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Scalar glueball mass reduction at finite temperature in S3) anisotropic lattice QCD
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We report the first study of the glueball properties at finite temperatures Belawing SU3) anisotropic
latice QCD with B=6.25, the renormalized anisotropyé=as/a;=4 and 26X N(N,
=35,36,37,38,40,43,45,50,72) at the quenched level. From the temporal correlation analysis with the smearing
method, about 20% mass reduction is observed for the lowest scalar gluebgl(8p=1250+-50 MeV for
0.8T,<T<T, in comparison withmz=1500-1700 MeV af =0.
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Finite temperature QCD, including quark gluon plasmacies, another difficulty arises from the shrink of the physical
(QGP physics, is one of the most interesting subjects intemporal size I/ at high temperature. In fact, the pole-mass
quark hadron physicgl—3]. At high temperature, in accor- measurements have to be performed within the limited dis-
dance with the asymptotic freedom of QCD, the strong intertance shorter than 1/{9, and such a limitation corresponds
action among quarks and gluons is expected to be reduceth N;=4-8 nearT, in the ordinary isotropic lattice QCD
and deconfinement and/or a chiral phase transition woul{4].
occur[1]. To avoid this severe limitation on the temporal size, we

For the study of finite temperature QCD, lattice QCD adopt an anisotropic lattice where the temporal lattice spac-
Monte Carlo simulation provides a reliable method directlyjng a, is smaller than the spatial ors [8,13—-15. We can
based on QCD. For instance, &Y lattice QCD simulations  thus efficiently use a large number of the temporal lattice
at the quenched level show a weak first-order deconfinemelpjoints asN;~ 32 even neafl ., while the physical temporal
phase transition at the critical temperatufg=260 MeV  sjze is kept fixed = N.a;. In this way, the number of
[4], and full SU3) QCD simulations show a chiral phase available temporal data is largely increased, and accurate
transition atT,=173(8) MeV forN;=2 and 154(8) MeV pole-mass measurements from the temporal correlation be-
for N¢=3 in the chiral limit[5]. Above T, most of the come possibl§14,15.
nonperturbative properties such as color confinement and |n this paper we study the glueball at finite temperature
spontaneous chiral-symmetry breaking disappear, and quarksm the temporal correlation analysis. We use(3uniso-
and gluons are liberated. tropic lattice QCD at the quenched level, as a necessary first

Even belowT, there are many model predictions on the step before attempting to include the effects of dynamical
change of the hadron properti¢,6,7], the mass and the quarks in the future. Even without dynamical quarks,
size, due to the change in the interquark poteriBe8] and  quenched QCD can reproduce well various masses of had-
the partial chiral restoration. As a precritical phenomenon ofons, mesons, and baryons, and important nonperturbative
the QCD phase transition, the possible hadron mass shift gfuantities such as the confining force and the chiral conden-
the finite temperature or in the finite density is now one ofsate. In quenched QCD, unlike full QCD, the elementary
the most interesting subjects in hadron and QGP physics. Fesxcitations are only glueballs in the confinement phase be-
instance, the CERES data with the ultrarelativistic heavy-ionow T,=260 MeV. At zero temperature, the lightest physi-
collision experiment may indicate the-meson mass shift cal excitation is a scalar glueball with’©=0"" with the
[10], and many theoretical studi¢41] have been done to massmg=1500-1700 Me\[15-18, which is expected to
explain this experiment. dominate the thermodynamical properties belbw

Nevertheless, lattice QCD studies for thermal properties \We consider the glueball correlat§i5—-20 in SU(3)
of hadrons are still inadequate at present because of the difsice QCD asG(t)=(D(1)0(0)), O(t)=0(t)—(0),

ficulty in measuring the hadronic two-point correlators on e - . > .
the lattice at finite temperature. For instance, on theO(t)=EXO(t,x). The summation ovex physically means

screening-mass measureméh®], this difficulty is due to the zero-momentum projection. The glueball oper&r,x)

the mixture of the large Matsubara frequencies in addition tdS to be properly taken so as to reproduce its quantum
the absence of technical prescriptions as the smearingumberd®®in the continuum limit. For instance, the simp-
method. On the other hand, on the pole-mass measuremeffist composition for the scalar glueball is given
while it is free from the mixture of the Matsubara frequen-as O(t,x)=Re T{P5(t,x) + Pyg(t,X) + P3(t,x)}, where
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P(t )Z) e SU(3) denotes the plaquette operator. With the TABLE |. The lattice QCD result for the lowest scalar glueball
mr\ty .

ral representati i XD mass at finite temperature. The temporal lattice dlzethe corre-
spectral representatiorG(t) is expressed as3()/G(0) sponding temperaturg the lowest scalar glueball masg;(T), the

=Zcpe” ™', ¢,=|(n|0[0)[*/G(0), G(0)==[n|OIO)f,  maximal ground-state overla@™® fully correlated y?/Npg, the
where E,, denotes the energy of theth excited statgn).  smearing numbeN,,, the number of gauge configuratiohk,
Here,|0) denotes the vacuum, antl) denotes the ground- and the rough estimate of the glueball sjzare listed. The most
state glueball. Note that,, is a non-negative number with suitable smearing numbe,, is determined with the maximum
Yc,=1. On a fine lattice with the spacing, the simple ground-state overlap condition.

plaquette operatd?;; (t,)?) has a small overlap with the glue-
ball ground statdG)=|1), and the extracted mass looks
heavier owing to the excited-state contamination. This smalf2 130 145400 0.932) 143 39 5541 0.42
overlap problem originates from the fact thaft,x) has a 50 187  141(46) 0.923) 0.34 41 5168 044
smaller “size” of O(a) than the physical peculiar size of the 45 208 145634) 0.961) 0.72 40 5929 0.43
glueball. This problem becomes severeraas0. We thus 43 218 13289 0.892) 0.90 43 8693 0.45

have to improveO(t,ff) so as to have almost the same size as0 234 126045 0.843) 075 42 7420 0.44
the physical size of the glueball. 38 246 122135 0892) 012 40 8736 043

One of the systematic ways to achieve this is the smearind’ 253 12782 0.882) 161 38 8633 042
method[20—22. The smearing method is expressed as the36 260 12085 0.842) 1.34 39 8603 042
iterative replacement of the original spatial link variables35 268 11884 0.842) 180 40 8462 043
U,(s) by the associated fat link variabled,(s) e SU(3).,
which is defined so as to maximize

N; T(MeV) mg(MeV) cma X2/NDF Neme Neonr o (fm)

<G 1 r{ X2
X,N)=——F—-exXp — —<
(’7Tp2)3/2 p2

: ()

where p represents the characteristic size of the Gaussian
' distribution, and is defined as

@

[ n
~ . p=2yDn=2a,\/—. (4)
—_t
whereU _ ,(s)=U ,(s— u), anda is a real parameter. Here, at4d

the summation is taken only over the spatial direction to _ .
avoid the nonlocal temporal extension. Note tﬁa(ts) holds Thus, the smearing method, which is introduced to carry out

the same gauge transpformation propérties Wil{s). We the accurate mass measurement by maximizing the ground-
refer to the fat link defined in Eq(1) as the first fat link state overlap, can be also used to give a rough estimate of the

. ) ) . . physical glueball size. In fact, once we obtain the maximum
Ui(l)(s)' T_he nth fat link Ui(”)(s) IS de_flned iteratively as overlap with somen and «, the glueball size is roughly es-
UM (s)=U{""1(s) staring fromUM=U(s) [22]. For the  timated with Eq.(4).

ReTr[UiT(s)(aui(s)Jr ; U.j(s)Ui(s=))UL (s+1)
j£i,*

physically extended glueball operator, we use theh We use the S(B) anisotropic lattice plaquette action
smeared operator, the plaguette operator constructed with
uM(s).
The smeared operator physically corresponds to an ex- B 1
tended composite operator with the original field variable as SG__C Y6 S’i;jgs Re T{1-Pi(s)]
U, (s). We consider the size of theth smeared operator in
terms of the original field variable. Using the linearization on B
the gluon field, we obtain the diffusion equation[45,23 +N 76 > ReTf1-Pi(s)] (5
c S,i=3
with the plaquette operatd?,,(s)e SU@3) in the (u,v)
2 plane. The lattice parameter is fixed gs=2N./g?=6.25,
9 ()= : _5 d the bare anisot ter is takery@s 3.2552
—K(x,n)=DAK(x,n), D= (2)  and the bare anisotropy parameter is taketygs 3. S0
an at4 as to reproduce the renormalized anisotrapyas/a;=4

[13]. These parameters produce the spatial lattice spacing as
R as_1=2.341(16) GeV 4,=0.084 fm), and the temporal
for the distributionK(x,n) of the gluon field in thenth  one asa, '=9.365(66) GeV &=0.021 fm). Here, the
smeared plaquette, in the case of the small spatial latticecale unit is determined by adjusting the string tension as
spacingas. Thenth smeared plaquette located at the origin,/¢-=440 MeV from the on-axis data of the static interquark
x=0 physically corresponds to the Gaussian extended opergotential. The pseudo-heat-bath algorithm is used to update
tor with the distribution a$15,23 the gauge field configurations on the lattice of the sizes 20
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FIG. 1. (a) The scalar glueball correlatdB(t)/G(0) for Ngm, FIG. 2. (&) The scalar glueball correlatds(t)/G(0) for Ngp,
=40 at a low temperatur&@ =130 MeV. (b) The corresponding =40 at a high temperaturé=253 MeV. (b) The corresponding
effective mass plot. The statistical errors are estimated with theffective mass plot. The statistical errors are estimated with the
jackknife analysis. The solid line denotes the best single hyperboligackknife analysis. The solid line denotes the best single hyperbolic
cosine fit to the lattice data in the intervl,, .t indicated by  cosine fit to the lattice data in the intervid,i,,tmad indicated by
the two vertical dashed lines. The dashed and dotted curves are tlige two vertical dashed lines. The dashed and dotted curves are the
best hyperbolic cosine curves for the modified fit range wijth best hyperbolic cosine curves for the modified fit range wijth
+1 andt.,+2, respectively. The closeness of the three curvest+1 andt,,,+2, respectively. The closeness of the three curves
means small fit-range dependence. means small fit-range dependence.

XNy, with N;=35,36,37,38,40,43,45,50,72 as listed in TableThjs indicates the achievement of the ground-state enhance-

|. For each temperature, we pick up gauge field configurament owing to the smearing method, and then the excited-
tions every 100 sweeps for measurements, after skippingiate contamination is almost removed.

more than 20,000 sweeps of the thermalization. The numbers |, general G(t)/G(0) is expressed as a weighted sum of

of gauge configurations used in our calculations are SUMMayperbolic  cosines with non-negative weights, and

rized in Table . . . N G(t)/G(0) decreases more rapidly than H) neart=0
For completeness, we give an estimate of the critical temge to excited-state contributions. Hen€ should satisfy

peratureT.. To this end, we analyze the scattering plot of {he inequalityC<(1+e Mc@Ny~1~1_ In the ground-state

the Polyakov 100pP(X)=Tr{U4(x,0)- - -Us(x,N;—1)} at  dominant case(t)/G(0) can be well approximated by a

each gauge field configuration. From this analysis, Zge  single hyperbolic cosine, ar@=1 is realized. We refer t&€

symmetry holds aN,=35, and the system is found to be in as the ground-state overlap.

the confinement phase. On the other hand,Zheymmetry From Fig. Xa) we findC=1 andmg=1450 MeV for the

is broken atN;=34, which indicates the deconfinement lowest scalar glueball mass at a low temperature. This seems

phase. Hence, we estimalg=270 MeV, which is consis- consistent withmg=1500-1700 MeV aff =0 [16-18§.

tent with the previous studigg,8]. In Fig. 2a we show a scalar glueball correlator
We present the numerical results in @UJanisotropic lat-  G(t)/G(0) at a high temperatur@ =253 MeV for the

tice QCD at the quenched level. To enhance the ground-statgnearing numbeN,,,=40. Owing to a suitable smearing,

contribution, we adopt the smearing method with the smearmost of the lattice QCD data are well fitted by a single hy-

ing parameterr=2.1, which we find one of the most suitable perbolic cosine denoted by the solid curve.

values from the numerical tests with variows The statisti- Each best fit analysis is performed in the interval

cal errors are estimated with the jackknife analy4ig]. [tminstmax], Which is determined from the flat region
In Fig. 1(a we show a scalar glueball correlator [t,,,,tmnax— 1] appeared in the corresponding “effective

G(t)/G(0) at a low temperatureTl=130 MeV for the mass” plot shown in Figs. (b) and Zb). The effective mass

smearing numbeNg, =40, where most of the lattice QCD mg4(t) is a solution of

data are well fitted by a single hyperbolic cosine, denoted by

the solid curve, as

G(t+1) coshmeg(t)ay(t+1—Ni/2)]
G(t)/G(0)=C(e Mcta+ g~ Ma(Ni—tay) (6) G(t)  coshmgg(t)a(t—N/2)]

)
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T T lowest glueball is the lightest particle, and its thermal exci-
T . tation is expected to have primary relevance at finite tem-
I I perature. However, lattice QCD indicateg;,>1 GeV even

1500

T
ey

I nearT., and therefore the thermodynamical contribution of
I III the glueball seems strongly suppressed by the small statisti-
E_

mg(T)[MeV]

cal factor ase"M¢’T nearT,=260 MeV[15,23. This may
indicate that the thermal glueball excitation does not play the
1000 L : relevant role in the deconfinement phz_;ls_e transition, at least in
S S B quenched QCD. Then, what is the driving force to bring the
150 200 250 phase transition? In this way, our result brings up such an
TMeV] interesting new puzzle on the QCD phase transition.
. Several comments are in order. The first comment is on
FIG. 3. The Iowe.St Sca'?“ glueball mass plot’_[ed against t.he *Mhe closeness of our simulations to the continuum limit. In
peratureT. It is obtained with the best hyperbolic cosine fit in the Ref. [24] the authors investigatedl dependence of glueball
interval [ t,in,tmax] determined from the flat region in the effective ) . > N
mass plot. The vertical dotted line indicafBs=270 MeV. masses at zero temperature, and estimated the discretization
error on the scalar glueball mass to be less than 598 at
=6.4. According to them, the discretization error is esti-
mated about 6% gB=6.25 in the present calculation. The
second comment is on the finite volume artifact on the scalar
glueball mass. In Ref.16], Monte Carlo simulations were
performed on the lattice of the physical size (1.76 ¥rahd
In the most suitable smearimd,,,, the ground-state over- (132 fm)? at zero temperature to investigate the T'n'te VO."
ume errors in the various glueball masses by using an im-

lap C is maximized and the massg is minimized, which oved action. The authors concluded that the systematic er-
indicates the achievement of the ground-state enhancemef{®" : Y:
ror in the lowest scalar glueball mass from the finite volume

(For extremely largeN,.,,, the operator size exceeds the . . -
physical gluebyall si%e Srrgsulting iﬁ the decrease of the overS negligible at zero temperature. Note that the finite volume

lap C.) In practical calculations, the maximum overlap andartifact on the scalar glueball mass is essentially independent

RS ; of the regularization method, i.e., a specific choice of the
the mass minimization are achieved at almost the ddgpe . . . A X
o " . lattice action, as far as the discretization is enough fine. It
and both of these two conditions would work as an indica- - .
ollows that, the finite volume artifact of our results are neg-

tion of the maximal ground-state enhancement. Here, we ible, since the physical size of our lattice is (1.68 fn)
take the maximum ground-state overlap conditiorCas1. gibe, e phy : : "
To summarize, we have studied the glueball properties at

('Il':eebg}?;saggg?;zatlon condition leads to almost the Sam(ﬁnite temperature using SB8) anisotropic quenched lattice
9 ' QCD with 5000—-9000 gauge configurations at each tempera-

From the analysis at various temperatures, we plot th(?ure. From the temporal correlation analysis with the smear-
lattice QCD result for the lowest scalar glueball magg(T) . 0 .

: A g ing method, we have observed about 20% mass reduction of
against temperaturgin Fig. 3. We observe, in Fig. 3, about he lowest scalar glueball (T)=1250+50 MeV for
20% mass reduction or a few hundred MeV mass reductio 8T <T<T.. while no signeilfsi]cGant change is seen for me

Ofc [} -

of the lowest scalar glueball neaf. as mg(T)=1250 son masses ned, in lattice QCD[14].

o . ) .
=50 MeV for 0.8=T<T. in comparison withmg(T Finally, we comment on the brief outlook. It seems inter-

~0)=1500-1700 Me\{16-18. . ; )
V)Ve also give a rOL\Jgh est?mate of the glueball size. Toestmg to investigate other glueballs such as thé glueball

. ; . . at finite temperature to clarify whether the thermal mass re-
estimate the glueball size, we seaf¢h,, which realizes the S . .
. max . duction is peculiar to the lowest scalar glueball or universal
maximum ground-state overla@™® From Eq. (4) with

this Ng,, we roughly estimate the glueball size asfeature in glueballs. It would be also interesting to analyze

p=0.4-0.45 fm both at low temperature and at high tem-the spectral function of the glueball at finite temperature

t T Th that the th | effect on th from its temporal correlation in terms of the mass and the
perature neal c. 1hus, we see thal the thermal etiect on th€y, o ., width, because the width broadening may provide
glueball size is rather small, which may provide important

; e the similar effect to the temporal correla{drl] as the mass
L?;%Q%ﬁ?ggéhe bag model argument of the QCD phasereduction. Our result shows that the scalar glueball mass re-

In Table | we summarize the lowest scalar glueball mas§dUCtion 's about 250 MeV, which is enough large, and there-
ore the thermal mass shift of the scalar glueball may become
mg(T), the ground-state overlalt™® fully correlated d y

3 . ; observable in future experiments at the BNL Relativistic
x“/Npg, the corresponding smearing numbgy,,, the num-

ber of gauge configuration$.,.;, and the estimated glueball Heavy lon Collider(RHIC).

sizep. H.S. was supported by the Grant for Scientific Research
Thus, the present lattice QCD calculation indicates thatNo. 1264027%from the Ministry of Education, Culture, Sci-

the lowest scalar glueball exhibits about 250 MeV mass reence and Technology, Japan. H.M. is supported by Japan

duction neaiT . keeping its size. Here, we briefly discuss the Society for the Promotion of Science for Young Scientists.

physical consequence of this result, considering the trigger dfhe lattice calculations have been performed on NEC-SX5 at

the QCD phase transition. In quenched QCD belw the  Osaka University.

for a givenG(t+1)/G(t) at each fixed [19]. In Figs. 1 and

2, we show also the results of further two fits in the modified
interval as[tmint Ltmad and[tmint 2tmad by dashed line
and dotted line, respectively. The closeness of the thre
curves suggests small fit-range dependence.
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