CM = 0 in some bins however, see
the 1825 MeV bin for a particularly egregious example. It is unclear what has caused this offset.
The ρ0

00 element is particularly sensitive to issues relating to acceptance, which could be causing
the problem. The problem with the time-of-flight paddles, detailed in Appendix A, caused a much
more pronounced version of this discrepancy. It cannot simply be ascribed to a systematic error, as
in some bins, see the 1785 MeV and 1875 MeV bins, the agreement is near perfect. Figure B.1, in
Appendix B, shows g1c, g8b and g11a on the same plot. Comparing the results for g1c and g8b,
the agreement is much better towards these central angles, note in particular the 1825 MeV bin, so
perhaps the g11a result is too high, and these new values should be taken as the standard.
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Figure 5.9: Re(ρ0
10) element vs cos θω

CM in bins of
√
s, up to 1965 MeV. The results from g8b (black)

are shown in comparison to the g11a (red) values. The errors for g8b are as calculated in Section
5.2.1.
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Figure 5.10: Re(ρ0
10) element vs cos θω

CM in bins of
√
s, beyond 1965 MeV. The results from g8b

(black) are shown in comparison to the g11a (red) values. The errors for g8b are as calculated in
Section 5.2.1.

The Re(ρ0
10) element for g8b, in Figures 5.9 and 5.10, shows near-perfect agreement over the

entire range in both cos θω
CM and

√
s. There is no systematic offset anywhere and each bin has

excellent agreement.



66 CHAPTER 5. SPIN DENSITY MATRIX ELEMENTS

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1725 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1775 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1825 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1875 MeVs

)ω
CMθcos(

-1 -0.5 0 0.5 1

M
M

’
i ρ

-0.2

-0.1

0

0.1

0.2
 = 1925 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1735 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1785 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1835 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1885 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1935 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1745 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1795 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1845 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1895 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1945 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1755 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1805 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1855 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1905 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1955 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1765 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1815 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1865 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1915 MeVs

-1 -0.5 0 0.5 1-0.2

-0.1

0

0.1

0.2
 = 1965 MeVs

Figure 5.11: ρ0
1−1 element vs cos θω

CM in bins of
√
s, up to 1965 MeV. The results from g8b (black)

are shown in comparison to the g11a (red) values. The errors for g8b are as calculated in Section
5.2.1.
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Figure 5.12: ρ0
1−1 element vs cos θω

CM in bins of
√
s, beyond 1965 MeV. The results from g8b (black)

are shown in comparison to the g11a (red) values. The errors for g8b are as calculated in Section
5.2.1.

Similar to the results in g1c, the ρ0
1−1 element in g8b, seen in Figures 5.11 and 5.12, has the

worst agreement between the two datasets. In some bins, the 1825 MeV bin is a good example, the
g8b result is well below that of g11a. However, again note that similar behavior was seen in g1c.
Figure B.2 in Appendix B shows this element in g1c, g8b and g11a on the same plot. The agreement
between g8b and g1c in that bin is excellent, as it is across the entire range. Once we get above
1935 MeV, there are few discrepancies and no major offsets between g8b and g11a.

Summary

As with g1c, we have seen very impressive agreement between the g8b dataset and the g11a dataset.
This again indicates that the fits are robust and reliable. The ability to reproduce the unpolarized
results so reliably from our new polarized fitting equations indicates that the new equations are
correct and we can be confident in the results for the newly measured SDMEs.
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5.2.3 ρ1 Elements in g8b

The ρ1 elements are calculated using

ρ1
mV mV ′ =

1
2N

∑
mγmimf

Amγ ,mi,mf ,mV
∗ A†−mγ ,mi,mf ,mV ′ . (5.6)

Note that the sign of mγ changes in the two amplitudes above. This is why linear polarization is
required to measure these elements. The are four measurable elements: ρ1

00; Re(ρ1
10); ρ

1
1−1; and

ρ1
11. We will present each on the following pages, along with a brief discussion of the results. We

will note, in particular, the extrema, or changes in direction, which persist over several energy bins.
These extrema contribute strongly to the shape and will be important when determining agreement
with our partial wave analysis fits in the next chapter. Particular interest is given to extrema at
cos θω

CM values not seen in the ρ0 elements.
Since the ρ1 elements have never been measured before, there is nothing to compare them to.

However, in some cases, they can be compared or contrasted to elements from one of the other
matrices.
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Figure 5.13: ρ1
00 element vs cos θω

CM in bins of
√
s, up to 1965 MeV, for g8b. The errors are as

calculated in Section 5.2.1. Note the striking difference between the first two
√
s bins; this is most

likely due to statistics, as we see similar differences between these bins in the ρ0 elements as well.



5.2. SPIN DENSITY MATRIX ELEMENTS 69

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 1975 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2025 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2075 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2125 MeVs

)ω
CMθcos(

-1 -0.5 0 0.5 1

M
M

’
i ρ

-0.6

-0.4

-0.2

0

0.2

0.4  = 2175 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 1985 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2035 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2085 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2135 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2185 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 1995 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2045 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2095 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2145 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2195 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2005 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2055 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2105 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2155 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2205 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2015 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2065 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2115 MeVs

-1 -0.5 0 0.5 1
-0.6

-0.4

-0.2

0

0.2

0.4  = 2165 MeVs

-1 -0.5 0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 5.14: ρ1
00 element vs cos θω

CM in bins of
√
s, beyond 1965 MeV, for g8b. The errors are as

calculated in Section 5.2.1.

The ρ1
00 element is similar to the ρ0

00 element, in that it is the largest element in its matrix.
Although, in this case, it is predominantly negative. Across the entire range in

√
s, the ρ1

00 element
mirrors the ρ0

00 element as a function of cos θω
CM , see Figure B.3 in Appendix B for a direct compar-

ison. When ρ0
00 rises, ρ1

00 falls, and vice versa. Their scale is somewhat different however, and ρ1
00

is mostly negative but at higher energies becomes positive at forward and backward angles, while
ρ0
00 is strictly positive. At higher energies, the change in direction is more pronounced in ρ1

00 than
in ρ0

00, however its absolute value never exceeds the value of ρ0
00. There is a prominent minimum

near cos θω
CM = 0 in all bins. A forward maximum, near cos θω

CM = 0.5 is noticeable from 1885-2205
MeV. A maximum is also present in the backwards angles near cos θω

CM = −0.7, starting from 2065
MeV and lasting to the highest energies.
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Figure 5.15: Re(ρ1
10) element vs cos θω

CM in bins of
√
s, up to 1965 MeV, for g8b. The errors are as

calculated in Section 5.2.1. Notice again the striking difference between the first two
√
s bins.
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Figure 5.16: Re(ρ1
10) element vs cos θω

CM in bins of
√
s, beyond 1965 MeV, for g8b. The errors are

as calculated in Section 5.2.1.

Like the ρ0
10 element, this element has both real and imaginary components. We can only

measure the real part with this experiment, which is shown in Figures 5.15 and 5.16. At low
energies, below 1970 MeV, the Re(ρ1

10) element is very strongly correlated with the Re(ρ0
10), see

Figure B.4 in Appendix B, one rising when the other falls, and vice versa. However, as we will see
later, it is even more closely related to the Im(ρ2

10) element at these energies. Above 1970 MeV, the
symmetry breaks down and the two elements evolve independently. Below 1845 MeV, it is negative
at backwards angles and positive at forward angles, however the crossing point moves forward as
the energy goes up until, by 1955 MeV, it is entirely negative. In some bins, for instance the 2005
MeV bin, it is almost completely flat. At higher energies, some shape starts to develop, however it
is not consistent from bin to bin. At the highest energies measured, there is an indication that it
may be positive at some forward angles. There is a prominent maximum at cos θω

CM = 0.5 visible
from threshold up to 1965 MeV. Other extrema are more transient.
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Figure 5.17: ρ1
1−1 element vs cos θω

CM in bins of
√
s, up to 1965 MeV, for g8b. The errors are as

calculated in Section 5.2.1.
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Figure 5.18: ρ1
1−1 element vs cos θω

CM in bins of
√
s, beyond 1965 MeV, for g8b. The errors are as

calculated in Section 5.2.1.

The ρ1
1−1 element, shown in Figures 5.17 and 5.17, is purely real, like the ρ0

1−1 element. However,
unlike the other two ρ1 elements seen so far, this element is not strongly correlated with its ρ0

counterpart at low energies, see Figure B.5 in Appendix B. Its shape does not change significantly
from 1755-1835 MeV. Above that energy, we start to see the most backwards values get more and
more negative, and see a maximum form at forward angles that persists until at least 2115 MeV.
The maximum is consistently near cos θω

CM = 0.45. This turning point can also be seen in the
ρ0
1−1 element. Above 1965 MeV, the most forward angles become negative, and, as we go to higher

energies, more of the forward angles values are negative, until, by 2155 MeV, all values beyond
cos θω

CM = 0 are negative. Above 2035 MeV, the backwards angles of the ρ0
1−1 and ρ1

1−1 elements
are roughly equal, but they differ at forward angles while still sharing the extrema at cos θω

CM = 0.45.
At the highest energies, there is little consistency between the values from bin to bin and the error
bars get quite large.
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Figure 5.19: ρ1
11 element vs cos θω

CM in bins of
√
s, up to 1965 MeV, for g8b. The errors are as

calculated in Section 5.2.1.
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Figure 5.20: ρ1
11 element vs cos θω

CM in bins of
√
s, beyond 1965 MeV, for g8b. The errors are as

calculated in Section 5.2.1.

The ρ1
11 element, shown in Figures 5.19 and 5.19, is unique for experiments without a polarized

target because it is the only 11 element that can be independently measured. Due to the trace
conditions on the ρ0 matrix, the ρ0

11 is a function of the ρ0
00 element, and (4.48) shows that the

ρ2,3
11 elements cannot be measured. There does not appear to be any relationship between the ρ1

11

element and the ρ0
11 element. It is a relatively small element, and it is purely real since it is on the

diagonal. It looks like it may be zero at threshold. Shortly after threshold, it starts off as entirely
positive, but as the energy increases the backwards angles become negative and there is a minimum
near cos θω

CM = 0.4, similar to what we see at high energies in the ρ1
1−1 elements. This fades away as

the energy increases. By 1935 MeV, it is entirely negative and very flat. It starts to regain shape by
1975 MeV, and is positive at backwards angles by 2015 MeV. A minimum appears at cos θω

CM = 0.55
by 2005 MeV that persists until the highest energies. There is also an extremum of some kind visible
at cos θω

CM = −0.55 throughout almost the entire energy range.
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5.2.4 ρ2 Elements in g8b

The ρ2 elements are calculated using

ρ2
mV mV ′ =

1
2N

∑
mγmimf

i ∗ (−mγ)Amγ ,mi,mf ,mV
∗ A†−mγ ,mi,mf ,mV ′ . (5.7)

Note that the sign of mγ changes in the two amplitudes above, as with the ρ1 elements. The two
calculations are the same except for the −imγ multiplying each term. There are two elements that
can be measured in this experiment, as well as the ρ2

00 element which is identically 0, due to the
symmetry properties of the amplitudes, see (4.43). The two elements that can be measured are
Im(ρ2

10) and Im(ρ2
1−1). We present each on the following pages, along with a brief discussion of the

results.
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Figure 5.21: Im(ρ2
10) element vs cos θω

CM in bins of
√
s, up to 1965 MeV, for g8b. The errors are as

calculated in Section 5.2.1.
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Figure 5.22: Im(ρ2
10) element vs cos θω

CM in bins of
√
s, beyond 1965 MeV, for g8b. The errors are

as calculated in Section 5.2.1.

The ρ2
10 element has both a real and an imaginary part, but only the imaginary part can be

measured in this experiment, and is presented in Figures 5.21 and 5.22. This element is very closely
correlated with the real part of the ρ1

10 element, see Figure B.6 in Appendix B. At angles forward
of cos θω

CM = 0.45, they are a near exact mirror image of each other over the entire energy range.
For all other angles, this symmetry is broken in many places. From threshold up to 1845 MeV, they
mirror each others’ changes, one rising while the other falls, and vice versa. Above that energy, the
symmetry breaks except at the most forward angles, and the two elements evolve independently.
There is a maximum at cos θω

CM = −0.55 in the 1845 MeV bin, that persists until 2015 MeV, although
it moves around a little bit over that range. There is also a minimum visible at cos θω

CM = 0.55
in the 1845 MeV bin that moves towards the central angles as the energy rises and persists over
the rest of the energy range, getting much more pronounced at high energies. Lastly, a maximum
becomes visible at very forward angles at 1965 MeV that persists for the rest of the energy range.
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Figure 5.23: Im(ρ2
1−1) element vs cos θω

CM in bins of
√
s, up to 1965 MeV, for g8b. The errors are

as calculated in Section 5.2.1.
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Figure 5.24: Im(ρ2
1−1) element vs cos θω

CM in bins of
√
s, beyond 1965 MeV, for g8b. The errors are

as calculated in Section 5.2.1.

The ρ2
1−1 element, presented in Figures 5.23 and 5.24, is purely imaginary. It is almost the exact

mirror of the ρ1
1−1 element over the entire energy range, see Figure B.7 in Appendix B. This is very

interesting because, based on the formulas for these elements, one would not expect this to be the
case. Looking more closely at the values it is clear that it is not true that Im(ρ2

1−1) = −ρ1
1−1, but

they do have remarkably close values, and their shapes are the same over a wide range of energies.
It is unclear if this symmetry is important or if it would persist at higher energies than measured
by g8b, as slight differences between the two do start to appear above 2010 MeV. However, the
uncertainties also increase at higher energies, so it is difficult to draw conclusions.
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5.2.5 ρ3 Elements in g1c

The ρ3 elements are calculated using

ρ3
mV mV ′ =

1
2N

∑
mγmimf

mγAmγ ,mi,mf ,mV
∗ A†mγ ,mi,mf ,mV ′ . (5.8)

Note that this is the same equation as for the ρ0 elements except for the addition of the mγ before
each term. There are again only two elements that can be measured in this experiment, the Im(ρ3

10)
and Im(ρ3

1−1) elements, but the ρ3
00 term can again be determined to be 0, see (4.43).
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Figure 5.25: Im(ρ3
10) element vs cos θω

CM in bins of
√
s for g1c. The errors are as calculated in

Section 5.2.1.

The ρ3
10 element contains both a real and imaginary part, but only the imaginary part can be

measured in this experiment. That is shown in Figure 5.25. There is less bin-to-bin stability in
this element than in other elements, though recall that the bins are 30-MeV wide here, as opposed
to 10-MeV-wide bins in g8b. It is possible to detect two extrema that persist through most of the
energy range. The first is a minimum near cos θω

CM = −0.15, starting from 1885 MeV and lasting
up to 2185 MeV. The second is a maximum that starts at cos θω

CM = 0.5 in the lowest energy bins
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and persists to the highest energies, though the position of the maximum varies slightly over the
range. While there is some evidence of symmetry between this element and the Re(ρ0

10) element,
see Figure B.8, it is not as strong as was seen in the other elements.
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Figure 5.26: Im(ρ3
1−1) element vs cos θω

CM in bins of
√
s for g1c. The errors are as calculated in

Section 5.2.1.

The ρ3
1−1 element, shown in Figure 5.26, is purely imaginary. It is slightly more stable from bin

to bin than the Im(ρ3
10) element. At low energies, it is fairly flat. Starting at about 1885 MeV, a

maximum starts to appear at cos θω
CM = 0.5 that is visible for the rest of the energy range. The

backwards angles start to go negative around 2095 MeV and there is a hint of a minimum in the far
backwards angles, however it is not consistently visible. As with the Im(ρ3

10) element, there is little
correlation between this element and it’s corresponding element in the ρ0 matrix, see Figure B.9 in
Appendix B.
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5.3 Schilling’s Method

In Section 4.3.5, the Schilling Method for calculating the spin density matrix elements from the
decay distribution is discussed. Here, the results of that method are compared to the results from
our mother-fit method presented in the last section. Only comparisons to the newly measured,
polarized spin density matrix elements are presented. Note that the error bars from the Schilling
method are the errors calculated by MINUIT, not using the bootstrap method. The results are
presented as functions of

√
s in bins of cos θω

CM , in contrast to the last section. Presenting the data
in this way will show how some of the features evolve as a function of

√
s. For all elements, excellent

agreement is seen between the two methods. The advantage of using the mother-fit method over the
Schilling method can be seen in the bin-to-bin stability and smaller error bars. We will follow each
set of plots with a brief discussion of the features visible as functions of the energy as these may be
indicative of resonance structures.
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Figure 5.27: ρ1
00 element vs

√
s in bins of cos θω

CM for g8b. The results from the mother fit are in
black, the results from the Schilling method are in red. In the cos θω

CM = 0.95 bin, the mother fit
method does not provide measurements at all energies, while the Shilling method does.

There is a broad dip centered at 1900 MeV at angles backwards of cos θω
CM = 0. Above cos θω

CM =
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0, the center of the dip moves to lower energy until, by cos θω
CM = 0.65, it is practically at threshold.

Starting at cos θω
CM = −0.15, a mild hump is visible centered at 2050 MeV. It is visible up to

cos θω
CM = 0.65. Above cos θω

CM = 0.65, the data is flat and roughly 0.
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Figure 5.28: Re(ρ1
10) element vs

√
s in bins of cos θω

CM for g8b. The results from the mother fit are
in black, the results from the Schilling method are in red. In the cos θω

CM = 0.95 bin, the mother fit
method does not provide measurements at all energies, while the Shilling method does.

At angles backwards of cos θω
CM = −0.45, there is a very broad hump centered around 1950 MeV

and a tighter dip can be seen around 1780 MeV as well. At central angles, the data is largely flat.
At angles forward of cos θω

CM = 0.15, a very strong peak can be seen near 1780 MeV, similar to what
is seen in the backward angles. There may be hints at a broad trough centered near 2050 MeV near
cos θω

CM = 0.45.
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Figure 5.29: ρ1
1−1 element vs

√
s in bins of cos θω

CM for g8b. The results from the mother fit are in
black, the results from the Schilling method are in red. In the cos θω

CM = 0.95 bin, the mother fit
method does not provide measurements at all energies, while the Shilling method does.

There is a broad trough around 2050 MeV at angles more backward than cos θω
CM = −0.55. The

central angles are relatively flat, with only a gentle rise occurring as a function of energy. There is
a broad peak that begins to appear at angles more forward than cos θω

CM = 0, but the position of
the peak moves toward lower energies as the angle gets more forward.
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Figure 5.30: ρ1
11 element vs

√
s in bins of cos θω

CM for g8b. The results from the mother fit are in
black, the results from the Schilling method are in red. In the cos θω

CM = 0.95 bin, the mother fit
method does not provide measurements at all energies, while the Shilling method does.

There are hints of structure at angles backwards of cos θω
CM = −0.55 around 1900 MeV and 2100

MeV, but they are difficult to distinguish completely. From cos θω
CM = −0.55 to cos θω

CM = 0.15,
the data is almost completely flat. Above cos θω

CM = 0.15, a peak starts to develop near 1820 MeV
followed by a gentle decline as

√
s gets higher.
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Figure 5.31: Im(ρ2
10) element vs

√
s in bins of cos θω

CM for g8b. The results from the mother fit are
in black, the results from the Schilling method are in red. In the cos θω

CM = 0.95 bin, the mother fit
method does not provide measurements at all energies, while the Shilling method does.

At angles backwards of cos θω
CM = 0, there is a fairly steady negative slope as a function of energy,

with no changes of direction. Above cos θω
CM = 0, a trough begins to appear at low energies, generally

centered around 1800 MeV, followed by a steady rise as a function of energy, which eventually flattens
out at energies above 2050 MeV.
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Figure 5.32: Im(ρ2
1−1) element vs

√
s in bins of cos θω

CM for g8b. The results from the mother fit are
in black, the results from the Schilling method are in red. In the cos θω

CM = 0.95 bin, the mother fit
method does not provide measurements at all energies, while the Shilling method does.

This element is the mirror of the ρ1
1−1 element and thus all the observations of that element

apply here as well.
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Figure 5.33: Im(ρ3
10) element vs

√
s in bins of cos θω

CM for g1c. The results from the mother fit are
in black, the results from the Schilling method are in red. In the cos θω

CM = 0.95 bin, the mother fit
method does not provide measurements at all energies, while the Shilling method does.

While there are some hints of structure in this element, particularly in the forwards direction, it
is hard to tell where it is centered. The large error bars, wider bins, and lack of smoothness in the
data make it difficult to determine the structure.
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Figure 5.34: Im(ρ3
1−1) element vs

√
s in bins of cos θω

CM for g1c. The results from the mother fit are
in black, the results from the Schilling method are in red. In the cos θω

CM = 0.95 bin, the mother fit
method does not provide measurements at all energies, while the Shilling method does.

This element is also difficult to determine structure in, but it is possible. In the backwards
direction, there are definite extrema near 2000 MeV and 2200 MeV, visible until cos θω

CM = −0.15.
At the most forward angles, there seems to be some structure, but it is not consistent from bin to
bin.

5.4 Summary

We have now presented our spin density matrix elements across a wide range of energies and angles.
We have shown the direct comparisons, where possible, to the g11a dataset and have shown excellent
agreement in almost every bin. In the few cases where there is a discrepancy with the g11a data,
the g8b and g1c results agree well with each other. The g11a results have been compared to the rest
of the world’s data in [1] and our results are close enough to g11a that any comparisons to previous
data are valid for all three datasets. We have then expanded our observables to include the spin
density matrix elements that depend on the photon polarization. We have shown that there are
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certain empirical symmetries present in these new elements, and that those symmetries generally
break as we get to higher energies. This could be an indication that at lower energies there are
relatively simple processes responsible for ω production, but that at higher energies more resonances
are involved. We have also shown that two separate methods of extracting the polarized SDMEs
yield very similar results. These measurements have never been made before and hopefully will lead
to better models for ω photoproduction.



Chapter 6

Partial-Wave Analysis

The ultimate goal of this analysis is to be able to extract the resonance contributions important in
γp → pω. The fits in the last chapter used all s-channel waves of both parities up to J = 11

2 . This
allows our fits enough degrees of freedom to be able to fully describe the data. We will now assume
that those fits are able to fully describe the data and proceed to use only a small number of JP

states, along with non-resonant contributions, to see which of these combinations are able to best
describe the mother fit in each bin. We will determine the success of a fit based on the difference
between the final value for the log likelihood and the log likelihood for the mother fit in the same
bin, as well as its ability to reproduce the spin density matrix elements. The method we will be
using is known as a mass-independent partial-wave analysis.

The resonances being sought are unstable particles, and the probability amplitudes for their
propagation, or their propagators, are complex functions of their energy and momentum, and depend
on how they interacts with the vacuum. In principle, calculating these propagators would require
summing over an infinite number of Feynman diagrams. However, if we are only interested in
states that are unique in their quantum numbers, over a relatively large energy range, then it is
possible to approximate the propagator with a constant-width Breit-Wigner. This function relies
only on the Mandelstam s and parameters commonly taken to be the mass (m) and width (Γ) of the
resonance. When there are multiple states with the same quantum numbers that are close together
in mass, relative to their widths, then we cannot use this approximation, and we must use a different
approximation. We have chosen to avoid this model dependency by binning our data very finely in√
s, so that the propagator can be approximated by a complex constant in each narrow bin.

This method has been used in the past to study unpolarized ω photoproduction for g11a [1] and
the results of that run period will be presented alongside the results for g1c and g8b for comparison
at each step of the process. We expect that we should see similar results to what was found in
g11a, but that the polarization information will give new insight into the reaction. Unpolarized
experiments have only three observables to compare, the ρ0 spin density matrix elements. The g1c
run period adds in the two new ρ3 SDMEs, and the g8b run period adds in six new elements from
the ρ1 and ρ2 matrices. g11a was able to reproduce the three SDMEs very well with as few as two
s-channel waves coupled with the t-channel. The results were split into two regions: from threshold
at 1720 MeV up to 2000 MeV the data were well-described by the t-channel and the JP = 3

2

−

and 5
2

+ waves; from 2000 MeV to 2400 MeV the data were well described by the t-channel and the
JP = 5

2

+ and 7
2

− waves.

91
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6.1 Theoretical Models for Non-Resonant Photoproduction

In order to perform our searches it is necessary to have a model for the non-resonant contributions
needed. In his thesis [1], Mike Williams determined that the Oh, Titov and Lee [14] model is the
best available model for studying ω photoproduction. Thus, we will continue to use this model to
study g1c and g8b.

6.1.1 The Oh, Titov and Lee Model

This model, developed by Oh, Titov and Lee [14] (OTL), includes s-, t-, and u-channel terms. The
model was fit to data from SAPHIR [9], SLAC [10], and Daresbury [12]. However, we are already
using a model for the s-channel and Williams determined that the u-channel terms did a poor job
describing the data at the backwards angles where u-channel processes are thought to dominate for
ω photoproduction. For energies below

√
s = 2000 MeV there is no backwards peak in the cross

section, thus omitting the u-channel was shown to have no adverse effects [1]. Above
√
s = 2000

MeV, Williams determined that in the energy range under study, below 2400 MeV, the u-channel
should have at most a 30% contribution to the backwards peak and could safely be ignored when
searching for the dominant resonance contributions. Thus, he left it out and proceeded only with
the s- and t-channel contributions.

t-channel

The t-channel model utilizes pseudo-scalar meson, π0 and η, and Pomeron exchange processes. As
with the resonant amplitudes, the t-channel amplitudes are calculated according to the prescription
set forth in [1], using the parameters listed in Table 6.1. The coupling constants were determined
from experiments, except for the gηNN constant which was set using gπNN and an SU(3) relationship
because there are not enough backwards angle measurements at high energies for the pη final state.
The form factor cutoffs, Λ, come from fits to the data. The parameters for Pomeron exchange were
determined by fitting all vector meson (ρ, ω and φ) total cross sections at high energies. There are
no free parameters in this model.

Parameter Value Obtained From
gπNN 13.26 πN scattering
gηNN 3.53 SU(3) relation and gπNN

gγπω 1.823 ω → πγ decay width
gγηω 0.416 ω → ηγ decay width

ΛπNN 0.6 Fit to data
Λγπω 0.7 Fit to data
ΛηNN 1.0 Fit to data
Λγηω 0.9 Fit to data
gωNN 10.35 Fit to data
κω 0 Value used by previous models

ΛωNN 0.5 Fit to data

Table 6.1: Oh, Titov and Lee model parameters [14].
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6.2 The s-channel Scans

Now that we have determined that we will use the OTL t-channel contribution, with no free param-
eters, and no u-channel contributions, we begin to search for the resonance contributions. We will
start by pairing a single s-channel wave with the t-channel and comparing the final log-likelihood
values with those from the mother fits. Note that the fitting function and parameters for the s-
channel waves are the same as for the mother fit (see Section 5.1.1). The energy range that we will
study is from threshold up to

√
s = 2400 MeV. The g8b dataset only goes up to 2210 MeV and thus

we will stop there.

6.2.1 One s-channel Wave and OTL t-channel

With these single-wave scans, we are simply looking to see if any particular JP state describes the
data better than the other waves. Figure 6.1 shows the results of the comparisons to the mother
fits for the waves of both parities up to J = 7

2 for all three datasets. Values that are closer to 0
indicate better fits than those further away, as it indicates it is closer to the value from the mother
fit. We have chosen to divide the difference between the log likelihoods by the number of signal
events in each bin. The reason for this is that the final value for the log likelihood per signal event
is roughly constant across the entire energy range and it allows for direct comparison between the
three datasets without having to account for the differences in statistics.

We can see that the g1c results very closely mirror what we see in g11a. Starting at threshold,
the 3

2

− fit is the best until we get to 1840 MeV, where the 5
2

+ wave becomes the best until about
2080 MeV. Above 2080 MeV, several waves are very close, and it is difficult to distinguish which is
the best in g11a. However, in g1c, the 3

2

− wave seems to be slightly better up to 2280 MeV when
the 5

2

− wave takes over. This can also be seen in g11a.

The g8b results are slightly different, mainly because the 5
2

+ starts out as the dominant wave from
threshold up to 2000 MeV, with the 3

2

− wave never being the best fit near threshold. From 2030-2130
MeV, the 3

2

− wave takes over, as in g1c. Above 2130 MeV, the fits are not well-differentiated.
These results do not allow us to say that any particular resonance is actually present at any

particular energy, however they will give us a guide as to which waves are important and which for
waves we should look at the SDMEs in comparison to the values from their mother fits. For instance,
all three datasets agree that, below 2000 MeV, the 5

2

+ wave is important, and that we should see
how it interacts in combination with other s-waves.

6.2.2 Two s-channel Waves and OTL t-channel

We can now look at pairs of s-channel waves, again keeping the t-channel contribution fixed. The re-
sults of these fits for a selection of combinations can be seen in Figure 6.2. Note that all combinations
of two waves were fit, those shown here are the best of those fits.

Again, we see excellent agreement between the g1c and g11a results. Both start at threshold
with the pairing of 3

2

− and 5
2

− being the best fit for a few bins before the pairing of 3
2

− and 5
2

+

becomes the best fit up to 2000 MeV. Several pairs alternate being the best from 2000 MeV up to
2100 MeV after which the 5

2

+ and 7
2

− pair and the 5
2

− and 7
2

+ pair become the best. At these
energies it is not possible to distinguish between these two pairs as they are parity opposites and
there is nothing to break the symmetry.

g8b agrees very well with what was seen in g11a and g1c except at threshold. There it shows
that the 3

2

−, 5
2

− pair is the best fit all the way out to 1780 MeV. g1c may also show this, but the
30 MeV wide bins do not allow us to determine precisely where the crossover between the two pairs
occurs.
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Figure 6.1: Goodness-of-fit plots showing ∆lnL/signal events vs
√
s for (a) g1c, (b) g8b and (c)

g11a, for one s-channel wave plus t-channel. The g1c and g11a datasets agree very well, but the g8b
dataset differs in the near-threshold bins.
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We saw, in the previous section, that the 5
2

+ wave was important for all three datasets below
2000 MeV. Here we see that pairing it with the 3

2

− wave gives the best fit for most of the range from
threshold up to 2000 MeV in all three datasets.

At this point, we can start to notice something else about the datasets and the ∆ln(L)/signal
events values as a function of

√
s. Recall that the closer a value is to 0 the better a fit it is and the

closer it is to the mother fit. We can see that the best fits in g11a are significantly better than the
best fits in g8b and somewhat better than the fits in g1c. This should be somewhat expected, as
there is more information in the polarized fits than in the unpolarized fits and therefore it is more
likely that there will be differences between the smaller fits compared to the mother fit. It is possible
to come up with a χ2 metric for the fits by comparing the values obtained from the fit for each of
the spin density matrix elements, at each cos θω

CM value, to the mother fit values. This χ2 value
tracks with the difference in log likelihoods very well. This indicates that the value of ∆ln(L)/signal
events is a measure of how well the fit can reproduce the SDMEs. Since there are only three SDMEs
in the unpolarized g11a run period, the value should be expected to be less than in g1c where there
are five SDMEs or in g8b where there are nine.

We can also see that in all three datasets the fits at threshold are better than those at higher
energies. This could indicate that, at threshold, there is a fairly simple process involved in the
production of ω mesons, while at higher energies there is a more complicated process. This could
be indicative of the number of resonances involved in production, or the presence of other processes.
In g8b we notice something else as well: the fits between 1800 and 1900 MeV are much worse than
those at threshold, while g11a and g1c do not see differences anywhere near that significant. This is
a hint that there may be something in this energy range that we are not including in our model.

6.2.3 Three s-channel Waves and OTL t-channel

In order to further examine what is going in the 1800-1900 MeV energy range in g8b we have also
looked at all combinations of three s-channel waves with the t-channel. With three waves, we start
to have enough freedom available in the fits to be able to obtain good fits with multiple combinations
of waves, even ones that don’t make sense. For instance adding a 7

2

+ or 7
2

− wave to the 3
2

−, 5
2

−

combination at threshold yields an excellent fit despite the fact that there is very little likelihood
of a 7

2 wave being present at threshold. Thus, we do not use these fits as an indication of which
combinations of waves to examine further, and have elected to not show a legend of the fits, but
instead to better demonstrate what is happening between 1800 and 1900 MeV in g8b.

Figure 6.3 shows the results of the three wave fits for a selection of combinations. In g1c and
g11a we can see a fairly steady rise, for the best fit, from threshold up to the higher energies, with
a few individual bins showing spikes. In g8b, however, we see that, from 1730-1790 MeV, the value
of the best fit is fairly constant, but then it quickly rises above 1800 MeV before coming back down
at around 1950 MeV, and then rising very slowly up to the highest energies. Above 1950 MeV, it
behaves much like g1c and g11a, but, from 1800-1950 MeV, the fits are much worse than we would
otherwise expect them to be. This is an exaggerations of what was seen in the two wave fits.

This could be an indication that there is something significant that is not being accounted for
in our models. The u-channel contribution, which has been ignored, does not seem likely as the
solution because below 2000 MeV there is not a significant backwards peak, where the u-channel
contributes most strongly. It is possible that multiple states with the same quantum numbers could
be important in this range. Our model-independent fitting method should be able to take this into
account, but it is possible that it is not accounting for it correctly. The shape of the hump looks
like a resonance with a width of a few hundred MeV may be responsible, but all of the resonances
have been included up to 7

2 and it is unlikely a 9
2 or 11

2 resonance could be found here. Perhaps the
t-channel contribution needs to be tweaked. In any case, this is a strong indication that the present
model is not completely accounting for everything and needs to be amended.
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Figure 6.2: Goodness-of-fit plots showing ∆lnL/signal events vs
√
s for (a) g1c, (b) g8b and (c)

g11a, for two s-channel waves plus t-channel. g8b and g1c agree with each other and g11a differs
mainly near threshold.
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Figure 6.3: Goodness-of-fit plots showing ∆lnL/signal events vs
√
s for (a) g1c, (b) g8b and (c)

g11a, for selected three s-channel waves plus t-channel. Notice the significant hump in the g8b
results between 1800 and 1950 MeV. There is no legend because the identity of each fit is not
important, but rather only the the hump from 1800-1950 MeV in the g8b results.
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6.3 Examining the Parameters

If we make the assumption that each JP state included in the PWA fits is dominated by a single
N∗ state, then we can have some expectations about how the parameters will behave.

We have seen, in Figures 6.2(a) and 6.2(b), that, for both the g1c and g8b datasets, the 3
2

−, 5
2

−

plus t-channel combination works best below 1780 MeV, and the 3
2

−, 5
2

+ plus t-channel combination
works best from 1780-2020 MeV. Also, in g1c we have seen that above 2100 MeV the 5

2

+, 7
2

−

combination fits the data the best. In this section and the next we will restrict our attention to only
these fits.

Note that, for our purposes, seeing how the decays vary with respect to
√
s, we have opted to

bin our data for g1c more finely than was used for extracting the SDMEs and doing the s-channel
scans. Thus, we used 10-MeV-wide bins instead of the 30-MeV-wide bins used elsewhere. This is
done to allow a better gauge of how quickly the parameters are varying.

6.3.1 Decay Parameters

The decay parameters, defined in (5.1), are so called because they account for the decay of the JP

state to the pω system, denoted by its orbital and spin angular momentum quantum numbers L and
S. For JP = 1

2

± states, there are two possible combinations of L and S that the state can decay into;
for all other JP states, there are three possibilities.

Because we can think of the decay parameters as relating to the probability of the JP state
decaying into a particular L,S system, if there is only one N∗ in a given JP , then we can assume
that the decay couplings will be either roughly constant or at least a smoothly varying function of√
s. In short, the functional dependence on

√
s will be similar in all of the decay couplings. Thus,

if we were to divide all of the decay parameters in a given JP by one of the values, say of the lowest
L,S state, then we would expect to see either constant values or a smoothly varying function of

√
s

for all of the decay parameters (obviously the lowest L,S state would be constant at a value of 1). If
the single N∗ assumption is not true in this energy range, then we would expect to see non-smooth
functions of

√
s and perhaps even discontinuities.

The 3
2

−, 5
2

− Plus t-channel Fits

In Figure 6.4, we can see the decay parameters in g8b for the 3
2

−, 5
2

− combination, where each of the
3
2

− parameters have been divided by the lowest L,S combination, here L=0, S= 3
2 , and likewise the

5
2

− parameters have been divided by the L=2, S= 1
2 parameter. For the 3

2

− decays, we can see that
the L=2, S= 1

2 state varies linearly until 1770 MeV, however the L=2, S= 3
2 state is not as smooth.

For the 5
2

− decays, we can see that the L=2, S= 3
2 state is constant, while the L=4, S= 3

2 state is
not smooth at all. It is difficult to draw reliable conclusions from this, since one parameter varies
smoothly and the other does not in each JP state. It could indicate that one parameter is necessary
and the other is not, or that there is more than one N∗ state present.

We can see the decay parameters in g1c for 3
2

−, 5
2

− in Figure 6.5. We see very similar results to
what was seen in g8b, where two of the parameters vary smoothly while the other two do not.

The 3
2

−, 5
2

+ Plus t-channel Fits

In Figure 6.6, we can see the decay parameters in g8b for the 3
2

−, 5
2

+ combination, again dividing
out the lowest L,S combination. Here, we see a slightly clearer story. For the 3

2

− decays, the L=2,
S=1

2 combination looks to be rising linearly with
√
s, until 1980 MeV, although there is a bit of

scatter around that line; for the L=2, S=3
2 combination, we see a very smooth function, until 1950
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Figure 6.4: Decay Parameters for 3
2

−, 5
2

− vs
√
s in g8b. The parameters have been normalized by

the lowest (leftmost) L, S combination decay. This combination is found to be dominant over the
range from 1720-1780 MeV. Since this is such a small range we should expect that if there were only
a single N∗ per JP the decays should be constant, or vary smoothly. The parameters do not all vary
smoothly over the entire range, indicating that the single N∗ per JP assumption may be invalid
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Figure 6.5: Decay Parameters for 3
2

−, 5
2

− vs
√
s in g1c. The parameters have been normalized by

the lowest (leftmost) L, S combination decay. The parameters do not all vary smoothly over the
entire range, indicating that the single N∗ per JP assumption may be invalid



100 CHAPTER 6. PARTIAL-WAVE ANALYSIS

1800 1900 2000
-8

-6

-4

-2

0

2

4

6

8 2
3    L=0    S=

-

2
3=PJ

1800 1900 2000
-8

-6

-4

-2

0

2

4

6

8 2
1    L=2    S=

-

2
3=PJ

1800 1900 2000
-8

-6

-4

-2

0

2

4

6

8 2
3    L=2    S=

-

2
3=PJ

1800 1900 2000
-8

-6

-4

-2

0

2

4

6

8 2
3    L=1    S=

+

2
5=PJ

1800 1900 2000
-8

-6

-4

-2

0

2

4

6

8 2
1    L=3    S=

+

2
5=PJ

1800 1900 2000
-8

-6

-4

-2

0

2

4

6

8 2
3    L=3    S=

+

2
5=PJ

Figure 6.6: Decay Parameters for 3
2

−, 5
2

+ vs
√
s in g8b. The parameters have been normalized by

the lowest (leftmost) L, S combination decay. The parameters vary smoothly except for a sharp
discontinuity at 1950 MeV in the JP = 3

2

−, L=2, S=3
2 parameter.

MeV where there is a sudden discontinuity after which the points go to 0. This discontinuity is
a strong indication that an N∗ state has either turned on or turned off near this energy. For the
5
2

+ decays, we see both are very smooth functions above 1800 MeV. This set of parameters is more
indicative of a single 3

2

−
N∗ and a single 5

2

+
N∗, at least between 1800 and 1950 MeV.

The decay parameters for the 3
2

−, 5
2

+ combination in g1c can be seen in Figure 6.7. Both of the
3
2

− decays show a significant discontinuity at 1840 MeV and then vary smoothly. This is in contrast
to what was seen in g8b where the L=2, S= 3

2 combination showed a discontinuity at 1950 MeV.
Both of the 5

2

+ decay combinations vary smoothly over the entire range, similar to what was seen
in g8b.

The 5
2

+, 7
2

− Plus t-channel Fit

The decay parameters for the 5
2

+, 7
2

− combination in g1c can be seen in Figure 6.8. The 5
2

+ decays
do not seem smooth over any range. For the 7

2

− decays, the L=4, S= 1
2 combination is smooth and

constant over the entire range, while the L=4, S=3
2 combination is smooth below 2250 MeV and

then becomes very unstable.

We have seen similar results between the two datasets. The 3
2

−, 5
2

− combination shows indica-
tions that our fit is not stable, which could either indicate multiple N∗s per JP state, or that we are
missing another JP state. The 3

2

−, 5
2

+ combination shows a distinct discontinuity in the 3
2

− state
in both datasets, although the two datasets disagree on where the discontinuity occurs. And, in the
g1c dataset, we see indications that the fits are unstable, certainly above 2250 MeV.
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Figure 6.7: Decay Parameters for 3
2

−, 5
2

+ vs
√
s in g1c. The parameters have been normalized by

the lowest (leftmost) L, S combination decay. For the most part, the parameters vary smoothly
except for a sharp discontinuity at 1850 MeV in the JP = 3

2

− parameters.

2100 2200 2300 2400
-8

-6

-4

-2

0

2

4

6

8 2
3    L=1    S=

+

2
5=PJ

2100 2200 2300 2400
-8

-6

-4

-2

0

2

4

6

8 2
1    L=3    S=

+

2
5=PJ

2100 2200 2300 2400
-8

-6

-4

-2

0

2

4

6

8 2
3    L=3    S=

+

2
5=PJ

2100 2200 2300 2400
-8

-6

-4

-2

0

2

4

6

8 2
3    L=2    S=

-

2
7=PJ

2100 2200 2300 2400
-8

-6

-4

-2

0

2

4

6

8 2
1    L=4    S=

-

2
7=PJ

2100 2200 2300 2400
-8

-6

-4

-2

0

2

4

6

8 2
3    L=4    S=

-

2
7=PJ

Figure 6.8: Decay Parameters for 5
2

+, 7
2

− vs
√
s in g1c. The parameters have been normalized by

the lowest (leftmost) L, S combination decay. The JP = 5
2

+ parameters are not smooth over any
range. The 7

2

− parameters are mostly smooth below 2250 MeV.
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Figure 6.9: Multipole Parameters for 3
2

−, 5
2

− vs
√
s in g8b. The 3

2

− parameter is in black; the 5
2

−

parameter is in red. Neither is a smooth function over the entire range.

6.3.2 Multipole Parameters

The amplitudes used in our fits are written using the multipole basis to account for the fact that
two of the Lorentz invariant amplitudes at each γpN∗ vertex are not angularly independent. Recall,
from (5.1), that one of our parameters is a multipole production angle, θJP , which we take the
cosine/sine of if our amplitude contains an electric/magnetic multipole. As a result of how it is
defined, this angle will also be a smoothly varying function of

√
s, specifically an arctan function,

if we assume that there is only one N∗ contributing to each JP state. So, we can now proceed to
examine the multipole parameter for the same combinations used in examining the decays.

The 3
2

−, 5
2

− Plus t-channel Fits

The multipole production angles for the 3
2

−, 5
2

− combination for g8b can be seen in Figure 6.9. We
note similar results to what was seen for the decays for this combination, which is that neither can
be taken to be a smooth function.

The multipole production angles for the 3
2

−, 5
2

− combination for g1c can be seen in Figure 6.10.
Here, as in g8b and in the decay parameters for this combination in g1c, we see that there is no
smooth function that will fit all of the points for either parameters.

The 3
2

−, 5
2

+ Plus t-channel Fits

The multipole production angles for the 3
2

−, 5
2

+ combination for g8b can be seen in Figure 6.11.
Again, we see very similar results to what was seen in the plots of the decay parameters. Both
of the multipole parameters are smooth functions from 1780-1950 MeV and then there is a sharp
discontinuity, after which both functions are smooth again. This bolsters our claim that there is
something happening at 1950 MeV, either a resonance turning on or off, or another process that is
not included in our fit. However, it could simply be a fit instability.

The multipole production angles for the 3
2

−, 5
2

+ combination for g1c can be seen in Figure 6.12.
Again, the parameters mirror what is seen in the decays for this combination, both are smooth
functions with a sharp discontinuity at 1850 MeV.
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Figure 6.10: Multipole Parameters for 3
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−, 5
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− vs
√
s in g1c. The 3
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− parameter is in black; the 5
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parameter is in red. Neither is a smooth function over the entire range.
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Figure 6.11: Multipole Parameters for 3
2

−, 5
2

+ vs
√
s in g8b. The 3
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− parameter is in black; the 5
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+

parameter is in red. Both are smooth functions of energy except for a large discontinuity at 1950
MeV.
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Figure 6.12: Multipole Parameters for 3
2

−, 5
2

+ vs
√
s in g1c. The 3

2

− parameter is in black; the 5
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+

parameter is in red. Both are smooth functions of energy except for a discontinuity at 1850 MeV.
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Figure 6.13: Multipole Parameters for 5
2

+, 7
2

− vs
√
s in g1c. The 5

2

+ parameter is in black; the 7
2

−

parameter is in red. Both parameters are very smooth and almost constant functions of energy, with
the exception of two points, at 2255 MeV and 2365 MeV, where for some reason the fits apparently
were not able to converge.

The 5
2

+, 7
2

− Plus t-channel Fit

The multipole production angles for the 5
2

+, 7
2

− combination for g1c can be seen in Figure 6.13.
Here, we see very smooth and almost constant functions for each parameter, with the exception of
three points, at 2100 MeV, 2255 MeV, and 2365 MeV. This is in sharp contrast to what was seen
in the decays, where the 7

2

− decay parameters were only reasonably well-behaved below 2250 MeV,
but the 5

2

+ parameters were never smooth.

6.4 Comparison to SDMEs

We can now look at how well the best fits were able to reproduce the spin density matrix elements.
These elements are a good gauge of how well the combination of waves chosen are fitting the data.
All of the combinations are able to fit the cross section reliably, but the SDMEs are much more
sensitive to the quality of the fit. Recall that the difference in the log likelihoods is similar to a
χ2 value computed using the differences between the SDMEs. For all of the figures in this section,
the SDMEs measured from the mother fit will be presented as black points, with error bars, and
the results from the two waves fits will be presented as red dashed lines, with no error bars. The
errors have not been calculated for the two-wave fits because we are mainly just looking for trends
and shapes, not a true measure of how different the two values are, that is already calculated in the
difference of the log likelihoods. For each of the best fits we will show all of the SDMEs for a single
bin, chosen to be in the middle of the energy range where that fit is the best, where the fits should
be the most reliable. For one of the polarized SDMEs, from the 3

2

−, 5
2

+ plus t-channel fit from g8b,
we will show the entire range in

√
s to show that there is not much variation in the quality of the

fits from bin to bin. However, showing all of the SDMEs for each fit, over the entire energy range
would require too much space.

6.4.1 The 3
2

−
, 5

2

−
Plus t-channel Fits

We can see the comparison of the SDMEs for g8b in the bin centered at 1755 MeV in Figure 6.14.
The unpolarized SDMEs, ρ0, do not match perfectly, but show qualitative agreement, especially with
the shapes. The Re(ρ0

10) element in particular shows very good agreement, although the agreement
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is worse in the backwards angles, cos θω
CM ≤ 0. The polarized SDMEs, ρ1 and ρ2, also show good

qualitative agreement, although here the major discrepancies are at the forward angles, beyond
cos θω

CM = 0.5, especially in the ρ1−1 elements. The Im(ρ2
10) element is shifted up slightly at all

angles.
In Figure 6.15, we can see the comparison of the SDMEs for g1c in the bin centered at 1765

MeV. Here, we see excellent agreement at all angles for each of the SDMEs. The two polarized
elements, ρ3, are quite small and the two-wave fit remains flat across the entire angular range, while
the results from the mother fit do have some shape to them; however, the agreement is still quite
good.

Based on these comparisons, it is reasonable to say that the g1c data can be fit by the 3
2

− and
5
2

− wave quite well and that perhaps no other resonance is required. The g8b data, however, shows
significant differences from the mother fit and indicates that another resonance or other process is
required to fit the data fully.

6.4.2 The 3
2

−
, 5

2

+
Plus t-channel Fits

There was excellent agreement between the three unpolarized SDMEs extracted from the 3
2

−, 5
2

+

combination to those extracted from the mother fit in g11a [1]. Here, we will see how adding in
the polarization information affects our results. In Figure 6.16, we can see the comparison of the
SDMEs for g8b in the bin centered at 1885 MeV. The ρ0

00 element shows reasonable agreement in
shape although it is shifted down at most angles from the mother fit. The Re(ρ0

10) element is able
to get the overall trend correct, but misses most of the nuance and shape of the mother fit. The
ρ0
1−1 element shows a very different shape than the results from the mother fit, especially at forward

angles. Based only on the unpolarized SDMEs, one could still qualify this fit as doing a reasonable
job. The polarized SDMEs, however, reveal that this fit is much worse. Most of the polarized
elements are not close on either shape or scale. The Re(ρ1

10), for instance, is almost a mirror image
of what the mother fit result is doing, and the Im(ρ1−1) elements don’t show any correlation at all
to what the mother fit is doing, although they do still appear to be inverted copies of each other in
the same way that the mother fit does.

Figure 6.17 shows a single polarized element, the Re(ρ1
10) element, as it evolves in

√
s over the

entire range in which this fit is the best combination of two s-channel waves plus t-channel in g8b.
It is clear that this fit is unable to reliably reproduce the results of the mother fit for any bin in the
range.

In Figure 6.18 we can see the comparison of the SDMEs for g1c in the bin centered at 1885 MeV.
The unpolarized elements very closely match what was seen in g8b. Again, the Re(ρ0

10) element
is in poor agreement. The two polarized elements are in better agreement than what was seen in
g8b, however, they don’t follow the shape of the mother fit results, but rather cut across it, without
shape of their own.

Both of these fits show that, even for the unpolarized SDMEs, some other process is needed to
obtain a better match with the mother fit. The polarized elements further demonstrate that need.
This is in contrast to what was seen in [1], where good agreement was seen for all three unpolarized
SDMES. The difference between the two datasets shows the power of adding in the polarization
information.

6.4.3 The 5
2

+
, 7

2

−
Plus t-channel Fits

In Figure 6.19 we can see the comparison of the SDMEs for g8b in the bin centered at 2185 MeV.
Except for backwards of -0.5 in ρ0

00, the unpolarized SDMEs are in very good agreement, although
missing some of the nuances of the shape, for all three elements. Based only on this, we would be
tempted to say that these two resonances are doing a very good job of fitting the data in this bin,
but when we examine the polarized elements we can see that there is significantly less agreement.
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Figure 6.14: Spin Density Matrix elements vs cos θω
CM in the bin

√
s = 1755 MeV, which is in the

center of the energy range for which the 3
2

−, 5
2

− combination gives the best fit for the g8b dataset.
The results from the mother fit are shown in black with error bars, the results from the 3

2

−, 5
2

−

fit are shown as the red dashed lines. The unpolarized SDMEs, ρ0, are in fairly good agreement.
The polarized SDMEs, ρ1 and ρ2, show reasonable agreement as well, although there is a noticeable
discrepancy at angles beyond 0.5, especially in the ρ1−1 elements. The Im(ρ2

10) element is shifted
up slightly at all angles.
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Figure 6.15: Spin Density Matrix elements vs cos θω
CM in the bin

√
s = 1765 MeV, which is in the

center of the energy range for which the 3
2

−, 5
2

− combination gives the best fit for the g1c dataset.
The results from the mother fit are shown in black with error bars, the results from the 3

2

−, 5
2

− fit
are shown as the red dashed lines. The results for the unpolarized, ρ0, elements are excellent. The
two polarized, ρ3 SDMEs are in good agreement as well.
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Figure 6.16: Spin Density Matrix elements vs cos θω
CM in the bin

√
s = 1885 MeV, which is in the

center of the energy range for which the 3
2

−, 5
2

+ combination gives the best fit for the g8b dataset.
The results from the mother fit are shown in black with error bars, the results from the 3

2

−, 5
2

+ fit
are shown as the red dashed lines. It is clear from these plots that, while the unpolarized SDMEs,
ρ0, are somewhat reasonably reproduced by the smaller fit, the polarized SDMEs, ρ1 and ρ2, are in
very poor agreement, indicating that the fit is missing some resonances.
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Figure 6.17: Re(ρ1
10) element vs cos(θω

CM ) in bins of
√
s. The results from the mother fit are shown

in black with error bars, the results from the 3
2

−, 5
2

+ fit are shown as the red dashed lines. It is
clear that these fits are not able to reproduce the results from the mother fit reliably.
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Figure 6.18: Spin Density Matrix elements vs cos θω
CM in the bin

√
s = 1885 MeV, which is in the

center of the energy range for which the 3
2

−, 5
2

+ combination gives the best fit for the g1c dataset.
The results from the mother fit are shown in black with error bars, the results from the 3

2

−, 5
2

+ fit
are shown as the red dashed lines. The results for the unpolarized, ρ0, elements are very similar to
what is seen in g8b. Here the two polarized, ρ3 SDMEs are in better agreement than what is seen
in g8b.
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Figure 6.19: Spin Density Matrix elements vs cos θω
CM in the bin

√
s = 2185 MeV, which is in the

center of the energy range for which the 5
2

+, 7
2

− combination gives the best fit for the g1c dataset.
The results from the mother fit are shown in black with error bars, the results from the 5

2

+, 7
2

−

fit are shown as the red dashed lines. The results for the unpolarized, ρ0, elements are in good
agreement, except for the most backwards angles, backwards of cos θω

CM = −0.5, in the ρ0
00 element.

However, the polarized SDMEs, ρ3, show noticeably less agreement.
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6.4.4 Summary

We can determine how well a fit is able to represent the data by comparing the SDMEs to those
obtained from the mother fit. By using polarized data, we are able to expand the number of
observable SDMEs and thus better differentiate good and bad fits. A fit like the 5

2

+, 7
2

− combination
matches the unpolarized SDMEs very well, and it would be possible to think that only those two
waves are present and necessary to fit the data, but the polarized SDMEs show that some other
process is also important.

6.5 Combined Fits

In Section 4.6, we showed that it is possible to combine datasets together in a log likelihood fit
by simply adding the likelihoods together. This was necessary for the g1c and g8b datasets, which
each had two or more datasets in most energy bins. It is also possible to combine the g1c and
g8b datasets, and also add in the g11a dataset. The combination of these three datasets will have
significantly more statistics, and thus should be more stable. Also, because it will have both linear
and circular polarization included, we should get a more robust fit. In order to combine the datasets
together, we do require that they all have the same binning, and thus we will bin the g1c data in 10
MeV-wide-bins instead of the 30 MeV wide bins used previously. Recall that the g8b dataset only
goes out to 2210 MeV, thus above 2210 MeV only the g11a and g1c datasets are involved in the fits.

In Figure 6.20, the SDMEs obtained from the combined g11a, g1c and g8b mother fit are presented
for the 1885 MeV bin, in comparison to the values obtained from the other mother fits. The quality
of the fits is apparent as there is almost no difference between the values from the two mother fits
in the unpolarized SDMEs. For the polarized SDMEs there are a few small differences, but nothing
significant. It should be noted that error bars were not calculated for the SDMEs for the combined
fits due to the massive computational expense. Given how closely the values mirror each other they
are not necessary. In all cases, they should be expected to be smaller than those from any of the
datasets on their own.

6.5.1 s-wave Scans

Since the mother fit is able to reproduce the SDMEs with good quality, we can proceed to look at
the s-wave scans. In Figure 6.21, we can see the results of the one-, two- and three-wave scans.
They are, of course, similar to what was seen in the single-dataset scans, but it is interesting to
note where there were differences between the single-dataset scans. In the one-wave scan, g1c and
g11a each showed the 3

2

− wave dominant from threshold out to 1840 MeV, while g8b showed the 5
2

+

wave dominant over that same range. In the combined fit, the 3
2

− wave is dominant from threshold
out to only 1760 MeV. For the two wave fits, the g11a dataset had the 3

2

−, 5
2

+ combination takes
dominance from the 3

2

−, 5
2

− combination at 1750 MeV while in the g1c and g8b datasets that occurs
at 1780 MeV. Here, the polarized datasets have won out and the crossing occurs at 1780 MeV. Also,
note in both the two- and three-wave fits, that the pattern seen in g8b of significantly worse fits
between 1800 and 1950 MeV recurs here as well.

6.5.2 Examining the Parameters

Since the same combinations are dominant in the same places as in the single dataset scans we can
look at the parameters in the same way as before.
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Figure 6.20: Spin Density Matrix elements vs cos θω
CM in the bin

√
s = 1965 MeV, which is in the

center of the energy range for the combined g1c, g8b and g11a datasets. For the unpolarized, ρ0,
elements, the black points are from the g11a mother fit; for the ρ1 and ρ2 elements, the black points
are from the g8b mother fit; for the ρ3 elements, the black points are from the g1c mother fit (in
10-MeV-wide bins). The red dashed lines, shown without error bars, are from the combined g1c,
g8b and g11a datasets mother fit. The ρ0 elements show near perfect agreement. The polarized
elements are also in good agreement, although there are some small differences.
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Figure 6.21: Goodness-of-fit plots showing ∆lnL/signal events vs
√
s for the combined g11a, g1c

and g8b datasets. (a) The single-wave fits, (b) the two-wave fits, (c) the three wave fits.
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Figure 6.22: Decay Parameters for 3
2

−, 5
2

− vs
√
s for the combined g11a, g1c and g8b datasets.

The parameters have been normalized by the lowest (leftmost) L, S combination decay. None of the
parameters vary smoothly with energy over the entire energy range.

The 3
2

−, 5
2

− Plus t-channel Fits

Figure 6.22 shows the decay parameters and Figure 6.23 shows the multipole production angle
parameters for the 3

2

−, 5
2

− fit. The decay parameters are similar to what was seen in the single
dataset fits, namely that the decay parameters are not smooth functions of energy. The multipole
production angles however are very smooth and almost constant. Combining the datasets smoothed
the variation of the production angles, but since the decays are still not smooth, it is difficult to
conclude that there there is a 3

2

−, 5
2

− resonance combination present.

The 3
2

−, 5
2

+ Plus t-channel Fits

Figure 6.24 shows the decay parameters and Figure 6.25 shows the multipole production angle
parameters for the 3

2

−, 5
2

+ fit. In the single dataset examination of this fit, the two datasets each
showed smooth motion for both the decays and the production angles, with the exception of one
discontinuity, but the discontinuity occurred at 1850 MeV in g1c and at 1950 MeV in g8b. In the
combined fit, both discontinuities are present, although a bit shifted, to 1830 MeV and 1990 MeV,
but there is a range between the two discontinuities where all of the variables are very smooth
functions of energy or even constant. This could be further evidence that there are a 3

2

− and 5
2

+

resonance present here, however it is clear that there are also other processes present that are not
part of our fit, and without including them it is not possible to determine which particular N∗s are
present.

The 5
2

+, 7
2

− Plus t-channel Fits

Figure 6.26 shows the decay parameters and Figure 6.27 shows the multipole production angle
parameters for the 5

2

+, 7
2

− fit. The decays show a much different picture than what was seen by
looking at g1c alone. Here the decays are largely smooth, with a few points that are far away from
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Figure 6.23: Multipole Parameters for 3
2

−, 5
2

− vs
√
s for the combined g11a, g1c and g8b datasets.

The 3
2

− parameter is in black; the 5
2

− parameter is in red. Both are smooth over the entire range.
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Figure 6.24: Decay Parameters for 3
2

−, 5
2

+ vs
√
s for the combined g11a, g1c and g8b datasets.

The parameters have been normalized by the lowest (leftmost) L, S combination decay. There are
discontinuities at 1830 MeV and 1990 MeV, but otherwise they are smooth functions of energy.
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Figure 6.25: Multipole Parameters for 3
2

−, 5
2

+ vs
√
s for the combined g11a, g1c and g8b datasets.

The 3
2

− parameter is in black; the 5
2

+ parameter is in red. There are discontinuities at 1830 MeV
and 1990 MeV, but otherwise they are smooth functions of energy.

the rest, except for a large discontinuity at 2270 MeV. The production parameters show the same
result, a discontinuity at 2270 MeV and otherwise largely smooth, although there are two notably
bad points in the 2205 and 2215 MeV bins.

6.5.3 Summary

In this section it was shown that it is possible to combine three different kinds of polarized data
together into one fit that is able to produce all of the polarized SDMEs. We have also shown that
combining the datasets can settle the parameters in the two wave fits allowing for easier discernment
of the presence of resonances. However, given our current model the combined fits are still unable
to determine which N∗s are present.

6.6 Summary

We have presented the results of our partial-wave analysis. While they were not able to determine
exactly which resonance are responsible for ω photoproduction in our energy range, they have shown
that adding in photon polarization increases the analyzing power of our fits. Both of our datasets
did show agreement with g11a in terms of which combinations of JP waves are important in ω
photoproduction. Adding in further polarization information, in the form of target polarization,
should be able to even further increase the analyzing power. We also saw that the production
processes near threshold are probably simpler, involving fewer resonances, than those at higher
energies. The symmetries seen in the SDMEs in Chapter 5 suggested this as well, as their symmetries
broke at higher energies. While it is unclear if there is any connection between these symmetries
and the presence of resonances, it is an area that merits further study.
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Figure 6.26: Decay Parameters for 5
2

+, 7
2

− vs
√
s for the combined g11a, g1c and g8b datasets. The

parameters have been normalized by the lowest (leftmost) L, S combination decay. Other than a few
bad bins these parameters are largely smooth except for a significant discontinuity at 2270 MeV.
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Figure 6.27: Multipole Parameters for 5
2

+, 7
2

− vs
√
s for the combined g11a, g1c and g8b datasets.

The 3
2

− parameter is in black; the 5
2

+ parameter is in red. Other than a few bad bins these
parameters are largely smooth except for a significant discontinuity at 2270 MeV.



Chapter 7

Summary

7.1 Recap of Analysis Procedure

It may be instructive to recap here our entire analysis procedure so that it can be easily followed
step by step. Where possible, we will provide references to the section where the details of each step
can be found.

The data were initially gathered using the devices and detectors described in Chapter 2, and then
cooked before being our analysis process began. Starting from the cooked data, we first calculated
the necessary tagger- and momentum-corrections using the methods laid out in Section 3.2. We
then applied those corrections to the data and skimmed the dataset, looking for events with a final
state of p, π+, π−, where the proton’s magnitude of momentum is greater than 350 MeV, the total
missing-mass is between 0 and 450 MeV, and the missing mass off the proton is within 150 MeV of
the ω mass. For events of that type, we performed a kinematic fit to the hypothesis of a missing π0,
discarding events if the confidence level is below 10%. Once we have selected our events we separate
them into bins based only on their total, center-of-mass energy,

√
s.

After the data have been binned in
√
s, we perform a series of cuts. We perform a particle

identification cut, as described in Section 3.4, and then fiducial cuts, and cuts on time-of-flight
paddles, detailed in Section 3.5. Then we require cos θπ0

CM ≤ 0.99, as was shown in Section 3.6.
Once all of those cuts have been performed, we separated the signal and background on an event-

by-event basis by assigning a Q-value to each event that passes our cuts, using the methods detailed
in Section 3.7. We took special precautions when dealing with the near-threshold bins. After the
Q-values were calculated, the data were rebinned, this time using a tighter cut on the ω mass and
confidence level, looking only at events within 25 MeV of the ω mass. The cuts and Q-values already
calculated were used for each event which passed this ω mass cut.

A set of Monte Carlo simulation data was generated, thrown according to phase space, both in
the production and the decay of the ω. That initial dataset is kept as the raw Monte Carlo. We then
passed the raw Monte Carlo through the same software used to cook the data and other software
that reproduced the acceptance of our detectors. The set of Monte Carlo that passed through that
cooking process and was accepted in our detectors is referred to as the accepted Monte Carlo. The
accepted Monte Carlo was then skimmed, looking for events detected as p, π+, π− in the same way
as the data. Those events are then subject to the same initial cuts as the data and binned according
to their

√
s value. The accepted Monte Carlo then underwent the same PID, fiducial, time-of-flight

paddle, and cos θπ0

CM cuts as the data. However, they do not undergo signal-background separation,
the events are either accepted or rejected. Every event in the raw Monte Carlo was also binned by
its

√
s value, but there are no cuts placed on it.

Once the data have been binned and all of the cuts have been placed, amplitudes are generated
for each event, up to J = 11

2 , of both parities, following the method set forth in [1]. All of those
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amplitudes were then used in a mother fit, which allowed us to fully describe the data, and which
was described in Section 5.1. From the parameters used in these fits, we were able to extract the
spin density matrix elements, using the equations in (4.38). And, lastly, a partial-wave analysis was
performed, as was detailed in Chapter 6.

7.2 Conclusions and Future Work

As we have said, the ultimate goal of this experiment is to be able to extract the resonance con-
tributions important in γp → pω. While we have not been able to confirm the existence of any
particular resonances in the data, we have seen that adding polarization information to the partial-
wave analysis fits increases their analyzing power. Fits that seem to be very good when looking
at only the unpolarized spin density matrix elements can be seen to be lacking once the polarized
elements are analyzed. It may be that the unpolarized data masks the contributions of certain
resonances, making it harder to detect their contributions, while bringing others to the fore. The
polarized data is better able to separate out the contributions from one another, however if there
are many resonances overlapping in a small energy range the method we have used may not be able
to distinguish them.

We have seen that, for the most part, the g1c and g8b partial-wave analysis results match well
what was seen in g11a [1] in terms of which combinations of JP waves are important in different
energy ranges. Between 1780 and 2000 MeV, all three datasets show the 3

2

−, 5
2

+ combination to
be the best. And between 2100 and 2400 MeV g1c and g11a agree that the 5

2

+, 7
2

− combination is
best. However, the g8b and g1c datasets are not able to pin down which particular resonances are
responsible, i.e. what the mass and width of those resonances are. We have seen, in Figures 6.2 and
6.3, that, at least between 1800 and 1950 MeV, there may be more going on than is accounted for
in our model, and this may be hampering our ability to determine which resonances are present.

It seems clear, based on these results, that adding the polarization information adds to our
ability to determine what resonances are responsible for ω photoproduction in this energy range.
Going forward, it is imperative to add even more polarization information, obtained by using a
polarized target and combinations of a polarized target and polarized photon beam. Two such
experiments have already been performed using CLAS and are under analysis by other groups. The
g9 run period, known as the FROzen Spin Target (FROST) run period, used a butanol target that
was polarized both longitudinally and transversely, along with a photon beam using both circular
and linear polarization. The g14 run period, known as HD-ICE, used a longitudinally polarized
deuterium target along with a photon beam using both circular and linear polarization. These run
periods will be able to provide further measurements of the ρ1−3 SDMEs, as well as yield first
measurements of the ρ4−15 SDMEs. These should allow an even greater ability to separate out the
resonances from one another.

Other, simpler, experiments can also be run, with only polarized photons, at higher energies
to see how the SDMEs evolve. The g8b dataset has excellent statistics and provided very stable
results, but they only extend up to 2200 MeV, and we have seen that some of the symmetries
present in the SDMEs starts to break only as we get to higher energies. Exploring the energy range
above 2200 MeV could yield even more information than what we have seen. The g1c dataset has a
larger energy range than g8b , but substantially less statistics. Another experiment with circularly
polarized photons would be useful to increase our statistics as well as extend the energy range.

In addition to examining these datasets on their own, we have shown in this analysis that the data
from multiple experiments can be combined together into a single fit, providing greater statistics
and analyzing power than any of the experiments on their own can provide. Any new experiments
can be added into the set of three experiments that we have used here. Additionally, it is possible
to combine the results of different channels into a single fit. Data, from the same or different
experiments, analyzed for the other vector mesons, the φ and ρ mesons, could be added to the ω
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data to further increase the analyzing power.
We also hope that this work will spark interest from theorists who can use the SDMEs presented

to refine their theories. Perhaps they can find the reason for the symmetries present in the polarized
SDMEs and why they break at higher energies. Since this work seems to indicate that more than two
or three resonances may be present in small energy ranges, it may be necessary to change our method
of partial-wave analysis to be able to pick them out, especially if there are multiple resonances of
the same JP , which may require a new model.

Many years have passed between when these dataset were collected and these results have been
presented. We have worked diligently, and with many people and institutions, to study this data
and ensure that everything has been properly calibrated and analyzed. In the end, we hope that we
have been able to extend the knowledge of ω photoproduction and spark interest in further research,
which we hope will lead to a greater understanding of what is happening inside of a nucleon.
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Appendix A

Issues with the Time-of-Flight
Detectors in g8b

The g8b dataset was collected in the summer of 2005. It took several years before the data were
cooked and ready to be analyzed. Even after the data were cooked, a full analysis could not be
performed until final polarization values were measured for each event. Thus, it was February of
2012 before full analysis could begin on the dataset.

Once the full analysis began, all of the steps laid out in this work were performed, and the
spin density matrix elements were extracted after running an initial mother fit. These SDMEs were
compared to the g11a dataset, as can be seen for ρ0

00 in Figure A.1, for Re(ρ0
10) in Figure A.2, and

for ρ0
1−1 in Figure A.3, where only half of the bins have been shown. There was good agreement

between the g8b and g11a results for the Re(ρ0
10) and ρ0

1−1 elements, but not for the ρ0
00 element.

The g8b results were consistently lower than the g11a results in the range −0.5 ≤ cos(θω
CM ) ≤ 0.5.

The error bars for both datasets are quite small, so it was clear that the agreement was poor.
Looking at the formulas to calculate the SDMEs using our amplitudes, (4.38), does not make it

apparent where a problem could exist. However, if we recall the Schilling Method for measuring the
SDMEs, explained in Section 4.3.5, we see that the formula used is

W (cosθ, φ) =
3
4π

(
1
2
(ρ11 + ρ−1−1) sin2 θ + ρ00 cos2 θ

+
1√
2
(−Reρ10 +Reρ−10) sin 2θ cosφ+

1√
2
(Imρ10 − Imρ0−1) sin(2θ) sin(φ)

−Reρ1−1 sin2 θ cos 2φ+ Imρ1−1 sin2 θ sin 2φ), (A.1)

which depends only on cos θ and φ, calculated in the Adair frame. If there are any issues with these
two angles, it would affect the resulting SDMEs. At this point, the SDMEs were extracted from the
data using the Schilling method and those results agreed very well with the results of the mother
fit. In other words, they still showed a significant discrepancy with g11a.
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Figure A.1: ρ0
00 element vs cos(θω

CM ) in bins of
√
s. The results from g8b (black) are shown in

comparison to the g11a (red) values. The errors are as calculated in Section 5.2.1. Note that only
half of the bins have been shown here.
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Figure A.2: Re(ρ0
10) element vs cos(θω

CM ) in bins of
√
s. The results from g8b (black) are shown in

comparison to the g11a (red) values. The errors are as calculated in Section 5.2.1. Note that only
half of the bins have been shown here.
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Figure A.3: ρ0
1−1 element vs cos(θω

CM ) in bins of
√
s. The results from g8b (black) are shown in

comparison to the g11a (red) values. The errors are as calculated in Section 5.2.1. Note that only
half of the bins have been shown here.
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Figure A.4: φlab (radians) from all events in the horiz 1.5 dataset from g8b for (a) protons, (b) π+,
and (c) π−. Each figure shows six bands in φlab, which are a result of the six sectors in CLAS. Each
sector should be roughly flat, but these show significant structure as a function of φlab, which is an
indication that there is something wrong.

A.1 The Adair Angles

Simply looking at the Adair angles would not resolve the issue because there was no known correct
distribution for these angles. The g11a dataset used the same target and most of the same detectors,
but the target was in a different location, and so the distributions would not be the same. Instead,
it was necessary to look into the variables used to calculate the Adair angles. Recall, from (4.1),
that our axes are defined as

x̂ = (~k×~q)×~k

|(~k×~q)×~k|
(A.2a)

ŷ =
~k×~q

|~k×~q|
(A.2b)

ẑ = ~k

|~k|
. (A.2c)

The decays angles are then defined as

cos θ = π̂ · ẑ (A.3a)

cosφ =
ŷ · (ẑ × π̂)
|ẑ × π̂|

(A.3b)

sinφ = − x̂ · (ẑ × π̂)
|ẑ × π̂|

, (A.3c)

where π̂ is defined to be the normal to the ω decay plane in the ω rest frame. These equations lead
us to look at the angular distribution, in the lab frame, of our three detected particles.

Figure A.4 shows the φlab distributions for our three detected particles, and it is clear that they
do not look uniform. Recall that CLAS is divided into six 60◦ sectors, which can plainly be seen in
each figure. Aside from minor acceptance issues near the torus, which have been removed from our
dataset by the fiducial cuts, there should be roughly equal acceptance, as a function of φlab, in any
given sector. Each sector will have its own acceptance, and so differences between the number of
events in each sector are to be expected, but in any given sector there should be no φlab dependence.
Here we see not only smooth φlab dependence, as we see for the proton, but also sharp discontinuities,
as for pions. After ruling out the start counter, which was one of two detectors that could induce
some φlab dependence, it was determined that the time-of-flight paddles were associated with the
problem.
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A.2 The Time-of-Flight Detectors

g8b was the first run period to use a new set of TDCs and ADCs for the TOF counters. As a result,
when the data were first cooked, the cutoff value for the TDCs was improperly set. Recall that
there are 57 TOF paddles in each sector (though some are combined together to give a total of 48
usable paddles). Each paddle has two PMTs, each of which is read out by a TDCs and an ADCs,
for a total of 684 TDCs and ADCs. The old detectors used 12-bit electronics, thus they could only
record values up to 212. The new ones have 16-bit electronics, able to record values up to 216. When
the data are cooked, a cutoff is placed on the TDC and ADC values to ensure that only acceptable
values have been recorded. The low cutoff is 0 and the high cutoff is the maximum possible value
for the detector, either 212 or 216. However, when g8b was initially cooked, this high cutoff was left
at 212.

The values measured by each TDC roughly resemble a Gaussian, with a width of a couple
hundred channels, see Figure A.5. Unfortunately, during this run period, the center of this Gaussian
was usually just a little bit less than 212, which meant that part of the Gaussian was cut off in
nearly every TDC. If a particle registers a value above the cutoff in one of the TDCs for a paddle,
it is sometimes salvageable, as long as the value it registers in the other TDC is below the cutoff.
However, in most cases, being above the cutoff means that the particle is not recorded in the cooked
data, in which case there is no end time for that particle, and particle identification is not possible,
meaning that particle gets ignored. If a particle is ignored then that event will be passed by when
we skim and it is not able to be used. In some cases, more than 30% of the events were above the
cutoff in both TDCs for a detector. In that case, the paddle could not be calibrated and so we just
ignore that paddle. This means that any event that has any particle hitting that paddle would be
ignored. This problem caused 29 paddles to be removed from the g8b analysis, nearly 10% of the
total number of measurable paddles. Given that our analysis contains three particles, there was a
significant chunk of our data that was being ignored.

Fortunately, the problem was entirely software-based, not hardware-based. All of the data were
correctly recorded, it was only in the cooking process that these events were being cut. Thus, we
were able to fix the error, recalibrate all of the paddles and recook the data. After recooking the
data, we were able to use all of the paddles without cutting any. This led to a huge increase in our
statistics, which went up threefold in every energy bin, and even more near threshold at 1720 MeV,
as can be seen in Figure A.6.

A.3 The Effects on Monte Carlo

While the main impetus for recooking the data was as a result of the issue with the time-of-flight
paddles, it also allowed for several other detectors to be recalibrated. After recooking the data, it
was also necessary to recook the Monte Carlo. This was done to ensure that all of the changes made
while recalibrating the detectors for the data were also applied to the Monte Carlo. Before recooking
the dataset it was impossible to have correctly modeled the acceptance of the time-of-flight paddles.
The Monte Carlo data does not simulate TDC and ADC values that could have been affected by
the same cuts as the data. For paddles that were entirely ignored in the data, we could ignore them
in the Monte Carlo. But, for most paddles, a certain subset of the particles that passed through it
and were detected were simply ignored, and this behavior could not be included in the simulation.
Thus, the Monte Carlo data were not accurately modeling the experimental data.

The recook also allowed us to be sure that the software suite that was used to cook the data was
the same one used to cook the Monte Carlo. Several years had gone by between the cooking of the
data initially and the cooking of the Monte Carlo the first time, and in that time it is possible that
changes were made to some of the software. Any changes between the software used to cook the
data and the Monte Carlo could cause acceptance issues, which could have manifested themselves
in the discrepancy between the ρ0

00 values.



A.3. THE EFFECTS ON MONTE CARLO 133

3600 3700 3800 3900 4000 4100 4200 4300
0

1000

2000

3000

4000

5000

TDC Left p

3600 3700 3800 3900 4000 4100 4200 4300
0

1000

2000

3000

4000

5000

+πTDC Left 

3600 3700 3800 3900 4000 4100 4200 43000

1000

2000

3000

4000

5000

-πTDC Left 

3600 3700 3800 3900 4000 4100 4200 4300
0

1000

2000

3000

4000

5000

TDC Right p

3600 3700 3800 3900 4000 4100 4200 4300
0

1000

2000

3000

4000

5000

+πTDC Right 

3600 3700 3800 3900 4000 4100 4200 43000

1000

2000

3000

4000

5000

-πTDC Right 

Figure A.5: The values for both TDCs in paddle 23 of sector 3, separated out by the kind of particle
detected. The blue line represents particles that were kept in the first cooking while the red lines
represent particles that were rejected. The black vertical line is at 212. Above that value most
particles were rejected. The pions are clearly very strongly affected.
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Figure A.6: Total signal events vs
√
s for the original cook and the recooked data in g8b, along with

a ratio of the recooked signal to the original cook signal. In all bins there is at least three times the
signal in the recooked dataset; in the bins below 1800 MeV that ratio is even higher.
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Figure A.7: cos θCM from all events in the PARA 1.5 dataset from g8b before the recook (black)
and after the recook (red) for (a) protons, (b) π+, and (c) π−, and φlab (radians), from the same
events, for (d) protons, (e) π+, and (f) π−. Note that, due to the increase in statistics from the
recook, we have scaled the results from the recook by a factor of 0.27, which is the ratio between
the number of events before and after the recook. Notice that, in the results from after the recook,
the distribution is flatter in each sector as a function of φlab.

A.4 After Recooking

After the data were recooked, there was a significant change in the angular distribution for each
of the three particles, which can be see in Figure A.7. Note that the data from after the recook
have been scaled by the ratio of the number of events before and after the recook to allow for direct
comparison. Clearly, the cos θCM for protons and π+ particles were very strongly affected, while the
π− particles were not affected as strongly. The φlab distribution for all particles, though, has been
radically changed. The sharp discontinuities seen in certain sectors for the pions has been removed
and we see flat distributions in each sector for them. The φlab distribution for the protons does
show a slight slope in several of the sectors, however, it is not as pronounced as was seen before.
In Figure A.8 we can see the two Adair angles before and after the recook. The φAd distribution
did not change with the recook, even though the φlab distributions changed significantly. But the
cos θAd distribution did change slightly, getting a little bit higher near cos θAd = 0 and a little bit
lower at the most forward and backwards angles. This change may not seem significant, but does
affect the SDMEs.

The ρ0
00 SDMEs extracted from fits performed after the recook may be seen in Figures 5.7 and

5.8, but here we will look at the change in a single bin. Figure A.9 shows the ρ0
00 element in the

bin at
√
s = 1845 MeV before and after the recook. It is readily apparent that the results have

gotten much closer to what was seen in g11a. The other ρ0 elements did not change significantly.
Interestingly, the polarized SDMEs also showed no change as a result of the recook. It is unclear
why the ρ0

00 element was so strongly tied to this issue.
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Figure A.8: (a) cos θAd from all events in the PARA 1.5 dataset from g8b before the recook (black)
and after the recook (red) and φAd (radians), from the same events. Note that due to the increase
in statistics from the recook we have scaled the results from the recook by a factor of 0.27, which is
the ratio between the number of events before and after the recook.
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Figure A.9: ρ0
00 element vs cos θω

CM in the bin
√
s = 1845 MeV (a) before the recook, and (b) after

the recook. The results from g8b (black) are shown in comparison to the g11a (red) values. The
errors are as calculated in Section 5.2.1.
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A.5 Summary

There are many issues that arise in the course of analyzing a dataset, and the cause of the issues
are not always easy to track down. In this case it was a single number in a single file among a suite
of software that encompasses thousands of files. We may never be able to tell whether the issue was
resolved simply by fixing that one number, or by recalibrating some of the other detectors, or by
ensuring that the Monte Carlo was cooked with exactly the same software as the data. But, it is
instructive to see how important it is to know and be able to model the acceptance in an experiment.
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Appendix B

Special Comparisons of the SDMEs

In this appendix, we present comparisons between the various spin density matrix elements. The
purpose is to illustrate the symmetries present among the SDMEs. We also show the comparisons
between the g11a, g1c, and g8b datasets for two of the ρ0 matrix elements to demonstrate the
agreement between g1c and g8b in areas where they differ from g11a. When comparing g11a, g1c,
and g8b, we have used the 30-MeV-wide binning used for g1c. This means that for a bin labeled√
s = 1855 MeV, we are using the bin with range 1850 ≤

√
s ≤ 1860 for g11a and g8b, and the bin

with range 1840 ≤
√
s ≤ 1870 for g1c.
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Figure B.1: ρ0
00 element vs cos θω

CM in bins of
√
s. The results from g1c (black) are shown in

comparison to the g8b (blue) values and the g11a (red) values. The errors for g1c and g8b are as
calculated in Section 5.2.1. Notice that in the 1825 MeV bin and the 1915-2035 MeV bins, where
there are noticeable differences from the g11a dataset, the g1c and g8b datasets agree well with each
other.
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Figure B.2: Re(ρ0
1−1) element vs cos θω

CM in bins of
√
s. The results from g1c (black) are shown

in comparison to the g8b (blue) values and the g11a (red) values. The errors for g1c and g8b are
as calculated in Section 5.2.1. Notice that in the 1795-1975 MeV bins, where there are noticeable
differences from the g11a dataset, the g1c and g8b datasets agree well with each other.
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Figure B.3: ρ0
00 (black) and ρ1

00 (red) elements vs cos θω
CM in bins of

√
s for g8b. The errors for g1c

and g8b are as calculated in Section 5.2.1. Only half of the bins have been shown to save space.
Over almost the entire energy range, the ρ1

00 values evolve in cos θω
CM in the reverse of the ρ0

00 values;
where the ρ0

00 values rise the ρ1
00 values fall, and vice versa. Above 2025 MeV, this symmetry starts

to break in the forward angles, above cos θω
CM = 0.5. Above 2125 MeV, the ρ1

00 values are varying
more than the ρ0

00 values at all angles, though they do still share the same turning points.
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Figure B.4: Re(ρ0
10) (black) and Re(ρ1

10) (red) elements vs cos θω
CM in bins of

√
s for g8b. The

errors for g1c and g8b are as calculated in Section 5.2.1. Only half of the bins have been shown
to save space. Below 1970 MeV, the Re(ρ1

10) element is very strongly related to the Re(ρ0
10), one

rising when the other falls, and vice versa. Above 1970 MeV, the symmetry breaks the two elements
evolve independently.
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Figure B.5: ρ0
1−1 (black) and ρ1

1−1 (red) elements vs cos θω
CM in bins of

√
s for g8b. The errors for

g1c and g8b are as calculated in Section 5.2.1. Only half of the bins have been shown to save space.
At low energies, there is not much correlation between the two elements. Above 2030 MeV, the
backwards angles, below cos θω

CM = 0, are roughly equal in most bins.
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Figure B.6: Re(ρ1
10) (black) and Im(ρ2

10) (red) elements vs cos θω
CM in bins of

√
s for g8b. The

errors for g1c and g8b are as calculated in Section 5.2.1. Only half of the bins have been shown to
save space. For energies below 1840 MeV, the two elements mirror each other at all angles. Above
1845 MeV, the symmetry breaks and the two evolve independently, except for angles forward of
cos θω

CM = 0.45, where they remain mirrors for almost the entire range.
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Figure B.7: ρ1
1−1 (black) and Im(ρ2

1−1) (red) elements vs cos θω
CM in bins of

√
s for g8b. The errors

for g1c and g8b are as calculated in Section 5.2.1. Only half of the bins have been shown to save
space. For energies up to 2010 MeV, these two elements are a near exact mirror image of each other,
not only in shape and but also in value. Above 2010 MeV, they are still mostly mirror images of
each other, however there are some slight differences. Notice, for instance, values near cos θω

CM = 0.5
in the 2125 MeV bin, or the 2165 MeV bin. It is unclear if these discrepancies are due to the errors,
which are larger at higher energies, or the symmetry is starting to break.
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Figure B.8: Re(ρ0
10) (black) and Im(ρ3

10) (red) elements vs cos θω
CM in bins of

√
s for g8b. The errors

for g1c and g8b are as calculated in Section 5.2.1. At certain energies, particularly from 1915-2095
MeV, there is some evidence of symmetry between the two elements, however, it is not as strong as
was seen in other elements and there is little correlation between the two at other energies.
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Figure B.9: ρ0
1−1 (black) and Im(ρ3

1−1) (red) elements vs cos θω
CM in bins of

√
s for g8b. The errors

for g1c and g8b are as calculated in Section 5.2.1. For energies below 1860 MeV, the backwards
angles of the two elements are roughly equal, however, they are both quite small, so this may be
incidental. At all other energies, there is little consistent correlation between the two elements.


