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Abstract

A common goal in an experimental physics analysis is to extract information from a reaction with multi-dimensional
kinematics. The preferred method for such a task is typically the unbinned maximum likelihood method. In fits
using this method, the likelihood is a goodness-of-fit quantity in that it effectively discriminates between available
hypotheses; however, it does not provide any information as to how well the best hypothesis describes the data. In
this paper, we present an ad-hoc procedure for obtaining χ2/n.d.f. values from unbinned maximum likelihood fits.
This method does not require binning the data, making it very applicable to multi-dimensional problems.
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1. Introduction

In many physics analyses, one seeks to extract
information from a reaction with multi-dimensional
kinematics. Fits to binned data are often limited by
statistical uncertainties; thus, use of the unbinned
maximum likelihood method is generally preferred.
This method is well suited to obtaining estimators
for unknown parameters in a hypothesis’ probability
density function (p.d.f.). It is also an excellent way
of discriminating between hypotheses; however, it
does not provide a means of determining how well
the best hypothesis describes the data.

In this paper, we describe an ad-hoc procedure
for obtaining a χ2/n.d.f. goodness-of-fit measure-
ment of a hypothesis whose parameters were deter-
mined using an unbinned maximum likelihood fit
without having to bin the data. This quantity is
not meant to replace the likelihood. The likelihood
should still be used to determine which hypothesis
best describes the data and to obtain estimators for
any unknown parameters, i.e. extract any physical

observables. The goodness-of-fit quantity obtained
using our method would simply be used to judge
how well the best hypothesis describes the data.

In our approach, event-by-event standardized
residuals are used to obtain the global χ2/n.d.f..
These residuals can also be used for diagnostic pur-
poses to study the goodness-of-fit as a function of
kinematics or detector components. Determining
where in phase space a fit fails to describe the data
is vital to understanding what physics has not been
accounted for in the p.d.f. Identifying regions or
components of the detector where a fit fails to de-
scribe the data could help diagnose unaccounted for
inefficiencies in the acceptance calculation.

Other authors have also developed methods for
obtaining goodness-of-fit quantities from unbinned
data. The methods closest to ours are based on the
nearest neighbors to a given event [1–3]. However,
there are several other recent articles on other pro-
cedures as well [4–6]. While these and other authors
have developed methods for obtaining goodness-of-
fit quantities from unbinned maximum likelihood
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fits, the advantage of our approach lies in the event-
by-event residuals. It is also straight-forward to ap-
ply our method to most experimental physics anal-
yses.

2. The Method

Consider a data set composed of n total events,
each of which is described by m coordinates, ~ξ. The
coordinates can be masses, angles, energies, etc. Two
separate hypotheses have been proposed to describe
the data. Their probability density functions will be
denoted by

Fh(~ξ, ~αh) =
fh(~ξ, ~αh)∫
fh(~ξ, ~αh)d~ξ

, (1)

where fh are the functional dependencies on the co-
ordinates, ~ξ, and (possible) unknown parameters,
~αh, of hypothesis h (h = 1, 2).

Using these p.d.f.’s, unbinned maximum likeli-
hood fits can easily be performed to obtain estima-
tors, α̂h, for the unknown parameters, ~αh, of each
hypothesis. The likelihoods from these fits, Lh, can
be used to determine which hypothesis provides the
better description of the data; however, the following
simple question about this hypothesis can not yet
be answered: “How well does it describe the data?”

The aim of this procedure is to obtain a χ2/n.d.f.
goodness-of-fit measurement of a hypothesis whose
parameters were determined using an unbinned
maximum likelihood fit. We first need to define a
metric for the space spanned by the “relevant” co-
ordinates of ~ξ, i.e. all coordinates on which the p.d.f
has functional dependence. A reasonable choice is
to use δkl/R2

k, where Rk is the maximum possible
difference between the coordinates, ξk, of any two
events in the sample. Using this metric, the distance
between any two events, dij , is given by

d2
ij =

∑
k

[
ξi
k − ξj

k

Rk

]2

, (2)

where the sum is over all relevant coordinates (dis-
cussed above).

For each event, we then compute the distance, ri,
to the nc’th closest event using (2). The value of nc

is discussed below. Thus, a hypersphere centered at
the ith event with radius ri contains nc data events
(excluding the event itself). In this way, we can cal-
culate the density of data events at the point ~ξi. By

comparing these density calculations to those pre-
dicted by a given hypothesis, we can determine how
well the hypothesis describes the data without re-
sorting to binning.

For each event, the standardized residual, z, for
any hypothesis is then calculated according to

z2
i =

(nmi − npi)
2

σ2
mi

+ σ2
pi

, (3)

where nmi(npi) is the number of measured (pre-
dicted) events contained within a hypersphere of ra-
dius ri centered at ~ξi and σmi(σpi) is the uncertainty
on nmi(npi).

For the case where the data set contains no
background events (dealing with backgrounds is
discussed in Section 3.3), nmi = nc and σmi =

√
nc,

provided nc is chosen to be large enough for the
Gaussian approximation to hold. The number of
predicted events, npi

, is calculated for hypothesis h
as

npi
= n

[∫
� fh(~ξ, α̂h)d~ξ∫
fh(~ξ, α̂h)d~ξ

]
, (4)

where the integral in the numerator is over the hy-
persphere of radius ri centered at ~ξi discussed above.

In principle, there are cases where the integrals
in (4) can be performed analytically; however, once
detector acceptance is included, for which an ana-
lytic expression typically is not known, they must
be done using the Monte Carlo technique. For these
cases, np can be calculated by generating nmc Monte
Carlo events according to ~ξ phase space which leads
to the following approximation of (4):

npi ≈ n


nmc∑

j

fh(~ξj , α̂h)Θ(ri − rj)

nmc∑
k

fh(~ξk, α̂h)

 , (5)

where the Heaviside function, Θ(ri − rj), is used to
restrict the sum in the numerator to Monte Carlo
events within the hypersphere. The statistical uncer-
tainty in the Monte Carlo calculation of np would be
σp = np/

√
nr

mc, where nr
mc is the number of Monte

Carlo events within the hypersphere. We note here
that if nr

mc is small, then the uncertainty is better
approximated by 1 +

√
nr

mc + 0.75 [7].
If the hypothesis does in fact provide a good de-

scription of the data, then the values of z2 obtained
from (3) will follow a χ2 distribution with one de-
gree of freedom. The overall goodness-of-fit can be
obtained as follows:
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χ2/n.d.f. =
1

n− npar

n∑
i

z2
i , (6)

where npar is the number of free parameters present
in the hypothesis’ p.d.f. Hypotheses which describe
the data well will yield values of χ2/n.d.f. ≈ 1, while
those which do not describe the data well will yield
larger values.

3. Example Application

As an example, we will consider the reaction
γp → pω in a single (s, t) bin, i.e. a single center-of-
mass energy and production angle bin (extending
the example to avoid binning in production angle,
or t, is discussed below). The ω decays to π+π−π0

about 90% of the time; thus, we will assume we have
a detector which has reconstructed γp → pπ+π−π0

events. Below we will analyze a simulated ω photo-
production data set. The goal of our model analysis
is to extract the ω polarization observables known
as the spin density matrix elements, denoted by
ρ0

MM ′ (discussed below).
In terms of the mass of the π+π−π0 system, m3π,

the ω events were generated according to 3-body
phase space weighted by a Voigtian (a convolution of
a Breit-Wigner and a Gaussian) to account for both
the natural width of the ω and detector resolution.
For this example, we chose to use σ = 5 MeV/c2

for the detector resolution. The goal of our analysis
is to extract the three measurable elements of the
spin density matrix (for the case where neither the
beam nor target are polarized) traditionally chosen
to be ρ0

00, ρ0
1−1 and Reρ0

10. These can be accessed
by examining the distribution of the decay products
(π+π−π0) of the ω in its rest frame.

For this example, we chose to work in the helicity
system which defines the z axis as the direction of
the ω in the overall center-of-mass frame, the y axis
as the normal to the production plane and the x axis
is simply given by x̂ = ŷ × ẑ. The decay angles θ, φ
are the polar and azimuthal angles of the normal
to the decay plane in the ω rest frame. The decay
angular distribution of the ω in this frame is then
given by [8]

W (θ, φ) =
3
4π

(
1
2
(1− ρ0

00) +
1
2
(3ρ0

00 − 1) cos2 θ

− ρ0
1−1 sin2 θ cos 2φ−

√
2Reρ0

10 sin 2θ cos φ
)

.(7)

We chose to use the values ρ0
00 = 0.65, ρ0

1−1 = 0.05
and Reρ0

10 = 0.10 for our simulated data set.

3.1. No Background, 100% Acceptance

We will begin by considering the simplest case
where the signal is able to be extracted without
any background contamination and our detector ef-
ficiency is 100%. For this study, a simulated data set
of 10,000 events was generated following the crite-
ria described above (see Figure 1). To facilitate the
calculation of (5), 100,000 Monte Carlo events were
generated using the same m3π distribution as the
data; however, the decay distribution was generated
according to flat phase space in cos θ and φ.
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Fig. 1. (Color Online) Events generated without background
and with 100% acceptance. (a) Mass of the π+π−π0 system
(GeV/c2). (b) Decay angular distribution, φ (radians) vs
cos θ.
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The likelihood function required to extract the
spin density matrix elements is simply

L =
n∏
i

W (θi, φi), (8)

where W is the decay angular distribution defined
in (7). To obtain estimators for the ρ0

MM ′ elements,
we minimize

− lnL = −
n∑
i

lnW (θi, φi), (9)

which yields the values

ρ0
00 = 0.649± 0.009 (10a)

ρ0
1−1 = 0.043± 0.005 (10b)

Reρ0
10 = 0.103± 0.004. (10c)

These values are in good agreement with the values
used to generate the data.

At this point in our model analysis, we have ex-
tracted the physical observables we are interested
in. The spin and parity of the ω meson are well es-
tablished; however, what if we were analyzing a less
well-known meson? In that case, we may not be cer-
tain that JP = 1−, i.e. the use of (7) might not be
justified. Prior to publishing our results, it would be
reassuring to know that the fit performed using (7)
does in fact provide a good description of our data.

3.1.1. Applying the Procedure
For this analysis, the relevant coordinates are the

decay angles θ and φ, since these are the only kine-
matic quantities for which the p.d.f. defined in (7)
has dependence. The metric defined in (2) is then
given by

d2
ij =

(
cos θi − cos θj

2

)2

+
(

φi − φj

2π

)2

, (11)

for this analysis.
For each simulated event, we find the distance to

the nc’th nearest neighbor event, ri. For now, we’ll
proceed using nc = 100, determining what to use for
this value is discussed in detail in Section 3.1.2. The
phase space Monte Carlo events we generated are
then used to obtain the predicted number densities
according to

npi ≈ n


nmc∑

j

W (θj , φj)Θ(ri − rj)

nmc∑
k

W (θk, φk)

 , (12)

using the ρ0
MM ′ values given in (10). For this exam-

ple, the 100% acceptance makes explicitly comput-
ing the sum in the denominator unnecessary; how-
ever, in the examples that follow it will be required.

The standardized residuals, z, for this hypothesis
are obtained from (3) as

z2
i =

(100− npi)
2

100 + npi

, (13)

where npi
is obtained from (12). Figure 2 shows

the χ2, pull and confidence level distributions ob-
tained for our simulated data set. The values are
in excellent agreement with the theoretical distribu-
tions, i.e. they do follow a χ2 distribution. The to-
tal χ2 is obtained by summing over all events. For
this example, the value is 10344; thus, χ2/n.d.f. =
10344/(10000 − 3) = 1.035; a clear indicator that
this hypothesis provides an excellent description of
the data.

It is also instructive to examine hypotheses
which do not perfectly describe the data. If the
likelihood is maximized while requiring ρ0

1−1 = 0,
then the spin density matrix elements extracted
are ρ0

00 = 0.650± 0.009 and Reρ0
10 = 0.110± 0.004.

Figure 3 shows the χ2, pull and confidence level dis-
tributions obtained for our simulated data set under
this hypothesis. Since the data were generated with
ρ0
1−1 = 0.05, this fit provides a fair description of

the data; the total χ2/n.d.f. = 14527/(10000−2) =
1.453.

Maximizing the likelihood while requiring
ρ0
1−1 = Reρ0

10 = 0 yields ρ0
00 = 0.651± 0.009.

Figure 4 shows the χ2, pull and confidence level
distributions obtained for our simulated data
set under this hypothesis. This fit clearly pro-
vides a poor description of the data; the total
χ2/n.d.f. = 36118/(10000− 1) = 3.612.

The total χ2/n.d.f. values do provide a goodness-
of-fit value which accurately indicates how well the
fit describes the data. Thus, these values can be used
to ascertain the quality of the hypotheses. It is also
interesting to note that the pull and confidence level
distributions are also good indicators. One could
plot these quantities vs. kinematic variables to de-
termine where a given hypothesis fails to describe
the data.

3.1.2. Choosing a Value for nc

In this section, we will examine the value of nc

(the number of nearest neighbor events used to de-
termine the values of the radii ri). Figure 5(a) shows

4



2χ
0 1 2 3 4 5 6 7 8 9 100

100

200

300

400

500

600

700

800

900

1000

(a)

pull distribution
-5 -4 -3 -2 -1 0 1 2 3 4 50

50

100

150

200

250

300

350

400

450

(b)

confidence level
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

180

200

220

(c)

Fig. 2. (Color Online) Events generated without background and with 100% acceptance. The plots represent the (a) χ2 (b)
pull and (c) confidence level distributions obtained from a fit to (7). The red lines represent the theoretical distributions, which
contain no free parameters. See text for details.

2χ
0 1 2 3 4 5 6 7 8 9 100

100

200

300

400

500

600

700

800

900

1000

(a)

pull distribution
-5 -4 -3 -2 -1 0 1 2 3 4 50

50

100

150

200

250

300

350

400

450

(b)

confidence level
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

180

200

220

(c)

Fig. 3. (Color Online) Events generated without background and with 100% acceptance. The plots represent the (a) χ2 (b)
pull and (c) confidence level distributions obtained from a fit to (7) in which the ρ0

1−1 off-diagonal element was constrained
to be zero. The red lines represent the theoretical distributions, which contain no free parameters. See text for details.
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Fig. 4. (Color Online) Events generated without background and with 100% acceptance. The plots represent the (a) χ2 (b)
pull and (c) confidence level distributions obtained from a fit to (7) in which both off-diagonal elements were constrained to
be zero. The red lines represent the theoretical distributions, which contain no free parameters. See text for details.
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Fig. 5. (Color Online) Events generated without background and with 100% acceptance. (a) χ2/n.d.f. vs. nc
n

for fits with all
three spin density matrix parameters free. (b) χ2/n.d.f. vs. nc

n
for fits with both off-diagonal spin density matrix elements

constrained to be zero.

the χ2/n.d.f value obtained for two choices of nc

(nc = 100 and nc = 50) for various event sample
sizes. The data sets (with sample sizes ranging from
50 to 10,000 events) were all generated from the
same parent distributions as in Section 3.1. Each
data set was fit individually to extract the ρ0

MM ′

values used to obtain the χ2’s.
Figure 5(a) clearly shows that the χ2/n.d.f value

obtained does depend on the choice of nc, if nc is cho-
sen to be greater than about 2% of the total number
of events. For values of nc less than 2% of the event
sample size, the χ2/n.d.f. is quite stable. This be-
havior is expected. If nc is large relative to n, then
the method is averaging over large fractions of phase
space; thus, finer structure in the physics will not
be properly accounted for. We also note here that
χ2 → 0 as nc → n regardless of the quality of the
fit, due to how np is calculated (see (4)).

Figure 5(b) shows the value of χ2/n.d.f obtained
for the same two choices of nc for various event
sample sizes for fits to the data which constrain
ρ0
1−1 = Reρ0

10 = 0. The values of χ2/n.d.f. are again
stable when nc is chosen to be less than 2% of the
data; however, the values depend on the choice of nc.
This behavior is again expected; a similar effect can
be seen in fits to binned data for which the value of
χ2/n.d.f depends on the number of bins. The larger
the value of nc, the larger the χ2/n.d.f. can be.

Consider a kinematic region where the number
density of the data is high, leading to a small value
of ri. For this case, the largest obtainable value for
z2 is

lim
ri→0

z2
i = lim

npi
→0

(nc − npi)
2

nc + σ2
pi

≈ nc. (14)

Thus, there are two competing factors which should
be considered when choosing the value of nc. The
ratio of nc/n must be small enough to permit a
true comparison of the finer structure of the physics;
however, the value of nc must be large enough such
that the relative statistical uncertainties do not for-
bid larger values of z. Typically, these considerations
will dictate nc be about 1%-2% of the event sample
size. If this results in nc being less than 50, i.e. if
n < 2500, then this method will most likely be less
effective. Of course, this statement is not all encom-
passing; in practice, it will depend on the physics.

3.1.3. ∆χ2 vs. −∆ logL
It is also useful to examine how changes in the

likelihood map onto changes in the χ2 values ob-
tained using this method. Here we trace out both
goodness-of-fit quantities near the optimal value of
ρ0
00. Figure 6 shows the changes in − lnL and χ2 vs

ρ0
00 for the data set used in Section 3.1 (n = 10, 000

and nc = 100). Clearly, an increase in − lnL does
corresponds to an increase in χ2

3.2. Including Detector Acceptance

We will now extend our example by including de-
tector acceptance. The physics used in this section
will be identical to that of Section 3.1; however, we
will now include a detector efficiency, η, given by
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Fig. 6. (Color Online) Events generated without back-
ground and with 100% acceptance. The quantities plotted
are −∆ lnL vs. ρ0

00 (red triangles) and ∆χ2/100 vs. ρ0
00

(black squares).

η(θ, φ) =
1
2
(2− | cos θ sinφ|). (15)

We again generated 10,000 data events and 100,000
Monte Carlo events from the same parent distribu-
tions as in Section 3.1 convolved with the detector
acceptance given in (15). Figure 7 shows the de-
cay angular distribution of this data set. The effects
of the detector acceptance are clearly visible when
compared with Figure 1.

An unbinned maximum likelihood fit was per-
formed and the following values were obtained for
ρ0
00:

ρ0
00 = 0.634± 0.009 (16a)

ρ0
1−1 = 0.055± 0.005 (16b)

Reρ0
10 = 0.096± 0.004. (16c)

To obtain χ2 values, we apply the procedure just as
in Section 3.1. Figure 8 shows the χ2, pull and confi-
dence level distributions obtained for this simulated
data set. The values are again in excellent agree-
ment with the theoretical distributions. The total
χ2/n.d.f. = 9715.65/(10000 − 3) = 0.972, indicat-
ing that this fit does provide an excellent description
of the data (as it should).

3.3. Including Background Events

In many physics analyses, there is a sample of
non-interfering background events which can not be
separated from the signal. We will now deal with
this situation. The signal sample will simply be that
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Fig. 7. (Color Online) φ (radians) vs cos θ: Events generated
without background and with detector acceptance given by
(15).

of Section 3.2; thus, we will be including detector
acceptance effects as well. For the background, we
chose to generate it according to 3-body phase space
weighted by a linear function in m3π and

Wb(θ, φ) =
1
6π

(1 + | sin θ cos φ|) (17)

in the decay angles. The number of background
events generated, nb, was 10,000 (the background
events were also subjected to the detector accep-
tance given in (15)). Figure 9(a) shows the π+π−π0

mass spectrum for all generated events and for just
the background. The generated decay angular dis-
tributions for all events, along with only the signal
and background are shown in Figures 9(b), (c) and
(d). There is clearly no way to separate out the
signal events through the use of a cut.

3.3.1. Signal Extraction
The method used to extract the signal events is

described in detail in [9]. It accurately preserves all
kinematic correlations in the data while separating
signal and background events. Each event is assigned
a signal weight factor, Q, or equivalently, a back-
ground weight factor, 1 − Q. These Q-factors are
then used to weight each event’s contribution to the
“log likelihood” during unbinned maximum likeli-
hood fits to extract physical observables.

The method works in a very similar way to the
one presented in this paper. A metric is defined in
the space of all relevant kinematic variables and the
nc nearest neighbor events (we chose nc = 100) are
selected. For this example, the metric defined in (11)
can again be used. Since each subset of events oc-
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Fig. 8. (Color Online) Events generated without background and with detector acceptance given by (15). (a) χ2 (b) pull and
(c) confidence level distributions. The red lines represent the theoretical distributions, which contain no free parameters.

cupies a very small region of phase space, the m3π

distributions can be used to determine each event’s
Q-factor while preserving the correlations present in
the remaining kinematic variables (cos θ and φ).

To this end, unbinned maximum likelihood
fits were carried out for each event, using its
nearest neighbors, to determine the parameters
~α = (b0, b1, s, σ) in the p.d.f.

F (m3π, ~α) =
B(m3π, ~α) + S(m3π, ~α)∫

(B(m3π, ~α) + S(m3π, ~α)) dm3π
,(18)

where,

S(m3π, ~α) = s · V (m3π,mω,Γω, σ) (19)

parameterizes the signal as a Voigtian (con-
volution of a Breit-Wigner and a Gaussian)
with mass mω = 0.78256 GeV/c2, natural width
Γω = 0.00844 GeV/c2 and resolution σ. The pa-
rameter s sets the overall strength of the signal.
The background, in each small phase space region,
was parameterized by the linear function

B(m3π, ~α) = b1m3π + b0. (20)

The Q-factor for the event was then calculated as

Qi =
S(mi

3π, α̂i)
S(mi

3π, α̂i) + B(mi
3π, α̂i)

, (21)

where mi
3π is the event’s 3π mass and α̂i are the

estimators for the parameters obtained from the ith

event’s fit.
Figures 9(e) and (f) show the extracted signal and

background distributions, i.e. they show the events
weighted by Q and 1−Q respectively. The agreement
with the generated distributions (see Figures 9(c)
and (d)) is very good. We conclude this section by
noting that the full covariance matrix obtained from

each event’s fit, Cα, can be used to calculate the
uncertainty in Q as

σ2
Q =

∑
ij

∂Q

∂αi
(C−1

α )ij
∂Q

∂αj
. (22)

3.3.2. Extracting Physical Observables
The likelihood function used to obtain the spin

density matrix elements, defined in (9), can be modi-
fied to account for the presence of background events
as follows:

− lnL = −
n+nb∑

i

Qi lnW (θi, φi). (23)

Thus, the Q-factors are used to weight each event’s
contribution to the likelihood. Using the Q-factors
obtained in Section 3.3.1, minimizing (23) yields

ρ0
00 = 0.640± 0.009 (24a)

ρ0
1−1 = 0.051± 0.005 (24b)

Reρ0
10 = 0.095± 0.004, (24c)

which are in good agreement with the generated val-
ues.

3.3.3. Applying the Method
The metric used to obtain the nc nearest neighbor

events is again (11); however, the number of mea-
sured events contained within each hypersphere is
now given by

nmi
=

nc∑
i

Qi, (25)

with uncertainty

σ2
mi

= nmi +
∑
j,k

σj
Qi

ρjkσk
Qi

, (26)
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Fig. 9. (Color Online) (a) The m3π distributions for all generated events (unshaded), only background events (shaded) and
for all events weighted by the background factors, 1−Q (dashed red). (b) φ vs. cos θ for all generated events. (c) φ vs. cos θ
for only signal events. (d) φ vs. cos θ for only background events. (e) φ vs. cos θ for all events weighted by signal factors, Q.
(f) φ vs. cos θ for all events weighted by background factors, 1−Q.
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where the sums (j, k) are over the nc events used to
calculate the ith event’s Q-factor and ρjk is the cor-
relation factor between events j and k. This factor
is equal to the fraction of shared nearest neighbor
events used in calculating the Q-factors for these
events. Thus, (26) accounts for both the statistical
uncertainty in the signal yield, along with the uncer-
tainty in the signal-background separation, i.e. the
uncertainty in the Q-factors.

The number of predicted events, along with its un-
certainty, is calculated the same way as in Section 3.1
and the z values are again obtained using (3). Fig-
ure 10 shows the χ2, pull and confidence level dis-
tributions obtained for our simulated data set. The
values are again in excellent agreement with the the-
oretical distributions. This indicates that we have
properly handled the uncertainties in the signal. The
total χ2/n.d.f. = 9496.75/(9714.82− 3) = 0.978.

Calculating the correlation factor, ρjk, in (26) is
very CPU intensive due to the multiple loops which
need to be performed over the data events. In [9],
we noted that assuming 100% correlation for all Q-
factors provides a reasonable upper limit on the sig-
nal yield in any kinematic region. Under this as-
sumption, which eliminates much of the bookkeep-
ing and CPU cycles needed to properly calculate
ρjk, the uncertainty on nmi

becomes

σ2
mi

= nmi +

∑
j

σj
Qi

2

, (27)

where the sum is again over the nc nearest neighbor
events used to calculate Qi.

Figure 11 shows the χ2, pull and confidence level
distributions obtained for our simulated data set un-
der this assumption. The deviations from the theo-
retical distributions are relatively small. The total
χ2/n.d.f. = 8135.96/(9714.82 − 3) = 0.838. This
value is smaller than 1 as expected; however, it is
still reasonably close to the value obtained when the
errors are handled rigorously. Thus, this is a reason-
able approximation and could be used effectively in
situations where calculating the values of ρjk is not
possible (or, perhaps, desirable).

3.4. Extending the Example

To extend this example to allow for the case where
the data is not binned in production angle, we would
simply need to include cos θω

CM or t in the vector
of relevant coordinates, ~ξ. To perform a full partial

wave analysis on the data, we would also need to in-
clude any additional kinematic variables which fac-
tor into the partial wave amplitudes, e.g. the dis-
tance from the edge of the π+π−π0 Dalitz plot (typ-
ically included in the ω decay amplitude). We would
then construct the likelihood from the partial waves
and minimize − lnL using the Q-factors obtained
by applying our signal-background separation pro-
cedure, including the additional coordinates.

The estimators from these event-based fits would
then serve as input into a higher dimensional ver-
sion of the method presented in this example. The
procedure for obtaining z-values, however, would re-
main almost unchanged. We would simply need to
account for the additional relevant kinematic vari-
ables in our metric. If the fit provides a good de-
scription of the data, then the χ2/n.d.f. should be
approximately one and the squares of the standard-
ized residuals should follow a χ2 distribution.

4. Conclusions

In this paper, we have presented an ad-hoc proce-
dure for obtaining χ2/n.d.f. values from unbinned
maximum likelihood fits which does not require bin-
ning the data. This makes it very applicable to multi-
dimensional problems. We have shown that these
χ2/n.d.f. values accurately reflect how well a given
hypothesis describes the data.
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Fig. 10. (Color Online) Events generated with background and with detector acceptance given by (15). (a) χ2 (b) pull and (c)
confidence level distributions. The red lines represent the theoretical distributions, which contain no free parameters.
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Fig. 11. (Color Online) Events generated with background and with detector acceptance given by (15). (a) χ2 (b) pull and (c)
confidence level distributions obtained using upper limits on the Q-factor errors (given in (27)). The red lines represent the
theoretical distributions, which contain no free parameters. See text for details.
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