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Abstract

The complete low-lying positive charge conjugation glueball spectrum is obtained from QCD. The formalism re
the construction of an efficient quasiparticle gluon basis for Hamiltonian QCD in Coulomb gauge. The resulting
convergent Fock space expansion is exploited to derive quenched low-lying glueball masses with no free paramet
are in remarkable agreement with lattice gauge theory.
 2003 Published by Elsevier B.V.
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1. Introduction

The scalar glueball has been called the fundame
particle of QCD [1]. Indeed, its existence and nonz
mass are a direct consequence of the non-Abe
nature of QCD and the confinement phenomenon
is clear that finding and understanding the scalar (
other) glueballs is a vital step in mastering low-ene
QCD.

Recently quenched lattice gauge theory has b
able to determine the low-lying glueball spectru
with reasonable accuracy [2] (only very prelimina
determinations of other matrix elements have b
attempted). These data serve as a useful benchma
the development of a qualitative model of the emerg
properties of low-energy QCD. The models may th
be used to guide experimental glueball searches.
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Previous models of glueballs have relied on ad
effective degrees of freedom such as flux tubes
bags [4], or constituent gluons [5]. We note that so
of the models listed in Ref. [5] construct states w
massive gluons, while others either use transverse
ons or dynamically generated gluons masses. Mo
in the former category contain spurious states du
the presence of unphysical longitudinal gluon mod
Sum rule computations of glueball properties exist
however, they are based on phenomenological pro
ties of the spectrum. Finally, the conjectured dua
between supergravity and large-N gauge theories ha
been used to compute the glueball spectrum in n
supersymmetric Yang–Mills theory by solving the s
pergravity wave equations in a black hole geome
[7]. Unfortunately all of these approaches suffer fro
weak or conjectured connections to QCD.

We present a computation of the positive cha
conjugation glueball spectrum which arises from QC
and is systematically improvable. The computat
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is based on the formalism presented in Ref.
in which the QCD Hamiltonian in Coulomb gaug
is employed as a starting point. Coulomb gauge
efficacious for the study of bound states because
degrees of freedom are physical (there are no g
fields in this gauge) and a positive definite no
exists [9]. Furthermore, resolving the Coulomb gau
constraint produces an instantaneous interaction
non-Abelian analogue of the Coulomb interactio
which, as shown in Ref. [8] may be used to gener
bound states. Because the temporal component o
vector potential is renormalization group invariant
Coulomb gauge (this is not true in other gauge
the instantaneous potential does not depend on
ultraviolet regulator or the renormalization scale [1
This fact permits a physical interpretation of t
instantaneous potential which is a central aspect of
formalism.

The pure gauge QCD Hamiltonian may be writt
as [9]HQCD =H0 + δH with

H0 = 1

2

∫
dx

[
E2 + B2]

(1)+ 1

2

∫
dx dyρa(x)K(0)(x − y)ρa(y)

and

(2)δH = V3g + V4g + VJ + VC.
HereB = ∇ × A is the Abelian part of the chromo
magnetic field andE = −∂/∂tA is the chromoelec
tric field. The third term inH0 represents the non
Abelian, instantaneous Coulomb interaction betw
color charges,ρa = −f abcEb · Ac, mediated by an ef
fective potentialK0 computed by taking a vacuum e
pectation value of the Coulomb kernel,

K0(x − y)δab

(3)

= g2〈Ψ |[(∇ · D)−1(−∇2)(∇ · D)−1]
x,a;y,b|Ψ 〉,

with Dab = δab∇ − gf abcAc being the covarian
derivative in the adjoint representation. For the v
uum wave functional,Ψ [A] = 〈A|Ψ 〉 we take a varia-
tional ansatz,

(4)Ψ [A] = exp

(
−1

2

∫
d3k
(2π)3

Aa(k)ω(k)Aa(−k)
)
,

with the variational parameterω(k) determined by
minimizing the vev ofH . The correction terms in
δH include V3g and V4g which are the three- an
four-gluon operators originating from the differen
between the full and the Abelian chromomagne
field. VJ denotes a contribution from the Faddee
Popov determinant in the kinetic term. The effe
of VJ and the Faddeev–Popov determinant in
functional integrals have recently being studied
Ref. [10] where it was found that its effects can
effectively included in the variational parameterω(k).
Finally, VC is the difference between the Coulom
operator and its vev,K0. In the calculation of the
glueball spectrum it results in operators mixing tw
and three, quasiparticle wave functions. We note
after renormalization the couplingg is absorbed into
the Faddeev–Popov operator, which then defines
Coulomb gauge analog of a ghost propagator
10]. The renormalized effective potentialK0 is fixed
by comparing with the quenched lattice QCD sta
potential. A very accurate representation of the st
confinement potential is achieved [8].

The variational vacuum defined above also sp
ifies a Fock space of quasiparticle excitations c
responding to effective gluonic degrees of freed
(which we call quasigluons). Such quasigluons o
“massive” dispersion relation in the variational va
uum and therefore improve the description of gluo
bound states since mixing between states with dif
ent number of quasiparticles is suppressed due to
effective mass.

The calculation of the vev of the Hamiltonian a
the properties of the quasiparticle excitations w
discussed in Refs. [8,10,11]. These require solvin
set of coupled integral Dyson equations and as a re
one finds that the functionω(k), which in a free theory
is given byω(k) = k, becomes finite ask → 0. The
valueω(0) can be related to the slope of the sta
potential at large distances.

2. Fock space expansion and the glueball
spectrum

The quasigluons which emerge in the analysis
Ref. [8] set the QCD scale parameter via the l
momentum dispersion relationr0ω(k → 0) = 1.4,
wherer0 is the lattice Sommer parameter. Using t



A.P. Szczepaniak, E.S. Swanson / Physics Letters B 577 (2003) 61–66 63

n
t

a
and
een
pt
ge

ue-
bu-
on
eral

s are
er-
lly,
e to

n in
all

the
has
ond
ents
l of

en
ssed
ces

e as
on

the
Regge string tension orρ mass to fix the scale the
givesω(0) = 600–650 MeV. It is natural to interpre
this scale as a dynamical gluon mass.1 Thus the
formalism of Ref. [8] provides a justification of
Fock space expansion in terms of quasigluons
gives the leading instantaneous interaction betw
the quasigluons. In view of this it is natural to attem
a description of low-lying glueballs in the pure gau
sector of QCD.

In this approach positive charge conjugation gl
balls are dominated by the two quasigluon contri
tion. These may mix with three and higher quasiglu
states via transverse gluon exchange (and, in gen
via any term inδH ). Mixing with single quasigluon
states is excluded because color nonsinglet state
removed from the spectrum due to infrared div
gences in the color nonsinglet spectrum [11]. Fina
the scalar glueball is orthogonal to the vacuum du
the form of the gap equation.

The resulting bound state equations are show
Eq. (5). There is one orbital component of glueb
wave function forJP = 0+ and two forJP = (even�
2)+. These are denoted byψi(k), i = 1,2. The first
term on the right-hand side of Eq. (5) represents
quasigluon kinetic energy (the gluon gap equation
been employed to simplify the expression), the sec
term is the quasigluon self energy, and third repres
the interaction between quasigluons in the channe
interest.∫
k2dk

(2π)3
2ω(k)|ψi(k)|2

+ NC

2

∑
i

∫
k2dk

(2π)3
q2dq

(2π)3
ω(k)

ω(q)

×
[

4

3
V0 + 2

3
V2

]
|ψi(k)|2

− NC

4

∫
k2dk

(2π)3
q2dq

(2π)3
(ω(k)+ω(q))2
ω(k)ω(q)

×ψ∗
i (q)Kij (q, k)ψj (k)

(5)=E

∫
k2dk

(2π)3
|ψi(k)|2,

1 The relationship of a dynamical gluon mass to vortex-driv
confinement and gauge symmetry breaking is thoroughly discu
by Cornwall; see, for example, the second and third referen
of [5].
,

with

(6)

K11 = 3J 2 + 3J − 2

(2J − 1)(2J + 3)
VJ

+ J (J − 1)

2(2J − 1)(2J + 1)
VJ−2

+ (J + 1)(J + 2)

2(2J + 3)(2J + 1)
VJ+2,

(7)

K22 = 3(J + 2)(J − 1)

(2J − 1)(2J + 3)
VJ

+ (J + 2)(J + 1)

2(2J + 1)(2J − 1)
VJ−2

+ J (J − 1)

2(2J + 1)(2J + 3)
VJ+2

and

K12 =K21

= √
(J − 1)J (J + 1)(J + 2)

(8)

×
[

1

2(2J + 3)(2J + 1)
VJ+2

+ 1

2(2J + 1)(2J − 1)
VJ−2

− 1

(2J + 3)(2J − 1)
VJ

]
.

The bound state equations for other glueballs ar
in Eq. (5), with the exception that the wave functi
index takes on a single value. For these cases
interaction kernels are as follows:
JP = (odd� 3)+ (there is no 1+ gg glueball):

(9)K = J + 2

2J + 1
VJ−1 + J − 1

2J + 1
VJ+1;

JP = (even� 0)−:

(10)K = J

2J + 1
VJ−1 + J + 1

2J + 1
VJ+1;

JP = 0+:

(11)K = 2

3

(
V0 + V2

2

)
.

In all these relations the interaction is defined as

(12)VL(q, k)= 2π

1∫
−1

dx K(0)(q, k, x = k̂ · q̂)PL(x)



64 A.P. Szczepaniak, E.S. Swanson / Physics Letters B 577 (2003) 61–66

k

of
lic-

or
u-
ur-

s in

r is

tur-
i-
ree-
-
nt.

hen
ex-
des
ex-

to
art
th a
ve
ion

r of
es
ale

ther

that
o
uld

and
wn
the
d to

his
ge
he
ble
red.

os-
re-
ara-
up
n to
e
ue
with

.5).
tate
r
as

e
est-
t

hat
e-

es
e

ates
en
the
el

ex-
eV
cts
gy
and the potentialK(0)(q, k, x) is that derived in
Ref. [8] with the QCD scale chosen to beω(0) =
600 MeV. Finally we note that there are noJP =
(odd)−, orC = − glueballs at lowest order in the Foc
space expansion.

3. Higher order corrections

It is of course desirable to test the efficacy
the Fock space expansion employed here by exp
itly checking the effect of coupling to the three
higher quasigluon spectrum. This is a difficult co
pled channel problem and we therefore content o
selves with a perturbative evaluation of these effect
this initial study. Specifically, the energy shiftδEn =∑
m |〈gg|δH |m(ggg)〉|2/(En − Em) must be evalu-

ated. Duality implies that when the energy transfe
large,(En −Em) > Λ, whereΛ is of the order of the
QCD scale, this sum may be evaluated in its per
bative form (with partonic gluons in the intermed
ate state). We compute here the effects of the th
gluon coupling fromδH . This is the leading interac
tion in terms of expansion in the coupling consta
After renormalizationg2/4π → α(p2) wherep2 rep-
resents a characteristic momentum in integrals w
computing matrix elements. The running coupling
pansion for the remaining sum over low energy mo
is certainly less justifiable, however as shown in
amples in Ref. [8], such soft corrections also seem
be small. For numerical efficiency the low energy p
of the guasigluon exchange was approximated wi
local four-gluon interaction (we note that this effecti
interaction also accounts for the four-gluon interact
present in the Hamiltonian)

Vc = C(Λ)f abcf ade
∫

d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
d3k4

(2π)3

× (2π)3δ(k1 + k2 + k3 + k4)

× exp
(−(

k2
1 + k2

2 + k2
3 + k2

4

)/
Λ2)

(13)×Abi (k1)A
c
j (k2)A

d
i (k3)A

e
j (k4),

whereC is a dimensionless parameter of the orde
g2(Λ)∼ 1. Standard effective field theory techniqu
were subsequently employed: the factorization sc
Λ was chosen and the couplingC was fixed by
comparison to the lattice scalar glueball mass. O
mass predictions then follow. The scaleΛ was then
varied to ensure that the procedure is stable and
the coupling remains “natural” (of order unity). T
maintain consistency the effect of these terms sho
be incorporated into the quasigluon gap equation
the gluon self energy. However, it may be sho
that the effect of contact terms are canceled in
bound state equation when the gap equation is use
simplify the quasigluon kinetic and self energies. T
is not true for the high-momentum gluon exchan
terms which add a UV dominated correction to t
single gluon kinetic energy. These have negligi
effect on low energy spectrum and have been igno

4. Results and conclusions

The lowest order predictions for the quenched p
itive charge conjugation glueball spectrum are p
sented in Table 1. We stress that there are no free p
meters in this computation; the renormalization gro
parameters and the scale were fixed by compariso
the Wilson loop static interaction [8]. Although on
may anticipate splittings on the order of 100 MeV d
to coupled channel effects, the general agreement
lattice data is quite good (theχ2 per degree of freedom
for the six measured lowest spin-parity states is 1
Nevertheless we note that the authors of Ref. [2] s
that the 3++ may have significant mixing with highe
states and the quoted 4++ mass should be regarded
preliminary.

Although it appears to be difficult to push lattic
mass computations above 4 GeV it would be inter
ing to measure the quenched 4−+ glueball mass to tes
the prediction made in Table 1. Lastly we note t
all radial excitations lie roughly 1 GeV above their r
spective ground states, except the 4++. We have no
explanation for this curiosity, but note that it impli
that lattice extractions of the 4++ mass must be mad
with great care.

We note that the degeneracy between parity st
reported in the first reference of [5] is not se
here. We suspect that the degeneracy is due to
nonrelativistic expansion of the interaction kern
made in that reference.

As stated above, coupled channel effects are
pected to modify the spectrum at the 10–100 M
level. As an initial estimate of the size of these effe
we simply setC = 0 (Eq. (13)) and evaluate the ener
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Table 1
Glueball spectrum

State This work LGT (GeV) Ref.
(no mixing)

0++ 1.98 1.73(5)(8) [2]a
1.754(85)(86) [15]
1.627(83) [16]
1.686(24)(10) [19]
1.645(50) [18]
1.61(7)(13) [17]

0++′ 3.26 2.67(18)(13) [2]
2++ 2.42 2.40(2.5)(12) [2]

2.417(56)(117) [15]
2.354(95) [16]
2.26(12)(18) [17]
2.380(67)(14) [19]
2.337(100) [18]

2++′ 3.11 3.499(43)(35) [13]
0−+ 2.22 2.59(4)(13) [2]

2.19(26)(18) [17]
0−+′ 3.43 3.64(6)(18) [2]
2−+ 3.09 3.10(3)(15) [2]
2−+′ 4.13 3.89(4)(19) [2]
3++ 3.33 3.69(4)(18)b [2]
3++′ 4.29
4++ 3.99 3.65(6)(18) [14]
4++′ 4.28
4−+ 4.27
4−+′ 4.98

a The first error is combined statistical and systematic,
second is from scale fixing.

b Possible mixing with higher states.

shift due to perturbative one-gluon exchange. As
pected, the scalar glueball mass experiences the la
shift, with a reduction in mass of roughly 200 Me
(from 1980 to 1790 MeV). It is gratifying that thi
brings the scalar glueball into excellent agreem
with lattice gauge theory. We proceed by incorpor
ing the effective contact interaction. The factorizat
scale was varied between 0.25 and 10 GeV, stable re
sults were found between 1 and 8 GeV, with a va
of C given roughly by−0.4 in this range. We find
that the tensor glueball mass is reduced by roug
100 MeV, while other masses experience somew
smaller shifts. Thus it appears that low-lying glueba
are indeed dominated by their two-quasigluon Fo
components. However it is clear that a careful exa
nation of coupled channel effects and better lattice d
are required to make a definite statement about the
ficacy of our approach.
t

Fluctuations of the topological charge density ha
pseudoscalar quantum numbers. This raises the
sibility that the QCD anomaly affects the lightest 0−+
glueball mass. Topological effects have so far not b
incorporated into our formalism. Doing so would r
quire modification of the vacuum ansatz to reflect
identification of gauge equivalent field configuratio
at the boundary of the fundamental modular regi
This allows contributions from field configuration
with nonzero topological charge. Indeed a cross-o
between the 0−+ and 2++ glueball masses has be
observed on the lattice as a function of the renorm
ized coupling [20] if boundary conditions are impose

Further aspects of the gluonic structure laid ou
Ref. [8] may be investigated by an examination
the adiabatic potential surfaces of heavy quark
brids (this probes nonperturbative gluon-confinem
potential couplings). Extensions to the light hyb
spectrum will prove of interest to searches for th
new states at Jefferson Lab. Finally, the short ra
structure of the meson sector is dominated by c
pled channel effects and nonperturbative gluodyn
ics. The wealth of experimental information in th
sector will provide a definitive test of the dynami
being advocated in our approach.
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