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Abstract

The complete low-lying positive charge conjugation glueball spectrum is obtained from QCD. The formalism relies on
the construction of an efficient quasiparticle gluon basis for Hamiltonian QCD in Coulomb gauge. The resulting rapidly
convergent Fock space expansion is exploited to derive quenched low-lying glueball masses with no free parameters which
are in remarkable agreement with lattice gauge theory.

0 2003 Published by Elsevier B.V.

1. Introduction Previous models of glueballs have relied on ad hoc
effective degrees of freedom such as flux tubes [3],
The scalar glueball has been called the fundamental P29S [4], or constituent gluons [5]. We note that some
particle of QCD [1]. Indeed, its existence and nonzero of the models listed in Ref. [5] construct states with
mass are a direct consequence of the non-Abelian massive gluons, while others either use transverse glu-
nature of QCD and the confinement phenomenon. It ©NS OF dynamically generated gluons masses. Models
is clear that finding and understanding the scalar (and " the former category contain spurious states due to
other) glueballs is a vital step in mastering low-energy 1€ Presence of unphysical longitudinal gluon modes.
QCD Sum rule computations of glueball properties exist [6],
Recently quenched lattice gauge theory has beenNOWeVer, they are based on phenomenological proper-
able to determine the low-lying glueball spectrum ties of the spectrun_"n. Finally, the conjectureq duality
with reasonable accuracy [2] (only very preliminary Petween supergravity and largégauge theories has

determinations of other matrix elements have been Pe€n used to compute thl? grl1ueball speclztrum :1” non-
attempted). These data serve as a useful benchmark i UP€rsymmetric Yang—Mills t eor;l/ bisﬁ \lllng the su-
the development of a qualitative model of the emergent PErgravity wave equations in a black hole geometry
properties of low-energy QCD. The models may then [7]. Unfortunately all of these approaches suffer from

be used to guide experimental glueball searches. weak or conjectured connections to QCD. -
We present a computation of the positive charge

conjugation glueball spectrum which arises from QCD
E-mail address: aszczepa@indiana.edu (A.P. Szczepaniak). and is systematically improvable. The computation
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is based on the formalism presented in Ref. [8] with the variational parameten(k) determined by

in which the QCD Hamiltonian in Coulomb gauge minimizing the vev of H. The correction terms in

is employed as a starting point. Coulomb gauge is §H include V3, and V4, which are the three- and
efficacious for the study of bound states because all four-gluon operators originating from the difference
degrees of freedom are physical (there are no ghostbetween the full and the Abelian chromomagnetic
fields in this gauge) and a positive definite norm field. V; denotes a contribution from the Faddeev—
exists [9]. Furthermore, resolving the Coulomb gauge Popov determinant in the kinetic term. The effects
constraint produces an instantaneous interaction (theof V; and the Faddeev—Popov determinant in the
non-Abelian analogue of the Coulomb interaction) functional integrals have recently being studied in
which, as shown in Ref. [8] may be used to generate Ref. [10] where it was found that its effects can be
bound states. Because the temporal component of theeffectively included in the variational parametetk).
vector potential is renormalization group invariant in  Finally, V¢ is the difference between the Coulomb
Coulomb gauge (this is not true in other gauges), operator and its vevk®. In the calculation of the
the instantaneous potential does not depend on theglueball spectrum it results in operators mixing two
ultraviolet regulator or the renormalization scale [12]. and three, quasiparticle wave functions. We note that
This fact permits a physical interpretation of the after renormalization the coupling is absorbed into
instantaneous potential which is a central aspect of our the Faddeev—Popov operator, which then defines the

formalism. Coulomb gauge analog of a ghost propagator [8,
The pure gauge QCD Hamiltonian may be written 10]. The renormalized effective potenti&l® is fixed
as [9] Hocp = Ho + § H with by comparing with the quenched lattice QCD static
potential. A very accurate representation of the static
Ho= }fdx [E2 + BZ] confinement potential is achieved [8].
2 The variational vacuum defined above also spec-

ifies a Fock space of quasiparticle excitations cor-
responding to effective gluonic degrees of freedom
(which we call quasigluons). Such quasigluons obey
“massive” dispersion relation in the variational vac-
SH = Va, + Vag + Vy + Ve. ©) uum and therefore im!or_ove the description of glugnic
bound states since mixing between states with differ-
Here B =V x A is the Abelian part of the chromo-  ent number of quasiparticles is suppressed due to their
magnetic field andE = —d/9tA is the chromoelec-  effective mass.
tric field. The third term inHp represents the non- The calculation of the vev of the Hamiltonian and
Abelian, instantaneous Coulomb interaction between the properties of the quasiparticle excitations were
color chargesp® = — f4*°E? . A, mediated by an ef-  discussed in Refs. [8,10,11]. These require solving a
fective potentialk © computed by taking a vacuum ex-  set of coupled integral Dyson equations and as a result

1
+5 / dxdy p* ) KQx —y)p®(y) (1)

and

pectation value of the Coulomb kernel, one finds that the functiom(k), which in a free theory
0 is given byw (k) = k, becomes finite a8 — 0. The
K" (X =Y)8ab value w(0) can be related to the slope of the static
=g2<¢,|[(v . D)—l(_VZ)(V . D)_l]x,a;y,b“p)’ potential at large distances.
(3

with D = §9bv — gfabcpc peing the covariant 2. Fock space expansion and the glueball

derivative in the adjoint representation. For the vac- spectrum

uum wave functional[A] = (A|¥) we take a varia-

tional ansatz, The quasigluons which emerge in the analysis of
Ref. [8] set the QCD scale parameter via the low

A“(k)a)(k)A“(—k)), (4) momentum dispersion relatiorpw(k — 0) = 1.4,
whererg is the lattice Sommer parameter. Using the

1 [ a3
lI/[A]:exp(—E )3
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Regge string tension g8 mass to fix the scale then with
givesw(0) = 600—650 MeV. It is natural to interpret

2
this scale as a dynamical gluon mas3hus the Ki1= Mw
formalism of Ref. [8] provides a justification of a 2/ =D@2J+3
Fock space expansion in terms of quasigluons and JU -1 o
gives the leading instantaneous interaction between 227 -DJ+1 T
the quasigluons. In view of this it is natural to attempt J+DH(J+2 v ©)
a description of low-lying glueballs in the pure gauge 22J +3)(2J + 1) I+2
sector of QCD. 3(J +2)(J — 1)

In this approach positive charge conjugation glue- K22= 2/ —D@2/+3) J
balls are dominated by the two quasigluon contribu- J+2U+1)
tion. These may mix with three and higher quasigluon 7_2
states via transverse gluon exchange (and, in general, 22/ + 12 =1
via any term iné H). Mixing with single quasigluon JU -1 Vo @)
states is excluded because color nonsinglet states are 227 +1)(2J +3)
removed from the spectrum due to infrared diver- gng
gences in the color nonsinglet spectrum [11]. Finally,
the scalar glueball is orthogonal to the vacuum due to K12 = K21
the form of the gap equation. _ —

The resulting bound state equations are shown in =VU-DJU+DU +2)
Eq. (5). There is one orbital component of glueball x [ 1 Vo
wave function for/? = 0+ and two forJ ¥ = (even> 227 +3)(2J +1)
2)*. These are denoted hy; (k), i = 1,2. The first n 1 v
term on the right-hand side of Eq. (5) represents the 22J+1)2J -1 =2
quasigluon kinetic energy (the gluon gap equation has 1
been employed to simplify the expression), the second T 2i+3@/ -1 Vl] ®)

term is the quasigluon self energy, and third represents )
the interaction between quasigluons in the channel of ~ 1he bound state equations for other glueballs are as

interest. ?n Eq. (5), with the gxception that the wave function
5 index takes on a single value. For these cases the
k% dk : ; _
- 20(0) 1Y k)2 m})eractlon kerrJlreIs are as follows: ‘
(2m) J¥ = (odd> 3)* (thereis no T gg glueball):
N¢ k?dk q?dq w(k) J42 J_1
T Zf (27)3 (27)3 w(q) K= 2J+1VJ—1+ —21+1V1+1; 9)
4 2 P _ —.
x [§v0+§v2]|wi<k)|2 /7= (even> 0
J+1
_ Ne [ K2dk g?dq (0(k) +w(q)? =571Vt 5 VO (10)
4 ) 23 212 wokow(q) JP — 0t
x Y (q)Kij(q, k) (k) _2 '
V2
k?dk K=>(Vo+—=). 11
=E/—3|x/f,-(k>|2, (5) 3( ot 2) (11)
(2m)

In all these relations the interaction is defined as

1 The relationship of a dynamical gluon mass to vortex-driven 1

confinement and gauge symmetry breaking is thoroughly discussed Vi(g, k) =21 / dx K(O) (g, k,x = |2 . q) Py (x) (12)
by Cornwall; see, for example, the second and third references
of [5]. -1
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and the potentialk @ (g, k, x) is that derived in varied to ensure that the procedure is stable and that

Ref. [8] with the QCD scale chosen to lag(0) = the coupling remains “natural” (of order unity). To

600 MeV. Finally we note that there are o’ = maintain consistency the effect of these terms should
(odd)~, or C = — glueballs at lowest order in the Fock  be incorporated into the quasigluon gap equation and
space expansion. the gluon self energy. However, it may be shown

that the effect of contact terms are canceled in the
bound state equation when the gap equation is used to
3. Higher order corrections simplify the quasigluon kinetic and self energies. This
is not true for the high-momentum gluon exchange
It is of course desirable to test the efficacy of terms which add a UV dominated correction to the
the Fock space expansion employed here by explic- single gluon kinetic energy. These have negligible
itly checking the effect of coupling to the three or effect on low energy spectrum and have been ignored.
higher quasigluon spectrum. This is a difficult cou-
pled channel problem and we therefore content our-
selves with a perturbative evaluation of these effects in 4. Results and conclusions
this initial study. Specifically, the energy sh&E, =
> 1(gg|8H|m(ggg))1?/(En — En) must be evalu- The lowest order predictions for the quenched pos-
ated. Duality implies that when the energy transfer is itive charge conjugation glueball spectrum are pre-
large,(E, — E;n) > A, whereA is of the order of the  sented in Table 1. We stress that there are no free para-
QCD scale, this sum may be evaluated in its pertur- meters in this computation; the renormalization group
bative form (with partonic gluons in the intermedi- parameters and the scale were fixed by comparison to
ate state). We compute here the effects of the three-the Wilson loop static interaction [8]. Although one
gluon coupling from§ /. This is the leading interac-  may anticipate splittings on the order of 100 MeV due
tion in terms of expansion in the coupling constant. to coupled channel effects, the general agreement with
After renormalizatiorg?/4m — a(p?) wherep? rep- lattice data is quite good (the? per degree of freedom
resents a characteristic momentum in integrals when for the six measured lowest spin-parity states is 1.5).
computing matrix elements. The running coupling ex- Nevertheless we note that the authors of Ref. [2] state
pansion for the remaining sum over low energy modes that the 3+ may have significant mixing with higher
is certainly less justifiable, however as shown in ex- states and the quoted# mass should be regarded as
amples in Ref. [8], such soft corrections also seem to preliminary.
be small. For numerical efficiency the low energy part Although it appears to be difficult to push lattice
of the guasigluon exchange was approximated with a mass computations above 4 GeV it would be interest-
local four-gluon interaction (we note that this effective ing to measure the quenchedglueball mass to test
interaction also accounts for the four-gluon interaction the prediction made in Table 1. Lastly we note that
present in the Hamiltonian) all radial excitations lie roughly 1 GeV above their re-
4%, d% dks dkq spective _ground s_tatesz e>.<cept thet4 We hg\{e no
3 3 3 3 explanation for this curiosity, but note that it implies
(2m)* (2m)* (2m)* (2) that lattice extractions of thet4 mass must be made
x (21)38 (k1 + k2 + k3 +ka) with great care.
x exp(—(kf + kg + k§ + kﬁ)/Az) We note that the degeneracy between parity states
b B d . reported in the first reference of [5] is not seen
x A7 (kp) A5 (k2) A7 (k) A5 (Ka), (13) here. We suspect that the degeneracy is due to the
whereC is a dimensionless parameter of the order of nonrelativistic expansion of the interaction kernel
g%(A) ~ 1. Standard effective field theory techniques made in that reference.
were subsequently employed: the factorization scale  As stated above, coupled channel effects are ex-
A was chosen and the coupling was fixed by pected to modify the spectrum at the 10-100 MeV
comparison to the lattice scalar glueball mass. Other level. As an initial estimate of the size of these effects
mass predictions then follow. The scatewas then we simply seC =0 (Eg. (13)) and evaluate the energy

VC — C(A)fabc]cade
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Table 1
Glueball spectrum

State This work LGT (GeV) Ref.
(no mixing)

ot+ 1.98 173(5)(8) 212
1.754(85)(86) [15]
1.627(83) [16]
1.686(24)(10) [19]
1.645(50) (18]
1.61(7)(13 [17]

ot+’ 3.26 267(18)(13) [2]

2+ 242 240(2.5)(12) [2]
2.417(56) (117 [15]
2.354(95) [16]
2.26(12)(18) [17]
2.380(67)(14) [19]
2.337(100 [18]

2T+ 311 349943)(35) [13]

(O 2.22 259(4)(13) [2]
2.19(26)(18) [17]

(ot 343 364(6)(18) [2]

2=t 3.09 310(3)(15) [2]

2=t/ 413 389(4)(19) [2]

3t+ 333 369(4)(18)° (2]

3T+ 4.29

4+ 3.99 365(6)(18) [14]

4+ 4.28

4+ 4.27

4=+ 4.98

& The first error is combined statistical and systematic, the
second is from scale fixing.
b possible mixing with higher states.

shift due to perturbative one-gluon exchange. As ex-
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Fluctuations of the topological charge density have
pseudoscalar quantum numbers. This raises the pos-
sibility that the QCD anomaly affects the lightest0
glueball mass. Topological effects have so far not been
incorporated into our formalism. Doing so would re-
quire modification of the vacuum ansatz to reflect the
identification of gauge equivalent field configurations
at the boundary of the fundamental modular region.
This allows contributions from field configurations
with nonzero topological charge. Indeed a cross-over
between the 0" and 2"+ glueball masses has been
observed on the lattice as a function of the renormal-
ized coupling [20] if boundary conditions are imposed.

Further aspects of the gluonic structure laid out in
Ref. [8] may be investigated by an examination of
the adiabatic potential surfaces of heavy quark hy-
brids (this probes nonperturbative gluon-confinement
potential couplings). Extensions to the light hybrid
spectrum will prove of interest to searches for these
new states at Jefferson Lab. Finally, the short range
structure of the meson sector is dominated by cou-
pled channel effects and nonperturbative gluodynam-
ics. The wealth of experimental information in this
sector will provide a definitive test of the dynamics
being advocated in our approach.
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shift, with a reduction in mass of roughly 200 MeV
(from 1980 to 1790 MeV). It is gratifying that this
brings the scalar glueball into excellent agreement
with lattice gauge theory. We proceed by incorporat-
ing the effective contact interaction. The factorization
scale was varied betweer2d and 10 GeV, stable re-
sults were found between 1 and 8 GeV, with a value
of C given roughly by—0.4 in this range. We find
that the tensor glueball mass is reduced by roughly
100 MeV, while other masses experience somewhat
smaller shifts. Thus it appears that low-lying glueballs
are indeed dominated by their two-quasigluon Fock
components. However it is clear that a careful exami-
nation of coupled channel effects and better lattice data
are required to make a definite statement about the ef-
ficacy of our approach.

References

[1] G.B. West, Phys. Rev. Lett. 77 (1996) 2622;
H. Fritzsch, P. Minkowski, Nuovo Cimento A 30 (1975) 393.
[2] C.J. Morningstar, M.J. Peardon, Phys. Rev. D 60 (1999)
034509.
[3] N. Isgur, J. Paton, Phys. Rev. D 31 (1985) 2910.
[4] J.F. Donoghue, K. Johnson, B.A. Li, Phys. Lett. B 99 (1981)
416;
T. Barnes, F.E. Close, S. Monaghan, Phys. Lett. B 110 (1982)
159.
[5] T. Barnes, Z. Phys. C 10 (1981) 275;
J.M. Cornwall, Phys. Rev. D 26 (1982) 1453;
J.M. Cornwall, A. Soni, Phys. Lett. B 120 (1983) 431,
W.S. Hou, C.S. Luo, G.G. Wong, Phys. Rev. D 64 (2001)
014028;



66 A.P. Szczepaniak, E.S Swanson / Physics Letters B 577 (2003) 61-66

A.P. Szczepaniak, E.S. Swanson, C.-R. Ji, S.R. Cotanch, Phys. [10] A.P. Szczepaniak, hep-ph/0306030.

Rev. Lett. 76 (1996) 2011; [11] A.P. Szczepaniak, E.S. Swanson, Phys. Rev. D 62 (2000)
V.N. Pervushin, Y.L. Kalinovsky, W. Kallies, N.A. Sarikov, 094027.
Fortschr. Phys. 38 (1990) 334; [12] D. Zwanziger, hep-lat/0209105;
D. Robson, Nucl. Phys. B 130 (1977) 328; D. Zwanziger, Nucl. Phys. B 518 (1998) 237.
J. Coyne, P. Fishbane, S. Meshkov, Phys. Lett. B 91 (1980) [13] C.J. Morningstar, M.J. Peardon, Phys. Rev. D 56 (1997) 4043.
259. [14] D.Q. Liu, .M. Wu, Mod. Phys. Lett. A 17 (2002) 1419.
[6] T. Huang, H.Y. Jin, A.L. Zhang, Phys. Rev. D 59 (1999) [15] D.Q. Liu, J.M. Wu, Y. Chen, High Energy Phys. Nucl. Phys. 26
034026; (2002) 222.
L.S. Kisslinger, M.B. Johnson, Phys. Lett. B 523 (2001) 127.  [16] F. Niedermayer, P. Rufenacht, U. Wenger, Nucl. Phys. B 597
[7] C. Csaki, H. Ooguri, Y. Oz, J. Terning, JHEP 9901 (1999) 017; (2001) 413.
R.C. Brower, S.D. Mathur, C.I. Tan, Nucl. Phys. B 587 (2000) [17] M.J. Teper, hep-lat/9711011.
249; [18] G.S. Bali, K. Schilling, A. Hulsebos, A.C. Irving, C. Michael,
N.R. Constable, R.C. Myers, JHEP 9910 (1999) 037. P.W. Stephenson, UKQCD Collaboration, Phys. Lett. B 309
[8] A.P. Szczepaniak, E.S. Swanson, Phys. Rev. D 65 (2002) (1993) 378.
025012. [19] W.J. Lee, D. Weingarten, hep-lat/9805029;
[9] J. Schwinger, Phys. Rev. 127 (1962) 324; H. Chen, J. Sexton, A. Vaccarino, D. Weingarten, Nucl. Phys.
1.B. Khriplovich, Yad. Fiz. 10 (1969) 409; B (Proc. Suppl.) 34 (1994) 357.
N.H. Christ, T.D. Lee, Phys. Rev. D 22 (1980) 939; [20] B. van den Heuvel, Nucl. Phys. B 488 (1997) 282;
V.N. Gribov, Nucl. Phys. B 139 (1978) 1; P. van Baal, Nucl. Phys. B (Proc. Suppl.) 63 (1998) 126.

D. Zwanziger, Nucl. Phys. B 485 (1997) 185.



	The low-lying glueball spectrum
	Introduction
	Fock space expansion and the glueball spectrum
	Higher order corrections
	Results and conclusions
	Acknowledgements
	References


