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Abstract

Evidences and hints, both from the theoretical and experimental side, of

exotic baryon resonances with B = S, have been with us for the last thirty

years. The poor status of the general acceptance of these Z∗ resonances is

partly due to the prejudice against penta-quark baryons and partly due to the

opinion that a proof of the existence of exotic states must be rigorous. This

can refer to the quality and amount of data gathered, and also to the analytical

methods applied in the study of these resonances. It seems then mandatory

that all possibilities and aspects be exploited. We do that by analyzing the time

delay in K+N scattering, encountering clear signals of the exotic Z∗ resonances

close to the pole values found in partial wave analyses.
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1 Introduction

With the advent of the N∗ program at Jefferson Lab [1] and the forthcoming Japan
Hadron Facility [2], the interest in baryon resonances has increased over the last few
years. Mysteries of veteran resonances, the hope to find new and ‘missing’ ones and
the study of model predictions like the Unitarized Chiral Perturbation Theory [3]
are only some topics worth mentioning in this context. But of course, one of the
most interesting and exciting subject is the quest to find exotic hadrons [4]. Not all
such hadronic states which we would call exotics, can be identified unambiguously.
In the mesonic sector this would apply for glueballs, hybrids and mesonic molecules
with conventional quantum number assignments. A sure candidate for an exotic
meson would be the so-called JPC exotic, which cannot be made up of quark anti-
quark pair and appears with quantum numbers, JPC = 0−−, 0+−, 1−+, 2+− etc. Some
candidates have indeed been found [5], but as in the case of exotic baryons they are
not yet fully accepted. In the baryonic sector, a clear example of an exotic baryon
would be one with its baryon number equal to the strangeness quantum number,
i.e B = S. Indeed, such a hadronic state would either have to be a composite of
five valence quarks, i.e., q4s̄ with q 6= s, or a K+N molecule i.e. a bound state of
hadrons. These resonances are usually called Z or Z∗ resonances. Evidence for the
existence of such resonances dates back to the early 70’ s (see [6, 7] for a collection of
references on early KN experiments) and continues in the 80’s ( see the reference list
in [8, 9]). This has been accompanied by theoretical predictions mostly in favour of the
existence of penta-quarks [10, 11]. The situation is, however, more than confusing
as the experimental signals are called ‘pseudoresonances’, ‘doorways’, ‘resonance-
like structures’ and ‘resonance-like loops’ (moving counterclockwise in the Argand
diagrams). These terms do not carry much physical meaning. We say this because, a
resonance is at least theoretically, clearly defined as an unstable state characterized
by different quantum numbers. The physical reasons for this caution are also not
always clearly stated in the papers. However, in [12] we find the following statement:
“Martin and Oades [2] [our reference [13]] interpreted these waves as complicated
structures in the unphysical sheet instead of simple resonance poles, because the
peaks of the speed plots did not coincide with the peaks of the “resonance”. This
is also the case for the three waves obtained in the present paper.” Since we have
already done an analysis of time delay (a concept related to speed plots as we shall
explain below) [14, 15, 16], the above statement has motivated us to look into the
matter more closely. Using the latest K+N scattering data in the form of phase
shifts and T -matrix solutions [8, 17], we calculate both the time delay and speed
plots. We adopt the conservative point of view that we can promote eventually a
resonance candidate to a fully accepted member of the resonance spectrum, only if
the pole values of the masses found in the partial wave analysis agree with the values
of peaks in speed plots and time delay. This restriction is more than one can impose
on standard resonances. For example, the S11 resonance N(1535) which is claimed to
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be missing in the speed plots [18] and the P31 resonance ∆(1910) which gives no signal
in the time delay plots [14, 15] are both taken as well-established resonances. Hence,
our requirement for the confirmation of an exotic Z∗ resonance is doubly strict.

2 Time delay and speed plots

In this section, we shall discuss the concepts of time delay and speed plots. Though
both the methods are useful tools in analyzing resonances, they are different quantities
(in certain cases, they differ only by a crucial minus sign) and their origin is also
different. Time delay has an intuitive background which we would like to explain.
The authors of [19] in a section where they compare Feynman diagrams to electric
circuits state: “If it is possible for the intermediate particle to be real, then the process
becomes unbounded in space-time and the corresponding amplitude singular”. If this
intermediate state (formed for example in two body scattering) is in the s-channel
and is also a resonance, the singular amplitude can be tamed by a Breit-Wigner
form, at least for elementary processes like for example the e+ e− → Z0 → µ+ µ−

reaction. A similar ‘catastrophe’ can take place with a particle in the t-channel if one
starts with an unstable particle [20], but this happens because we have violated the
requirement that the scattering states be asymptotically free at large distances from
the scattering centre. In any case, both reactions are non-localized (‘unbounded’) in
space-time. The first case which is of interest for us here, can be visualized as follows:
a resonance is produced on-shell at a space-time point (t1, x1), it propagates for some
time and decays at a space-time point (t2, x2). Certainly, the reaction is time delayed
(by an amount ∆t = t2 − t1) and the time delay has to be positive. This picture is
qualitatively model independent, as it does not depend on the form of the analytical
tool by which the resonance is described (Breit-Wigner, a modified version of the
same, etc.) and this makes it useful for broad hadronic states. Eisenbud and Wigner
[21, 22, 23] found a way to evaluate this time delay, ∆t, from the phase shift δ as,

∆t = 2h̄
dδ

dE
. (1)

It can also be evaluated from the S matrix, generalizing at the same time, the time
delay in elastic channels (1) to an arbitrary reaction i → j as, [24]

∆tij = <e
[

−ih̄(Sij)
−1

dSij

dE

]

(2)

with the identification, ∆tii = ∆t. Defining the T matrix as

Skj = δkj + 2iTkj , (3)

with
Tkj = <eTkj + i=mTkj (4)
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we get

S∗
iiSii ∆tii = 2h̄

[

d<eTii

dE
+ 2<eTii

d=mTii

dE
− 2=mTii

d<eTii

dE

]

. (5)

Parameterizing a general T -matrix for the elastic channel in the presence of non-
zero inelasticities, through the phase shift δ and the energy dependent inelasticity
parameter η as,

T =
ηe2iδ − 1

2i
, 0 < η ≤ 1 (6)

one can show that ∆t is given by (1) even if η 6= 1. Time delay can be positive as
well as negative. A big positive peak is expected within the kinematical vicinity of a
resonance. Large regions of negative time delay can occur due to the opening of new
channels or due to a repulsive interaction, or in the presence of several resonances even
with all inelasticities zero [25]. Sometimes one hears/reads statements like ‘the phase
shift has to change sharply to indicate a resonance’ or ‘a phase motion indicates
a resonance’. Very often it is stated that the phase shift has to increase by an
odd multiple of π/2 while passing through the resonance region. Whereas the first
statement is not precise enough, the second one is model dependent. Indeed, it
originates from

δres(E) ' tan−1

[

Γ/2

ER − E

]

(7)

which gives a Breit-Wigner form, namely,

dδ

dE
=

Γ

2

1

(ER − E)2 + Γ2/4
. (8)

The reason behind both the above statements is actually the time delay, which is a
model independent analytical justification of both of them. Moreover, as evident from
the last equation, ∆t(E) is essentially the spectral density used to calculate survival
probabilities [26] which carries some importance if ∆t is not a Breit-Wigner.

The concept of time delay and its connection to resonances is well documented
in many papers and found its entry in many textbooks. For a complete list of ref-
erences we refer the reader to [16]. Here we remark that an operator for time delay
has been found by Lippmann in [27]. Time delay can also be applied to steady-state
solutions of Maxwell equations for the total reflection case [28], to chaotic scattering
[29] and to transport theory in heavy ion collision [30], all showing the wide applica-
bility of ∆t. Before applying it to KN scattering, we would like to compare it with
speed plots.

The speed plot is defined through

SP (E) =
∣

∣

∣

∣

dT

dE

∣

∣

∣

∣

. (9)

Its first appearance is less clear than in the case of time delay. It probably stems
from the Argand diagrams, as it describes the speed at which the curve in the Argand
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diagram is traversed with E playing the role of the affine parameter. Using equation
(6) we get,

SP (E) =

√

η2

(

dδ

dE

)2

+
1

4

(

dη

dE

)2

(10)

which shows that if η = 1, SP (E) = |∆t|/2. Even in this case, a speed plot is not
the same as a time delay plot, since large negative regions in the time delay plots
will become positive peaks in the speed plots. This fact is unfortunate, since only
positive peaks in time delay indicate a resonance. For example, the negative dips in
time delay in the S01, D03 and D15 partial waves in Fig. 2, appear as positive bumps
in the speed plots. In the P01 and P13 partial waves, one can see that the resonant
peak in the speed plot is broadened as compared to the time delay peak which is
narrower due to the presence of negative time delay. That time delay can be negative
even in the case of η = 1 was noticed already by Wigner [21] and an explicit example
of this is given in [25]. If η 6= 1, the situation described above still persists, but then,
even the proportionality, SP (E) = |∆t|/2 vanishes. Indeed, we could have done our
analysis without using the speed plots. However, since two earlier references used it
in analyzing the KN data, we would like to make a correct comparison with their
results.

3 Time delay, speed plots and resonances in K+N

scattering

Since the T -matrix (see Fig. 1) solutions found in [8], agree very well in the crucial
cases with the single energy values of the T-matrix and phase shifts, we calculate,
with the exception of the S01 partial wave (where we also use the single energy values),
the time delay and speed plots from these solutions. The results for time delay are
presented in Fig. 1 and for the speed plots in Fig. 2, where for comparison we have
included the time delay results too. It appeared to us that in the case of the partial
wave, S01, the agreement between the solution and single energy values is not as good
as in the other partial waves. We therefore decided to calculate ∆t from the solution
as well as from a fit made to the data points. These results can be found in Fig. 3.

The T-matrix poles found in [8] are: P01(1831), P13(1811), D03(1788) and
D15(2074). Comparing these values with the peak positions in the time delay plots
for the corresponding partial waves, we see that the agreement is very good. We
do not expect a complete agreement here between pole values and time delay peak
values as this also does not occur in the conventional cases of pion-nucleon resonances
[14, 15]. As evident from the theoretical example in [25], the mass parameters appear
shifted in time delay plots due to overlapping effects of several resonances. The
agreement of the peak values in the speed plot with the above mentioned pole values
is also excellent. Hence we can ask ourselves the question: ‘what other objection
prevents us from accepting the four Z∗ exotic resonances’? Note that the pole values
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Figure 1: (a) Real (dashed lines) and imaginary (solid lines) parts of the T -matrix
solutions [8] as compared to the single energy values the real part (filled triangles)
and imaginary part (open triangles) for various partial waves in K+N scattering (b)
time delay evaluated using the T -matrix solutions (shown in (a))
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Figure 2: Comparison of time delay and speed plots in various partial waves of K+N
scattering.

(and of course the corresponding peaks in our plots) for P01, P13 and D03 display a
certain regularity. The three pole values are very close to the K∗(892)N threshold.
This is, however, a well known phenomenon. For instance, there are several well
established pion-nucleon resonances close to the ρN threshold. Theoretically, this
phenomenon has been known since the early 60’s [32]. In [31] (mentioned also in
[9]) it is speculated that the signals for the resonances could be faked by a K∗-box
diagram (essentially the pion exchange diagrams KN → K∗N and K∗N → KN
glued together). In principle, we could address a similar question for higher lying
pion-nucleon resonances by replacing the K∗-box with a ρ-box, i.e. replacing the K
by π and K∗ by ρ.

Furthermore, in [33] the very same K∗-box was used as an input to dynamically
generate the Z∗ resonances. The predicted Z∗ resonances in [33] are S01 and D03

around 1830 MeV. The model in [33] has been put to a partial test in [6] which
analyzes data by using this model. The speed plots in [6] agree very well with our
results. This actually means that, had the authors of [6] evaluated time delay, their
results would have also agreed with ours. It is important to note that our results
for the time delay indicate that the signal for a particular Z∗ resonance is a genuine
one. To understand this, we have to go back to the pion-nucleon resonances [14].
In [14] it was found that the opening of a new channel drives the positive time
delay in the elastic channel into regions of negative time delay. It actually starts
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Figure 3: Single energy values of phase shifts (filled circles) and time delay evaluated
from a fit (solid line) to these phase shifts and from the solution (dashed line) as in
Fig. 1, for the S01 partial wave in K+N scattering.

becoming negative around the threshold of a new channel, very often interfering with
the positive signal of the resonance itself. It was found that in more than one case,
this leaves only a small positive peak (due to the resonance). That this is bound to
happen is also clear from the connection of time delay with density of states (see the
discussion in [14] and [16]). A ‘removal’ of the initial states due to inelasticity makes
the time delay negative. The probability of this inelastic channel usually decreases
with energy. Hence, in the absence of a resonance, for the K∗-box diagram, we would
expect only a negative time delay around K∗(892)N threshold becoming a positive
continuum (due to the off-shell box diagram) at much higher energies. We do not
find such a behaviour in our time delay analysis, but rather positive peaks around
1830 MeV, followed by regions of negative time delay. This is identical to the case of
standard resonances in pion-nucleon scattering. Note that this conclusion would be
impossible to make using solely speed plots.

As mentioned in the Introduction, the rigor that one wishes to apply to exotics,
demands that pole values be equal to the peak values of time delay and speed plots;
a consistency not always encountered in the standard hadron resonances. Hence, we
shall only briefly discuss the other peaks found in our plots. The peak in S01 at
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1850 MeV (or 1765 MeV in Fig. 3) was interpreted in [33, 6] as a resonance. In [11]
a resonance at (1710) MeV in the S01 partial wave was predicted. The time delay
peaks at 1.5 GeV, in the P01, P13 and D03 partial waves, also have a certain regularity.
Some recent calculations [34] made within the collective quantization scheme for chiral
solitons predict a penta-quark state, essentially an exotic Z∗ around mass 1570 MeV.
In yet another chiral soliton model [35], a Z∗ at 1530 MeV was predicted. In ref.
[36], the authors show that the pp → nΣ+K+ reaction provides optimal conditions
to detect the Z∗ if its mass is located around 1.5 GeV. Finally, we also note that in
a much older analysis [12], one can see a clear peak around 1550 MeV in the speed
plots of Fig. 3, although the authors do not explicitly mention this fact in their table
of resonance parameters. These predictions taken along with our findings of the low
energy peaks in time delay could possibly hint towards the existence of a low mass
Z∗ in addition to the one around 1850 MeV.

4 Conclusions

The last entry of the Z∗ exotic resonances into the Particle Data Group compilation
was in 1992 [37]. In the same edition, it was remarked that it might take twenty years
before the issue of the existence of the Z∗ resonances is settled. One might think that
this is due to the lack of data. However, this is not the case. The first data sets, date
back from 1969/1970, followed by several others in the 70’s and 80’s with the last one
in 1982. The latest analysis is not restricted to a single data set, but includes many
of them [8]. Hence we cannot blame the lack of data if we are reluctant to decide the
fate of the Z∗’s.

In [12] it was remarked that: “It was found that both data showed reasonable
agreement with each other but the agreement with the published analyses were not
satisfactory.” Reference [12] is the same which does not find an agreement between
pole value and values found in speed plots (similar to [13]). Hence an internal con-
sistency of data and analysis is required. As far as the existence of resonances is
concerned, this can be done e.g. by checking if the pole values agree with values
obtained from time delay method and speed plots. We emphasize here the time delay
method since in contrast to speed plots the resonance region in the time delay plots
has to be positive ∗. As remarked in the Introduction, this is more than we have
for some of the four-star pion-nucleon resonances. Our analysis reveals that the pole
values found in [8] are in excellent agreement with the values for the masses found in
time delay and speed plots.

From a collection of data set progressing in time one would expect certain
improvements, here with regard to resonance extraction. In one of the early analysis

∗In principle, it could have happened that we find a peak in the speed plots very close to the pole
value. However, if in the time delay plot, it turns out that this peak is negative, we cannot attribute

it to a resonance.
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of KN scattering, it was demonstrated that ‘polarization measurements would be
very helpful in demonstrating the existence of these resonances’. At that time, only
one polarization measurement existed. However, this suggestion was picked up later
in a series of experiments (see [8] for a list of references) and included in the analysis
in [8].

Finally, from different data and different analyses, one would demand a certain
consistency among each other †. Here comes a small surprise. Reference [6] analyzed
the early data from 1970’s using at the same time a theoretical input to distinguish
between solutions. This input is the model in reference [33] discussed in the previous
section. Fig. 3 in [6] displays the speed plots for S01, P01 and D03 partial waves in
KN collisions calculated in 1973. Their form resembles very much our results for
speed plots depicted in Fig. 2. More importantly, the peak values of the speed plots
in [6] are in excellent agreement with ours, though our result is based on a bigger
data set and as far as we can say with lesser theoretical input. Yet another surprise
comes, when we realize that the speed plot peaks in the P13 and D03 partial waves in
[12] are around 1825 MeV.

To summarize, we can say that, we laid certain restrictions for the existence
of the exotic Z∗ resonances. Within these restrictions the results were found to be
consistent, hinting towards the existence of these resonances. We think that these
hints should be taken seriously.
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Note added after publication: After this work was published, we became aware
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