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Glueball Regge trajectories from gauge-string duality and the pomeron
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The spectrum of light baryons and mesons has been reproduced recently by Brodsky and Teramond
from a holographic dual to QCD inspired in the AdS/CFT correspondence. They associate fluctuations
about the AdS geometry with four-dimensional angular momenta of the dual QCD states. We use a similar
approach to estimate masses of glueball states with different spins and their excitations. We consider
Dirichlet and Neumann boundary conditions and find approximate linear Regge trajectories for these
glueballs. In particular the Neumann case is consistent with the Pomeron trajectory.
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I. INTRODUCTION

The observation that hadrons show up in approximate
linear Regge trajectories was one of the initial motivations
for developing string theory. Recently, very good estimates
for masses of light mesons and baryons were obtained from
string theory in a sliced AdS5 � S5 space-time[1]. On the
other side, experimental results for the cross sections of
soft processes show an increase with energy corresponding
to pomerons with Regge trajectories of the form[2]

��t � M2� � 1:08� 0:25M2 (1)

where masses are in GeV. Furthermore, it has been sug-
gested that pomerons may be related to glueballs.

We use a similar approach to that of Ref. [1] to estimate
masses of glueballs with different angular momenta and
obtain the corresponding Regge trajectories. Our results for
the glueball trajectories show consistency with that of soft
Pomerons.

Strong interactions are well described by QCD [Yang
Mills SU(3) plus fermionic matter fields]. In the high
energy regime one can perform perturbative calculations.
At low energies QCD is nonperturbative and the usual
approach is to consider QCD in a lattice. In particular a
lattice analysis of the consistency of glueball Regge tra-
jectories with pomerons has been done recently [3].

An alternative approach is to consider a dual description
of strong interactions in terms of string theory. A connec-
tion between SU(N) gauge theories (for large N) and string
theory was realized long ago by ’t Hooft [4]. A very
important recent result relating gauge and string theories
was obtained by Maldacena [5]. He established a corre-
spondence between string theory in AdS5 � S5 space-time
and N � 4 Super Yang Mills SU(N) theory for large N in
its four dimensional boundary. This super Yang Mills
theory is conformal. Soon after, a proposal of a correspon-
dence closer to QCD (nonconformal and nonsupersymmet-
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ric) was discussed by Witten [6]. In this formulation QCD
would be described by string theory in an AdS-
Schwazschild black hole metric. Glueball masses were
estimated in this context, using a WKB approximation in
[7–14]. Also there are many interesting estimates of glue-
ball masses from dualities involving different geometries
generated by string theory, see for example Refs. [15–19].

A phenomenological approach to estimate hadron
masses inspired in the AdS/CFT correspondence was pro-
posed in [20,21] and applied to the case of scalar glueballs.
An energy scale was introduced in analogy with the dis-
cussion of hard scattering from AdS/CFT in [22] (see also
[23]). In this approach supergravity fields in an AdS5 slice
times a compact S5 space are considered as an approxima-
tion for a string theory dual to QCD. The metric of this
space can be written as

ds2 �
R2

z2 �dz
2 � �d~x�2 � dt2� � R2d�2

5: (2)

where the size of the slice: 0 � z � zmax is related to the
QCD scale

zmax �
1

�QCD
: (3)

In this phenomenological approach, Dirichlet boundary
conditions were imposed at z � zmax and the ratios of the
masses of the scalar glueball 0�� and its spinless excita-
tions were obtained [20,21]. These results are in good
agreement with lattice and AdS-Schwazschild results.
Note that we do not consider excitations in the S5 direc-
tions since according to the AdS/CFT correspondence they
are related to the supersymmetric structure of the boundary
theory. For other results related to strong interactions from
AdS/CFT see also [24–35].

II. GLUEBALL MASSES

In Ref. [1] very interesting results for the hadronic
spectrum were obtained considering scalar, vector, and
fermionic fields in the sliced AdS5 � S5 space. It was
proposed that massive bulk states corresponding to fluctu-
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TABLE I. Masses of glueball states JPC with even J expressed
in GeV, estimated using the sliced AdS5 � S

5 space with
Dirichlet boundary conditions. The mass of 0�� is an input
from lattice results [38,39].

Dirichlet
glueballs

lightest
state

1st excited
state

2nd excited
state

0�� 1.63 2.67 3.69
2�� 2.41 3.51 4.56
4�� 3.15 4.31 5.40
6�� 3.88 5.85 6.21
8�� 4.59 5.85 7.00
10�� 5.30 6.60 7.77
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ations about the AdS5 metric are dual to QCD states with
angular momenta (spin) on the four dimensional boundary.

According to the AdS/CFT correspondence, massless
scalar string states are dual to boundary scalar glueball
operators [36,37]. On the other hand, scalar string excita-
tions with mass � couple to boundary operators with

dimension � � 2�
����������������������
4� ��R�2

p
. This happens because

these massive states behave as z4�� near the AdS boundary
(small z). Scalar glueball operators O4 � F2 have dimen-
sion 4, while glueballs operators O4�‘ � FDf�1

:::D�‘g
F

with spin ‘ have dimension 4� ‘. Then a consistent
coupling between string states with mass � and glueball
operators with spin ‘ requires that

��R�2 � ‘�‘� 4�: (4)

This means that the masses of these AdS modes have a
discrete spectrum since they are in correspondence with
glueball operators of integer spin.

We will assume that such dualities established in the
AdS/CFT correspondence are approximately valid in our
phenomenological model of an AdS slice. So we take a
glueball operator with spin ‘ to be dual to massive string
states, with mass given by Eq. (4), in the AdS slice.

The glueball operators in the AdS/CFT correspondence
are all massless respecting conformal invariance. Once we
introduce a size zmax in the AdS space, there will be an
infrared cut off in the boundary, which we identify with
�QCD, breaking conformal invariance. The presence of the
slice implies an infinite tower of discrete modes in the z
direction for the bulk states. This discretization does not
alter the asymptotic behavior (small z) of bulk modes
which is related to their mass �. We assume that these
bulk discrete modes in the z direction are related to the
masses of the nonconformal glueball operators. Using this
model we will calculate glueball masses and the corre-
sponding Regge trajectories.

The solutions for scalar fields with mass � in AdS5

satisfy [36,37]

�
z3@z

1

z3 @z � �
��@�@� �

��R�2

z2

�
� � 0: (5)

Considering plane wave solutions in the four dimensional
coordinates ~x and t for states with mass � given by Eq. (4)
one can write the solutions as

��x; z� � C�;ke�iP:xz2J��u�;kz�; (6)

where � � 2� ‘ and the discrete modes u�;k (k �
1; 2; 	 	 	� are determined by the boundary conditions.
Here we will consider two possibilities:

��z � zmax� � 0 �Dirichlet�; (7)

@z�jz�zmax
� 0 �Neumann�: (8)
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A. Dirichlet boundary conditions

In the case of Dirichlet boundary conditions, as used in
Refs. [1,20,21], one obtains

u�;k �
��;k
zmax

� ��;k�QCD; J����;k� � 0: (9)

Assuming the duality between these modes in the AdS5

slice and the glueball operators, the scalar glueball 0�� is
related to the massless scalar. So its mass is proportional to
�2;1. The excited scalar glueball states 0��
:::
 correspond
to the other values of k and their masses are proportional to
�2;k.

The higher angular momenta glueballs J�� are related
to the massive scalar modes according to ��R�2 � ‘�‘�
4� with ‘ � J. Then the mass of the lightest state with
angular momentum J is proportional to �2�‘;1. The corre-
sponding excitations are proportional to �2�‘;k.

We show in Table I the results for even angular momenta
that may be related to the phenomenological pomeron
which has a trajectory with even signature. We introduced
the mass of the lightest glueball as an input and found the
glueball spectrum from Eq. (9). This input for the lightest
glueball is in accordance with lattice results [38,39]. The
results for the excitations of 0�� were obtained previously
in [20,21] and are in good agreement with the masses
estimated using AdS-Schwazschild black hole metric [7–
10,12–14].

Our result for the ratio of masses M2��=M0�� � 1:48 is
in good agreement with lattice [38,39] and deformed coni-
fold results [17].

B. Neumann boundary conditions

Considering Neumann boundary conditions, the vanish-
ing of the scalar field derivative at zmax leads to

�2� ��J����;k� � ��;kJ��1���;k� � 0: (10)

The correspondence between QCD and scalar string states
is taken exactly as in the Dirichlet case. The glueball
masses are now given by

u�;k �
��;k
zmax

� ��;k�QCD (11)
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TABLE II. Masses of glueball states JPC with even J ex-
pressed in GeV, estimated using the sliced AdS5 � S

5 space with
Neumann boundary conditions. The mass of 0�� is an input
from lattice results [38,39].

Neumann
glueballs

lightest
state

1st excited
state

2nd excited
state

0�� 1.63 2.98 4.33
2�� 2.54 4.06 5.47
4�� 3.45 5.09 6.56
6�� 4.34 6.09 7.62
8�� 5.23 7.08 8.66
10�� 6.12 8.05 9.68 5 10 15 20 25 30 35 40
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FIG. 1 (color online). Approximate linear Regge trajectory
for Neumann Boundary condition for the states
2��; 4��; 6��; 8��; 10��.
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In this case we also take the mass of the lightest glueball
as an input. The results for states with even spin are shown
in Table II.

Here in the Neumann case the ratios of the masses

M2��

M0��
� 1:56 (12)

M0��


M0��
� 1:83 (13)

are in very good agreement with lattice [38,39] and de-
formed conifold results [17].
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FIG. 2 (color online). Approximate linear Regge trajectory
for Dirichlet Boundary condition for the states
2��; 4��; 6��; 8��; 10��.
III. REGGE TRAJECTORIES

From the results of Tables I and II one finds relations
between spin and mass squared for the glueballs that
represent the corresponding Regge trajectories. We find
that these trajectories for the glueballs are nonlinear. This
is in agreement with general properties of Regge trajecto-
ries, as discussed for example in [40].

In order to compare these results with the Pomeron
behavior of Eq. (1) it is interesting to consider linear
approximations for these trajectories as in Ref. [2]

J � ��t � M2� � �0 � �0M2: (14)

Here we will be interested in the trajectories of the
glueball lightest states with even J only. Also, as discussed
in [3] the 0�� glueball is not expected to contribute to the
Pomeron trajectory that has a positive intercept. For more
discussions on the Pomeron intercept see, for instance,
[41]. So we will consider linear fits for the states
2��; 4��; 	 	 	 for both Dirichlet and Neumann boundary
conditions.

In particular, for the Neumann case the results are com-
patible with the Pomeron trajectory. For instance, for the
states J�� with J � 2; 4; 	 	 	 ; 10 we find

�0 � �0:26� 0:02� GeV�2; �0 � 0:80� 0:40 (15)

This trajectory is shown in Fig. 1. Note that we are not
considering errors in the masses of the Glueballs. The
047901
errors appearing in the estimated coefficients �0 and �0

refer to the deviations with respect to the linear fit.
For other set of points we also find results compatible

with the Pomeron trajectory. In particular for the set of
states 4��; 6��; 8�� we find �0 � �0:26� 0:01� GeV�2

and �0 � 1:01� 0:30.
We note that the slope �0 in the Neumann case does not

vary considerably with the set of states considered in the
linear approximation. The error of the slope is still small
and consistent with the Pomeron result.

For the Dirichlet case, taking the states J�� with J �
2; 4; 	 	 	 ; 10, we find a linear fit with

�0 � �0:36� 0:02� GeV�2; �0 � 0:32� 0:36:

(16)

These states and the corresponding linear fit are shown in
Fig. 2. The slope of this trajectory is higher than the
Pomeron result in Eq. (1). For other sets of states using
Dirichlet boundary condition we also find linear approx-
-3



BRIEF REPORTS PHYSICAL REVIEW D 73, 047901 (2006)
imations with slopes which are higher than that of the
Pomeron. For instance, with J � 4; 	 	 	 ; 10 we find �0 �
�0:33� 0:02� GeV�2 and �0 � 0:90� 0:32.
IV. CONCLUSION

We found simple estimates for masses of glueballs of
different spins in a sliced AdS5 � S

5 inspired in the AdS/
CFT duality. These results are in good agreement with
other estimates in the literature. It is remarkable that for
the case of Neumann boundary condition the linear ap-
proximation for glueball Regge trajectories

��t � M2� � �0:80� 0:40� � �0:26� 0:02�M2 (17)

is consistent with the Pomeron trajectory of Eq. (1).
047901
This result shows that the Neumann boundary condition
seems to work better than Dirichlet for glueballs in this
holographic model. Both choices correspond to vanishing
flux for bulk scalar fields at z � zmax and would be physi-
cally acceptable conditions. It is interesting to note that
similar Neumann conditions appear in the Randall
Sundrum model [42] as a consequence of the orbifold
condition.
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