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We present results of an exploratory study of singlet scalarstates in unquenched QCD using

both glueball and meson operators. Results for non-singletnon-strange scalar mesons are also

presented. We use Asqtad improved staggered fermions and gauge configurations generated by

the MILC collaboration at lattice spacings of .12 and .09 fm.In this formulation, the glueball

mass is not significantly different from the quenched value at finite lattice spacing. Significant

taste violations are present in the scalar sector. At light quark masses, decay channels complicate

the mass determinations. There is some evidence that the non-strange singlet meson lies below

the non-singlet meson.
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1. The scalar sector of QCD

The scalar glueball is by now relatively well studied in quenched QCD. In full QCD with
realistically light quarks it is not [1, 2] Simulations withmoderate to heavy Wilson-like quarks show
effects which may reflect poorly understood lattice artifacts rather than continuum physics [2].
UKQCD plans to use its new QCDOC dedicated supercomputer to create substantial data sets to
complement the existing MILC configurations [3, 4] which will allow substantially higher statistics
and moderate to light quark mases. Clearly, there are a number of serious challenges to be met.
On the one hand light quark masses help one probe mixing but atthe same time open up decay
channels which complicate spectroscopy using current methods. Furthermore, the singlet sector
may be precisely that sector where the staggered quark method is at its most vulnerable because
of the differences in the implementation of valence and sea quarks and because of inadequately
controlled taste-breaking effects in the sea.

2. Glueballs

Figure 1 shows effective masses for ensemblesC andF of the MILC data sets [3, 4] indi-
cated in Table 1 below. The comparison is made in physical units using measured values ofr1/a.
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Figure 1: Effective masses using glueball operators.

Non-zero momentum operators are also used to help confirm themass estimates. Horizontal lines
indicate fitted values and errors. Figure 2 shows the resultsof such measurements superimposed on
a compilation of previous quenched and unquenched results.We note that lattice artifacts appear
smaller than for improved Wilson quarks with unimproved Wilson glue [2]. The current errors are
clearly not yet small enough to resolve properly the experimental spectrum or quark mass depen-
dence.
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Ensemble β amu,d ams a [fm] No. of configs

A 6.81 0.03 0.05 0.1191 564
B 6.79 0.02 0.05 0.1196 483
C 6.76 0.01 0.05 0.1215 658
D 6.76 0.007 0.05 0.1209 448

E 7.11 0.0124 0.031 0.0854 514
F 7.09 0.0062 0.031 0.0860 505

Table 1: Main ensemble parameters
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Figure 2: Compilation of glueball masses for quenched and unquenchedQCD.

3. Scalar mesons

A staggered operator which creates a state that lies in the spin-taste representationΓS⊗ΓT

also couples to one lying in theγ4γ5ΓS⊗ γ4γ5ΓT representation. Thus a staggered meson correlator
has the general form

C (t) = ∑
n

[

Ane−mn(ΓS⊗ΓT)t +(−1)tBne
−mn(γ4γ5ΓS⊗γ4γ5ΓT)t] (3.1)

In general, one therefore expects an oscillating contribution from a parity partner of the desired
state. For the scalar meson (ΓS⊗ΓT = 1⊗1), the parity partner isγ4γ5⊗ γ4γ5 which corresponds
to one of the pseudoscalars. For the non-singlet scalar thisis one of the (taste-split) pions and so is
a significant low lying contribution which must be included in the fits.

For flavour singlet mesons, the correlator is of the form

C (t) = C(t)−nf D(t) (3.2)

whereC(t) is the same correlator coupling to the NS meson state andD(t) is the disconnected
(quark loops) correlator suitably corrected ( by 1/4) to account for the extra 4 tastes that can
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Figure 3: Non-singlet scalar mass as a function of minimumt for ensembleC.

contribute as compared with the connected correlator [5]. In this studynf = 2 and theu,d quark
masses are degenerate. Note that there is no oscillating contribution toD(t) in (3.1) since, in this
case, the parity partner would be taste non-singlet [6].

4. Non-singlet meson

Figure 3 illustrates (for ensembleC) the resulting scalar masses from factorising fits to eqn. (3.1)
using local and fuzzed operators. Three states were included - two scalar states and one oscillat-
ing pion. The plot shows the effect of varying the minimumt-value used in the fits. Here,tmax
was fixed at 11 in lattice units. The most noticeable feature is that the ‘ground state’ estimate lies
significantlybelowthe effectivemπ + mη threshold expressed in lattice units. Here theη mass is
estimated via the Gell-Mann Okubo mass formula following [3, 4] and the pion is taken to be the
taste-singlet Goldstone pion.

The Figure also shows theKK̄ threshold along with the observed mass of thea0(980) ex-
pressed in lattice units. This puzzling low-lying state wasalso observed by MILC authors [4] using
independent measuring techniques - a different choice of operators and correlators.

There are a number of other remarks to be made concerning these fits and corresponding mass
estimates. For this ensemble (C - the lightest quark mass) the higher state appears roughly compat-
ible (but possibly coincidentally) with the expecteda0(980) mass and, hence with the nearbyKK̄
two-particle threshold estimated at this lattice spacing.

The oscillating parity partner state (pion) is well determined and consistent with direct mea-
surement using a pseuoscalar operator. Qualitatively simliar behaviour is seen in the other ensem-
bles (A andB). The fits did not require an excited oscillating state. Fitswhere the lowest state was
constrained to match the expected mass of aπ + η state were unacceptable.

We recall that partially quenched studies of the NS scalar meson in other formulations show
abnormal correlator behaviour [7]. The present study couldbe regarded as partially quenched in
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Figure 4: Singlet scalar mass as a function of quark mass.

the sense that the valence and sea quarks are treated differently with respect to taste - explicitly for
valence operators but via the fourth-root trick for the sea.

Direct measurements of taste violations in the scalar NS sector are found to be comparable
with those found in the pion sector. The maximum violation was of order 15% on the coarse lattice
ensembleA. See [6] for details.

Prelovsek, in these proceedings [8], has used chiral perturbation theory for staggered fermions
to show how taste violations in this channel can lead to effective G-parity violation ina0 decay so
that a small coupling toππ is allowed. This is then expected [8] to dominate the correlator at large
Euclidean time and so could account for the behaviour seen inFigure 3 and by MILC [4].

5. Singlet scalar with light quarks

The quark loopsL(t) = TrM−1(x, t) required forD(t) =< L∗(t)L(0) >c were evaluated using
stochastic methods (with typicaly 48 noise vectors). Factorising fits, with local and fuzzed oper-
ators, were carried out in which the oscillating term inC(t) was fixed from theNSfits described
earlier. The singlet scalar mass extracted in this way is shown as a function of the light quark mass
in Figure 4 (green circles).

For comparison we show again the masses obtained with glueball operators along with the
correspondingππ two particle energies. We also show the NS masses to illustrate the impact of
the disconnected correlator contributionD(t). One notes that the low-lying NS state does indeed
track theππ state at light quark masses [8].

With respect to the singlet meson operator fits, we note that useful signals forD(t) were
obtained out tot = 7, 9 and 10 for ensemblesA, B andC respectively. Stable fits with one scalar
and one (fixed) oscillating state were obtained witht in the range 3-8 or so. We were not able
to determine an excited scalar state. Since glueball correlators on these data sets were only well
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determined out tot = 3 or 4, the prospects of performing fully factorising fits incorporating both
glueball and meson operators are not good with this level of statistics.

Unlike the NS case, the lowest energy singlet state with light quarks (•) lies above or close to
the effective two particle threshold (⋆). In this case theππ decay channel is physically allowed.
In the flavour singlet case, the valence operator coupling toan f0 state should include the strange
quark. If included, this could well raise the ground state further above this threshold. Even with
the correct strange quark content, the singlet state (•) is likely to lie below the non-singlet (△).

6. Conclusions

When improved staggered fermions are used to represent light dynamical quarks, the glueball
mass is not significantly different from the quenched value at finite lattice spacing. Moderate
taste violations are present in the scalar sector comparable with those observed for the pion. At
light quark masses, decay channels complicate the mass determinations as do the effects of taste
breaking in intermediate states. There is some evidence that the 2 flavour singlet meson lies below
the corresponding non-singlet meson. Further details may be found in [6].
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