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abstract

If the decay ω → γ + π0 is involved in parallel sequential decays, then it is
essential that a single helicity frame be used for the ω decay. The same comments
apply to an analysis involving the treatment of N in Nππ systems.

It is shown that the decay amplitudes in canonical formalism provide an
efficient method for dealing with non-zero spins in the final states.

∗ under contract number DE-AC02-98CH10886 with the U.S. Department of Energy



1 Introduction

Consider a three-body system consisting of (s+π1 +π′
1 ), with two possible intermediate

states j → s+π1 and j ′ → s+π′
1, which is followed by s→ s1 +π2. We will take a concrete

example where s is the ω, with a decay chain ω → γ + π0. In this case then, s1 is a photon,
and so s = s1 = 1 and π2 = π0.

Let J be the spin of the parent system. Then we have

J → j(Ω0) + π′
1, j → s(Ω) + π1, s→ s1(Ω2) + π2

J → j ′(Ω′
0) + π1, j ′ → s(Ω′) + π′

1, s→ s1(Ω
′
2) + π2

(1.1)

where Ω0 = (θ0, φ0) is the direction of j in the parent rest frame, and similarly for j ′; Ω
describes s in the j RF (rest frame), while Ω2 refers to s1 in the sRF.

The decay ω → γ+π0 must be described by a single frame in a given problem, but there
are, in our example (1.1), three different frames Ω2 and Ω′

2 in which the decay amplitudes
are given. So we need to recast them into a single given frame. The purpose of this note is
to show how this can be accomplished and illustrated with a simple but important reaction.

We shall employ the helicity formalism to describe the ‘parallel sequential decays’ given
in (1.1). The canonical and helicity rest frames are illustrated in Fig.1b.
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Figure 1: The orientation of the coordinate systems associated with a particle at rest in the (a)

canonical (x̂c, ŷc, ẑc), and (b) helicity description (x̂h = ŷh × ẑh, ŷh ∝ ẑ × p̂, ẑh = p̂).

In Section 2, we consider the decay amplitudes for j, j ′ and s to illustrate the principles; in
section 3 we treat the decay of J as well—for a simple, but practically important, example.
Section 4 is reserved for a treatment of N in the Nππ system. The decay amplitudes in
canonical formalism are given in Section 5. Conclusions are given Section 6.
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2 Parallel Sequential Decays

We use the helicity description for the decay amplitude for j → s+ π1

Aj
λj λ(Ω) = Nj F

j
λ D

j ∗
λjλ(φ, θ, 0), Nj =

√

2j + 1

4π
(2.1a)

F j
λ =

∑

`

(

2`+ 1

2j + 1

)1/2

Gj
` (`0 sλ|jλ) (2.1b)

where Ω = (θ, φ) describes the direction of s in the j RF (rest frame) [see Fig. 1b], and Gj
` is

the decay coupling constant for j → s+π1 with an orbital angular momentum `. The decay
amplitude for j → s+ π1, followed by s→ s1 + π2, is

Aj
λj λ1

(Ω,Ω2) = Nj Ns

∑

λ

Aj
λj λ(Ω) f s

λ1
D s∗

λ λ1
(φ2, θ2, 0), Ns =

√

2s+ 1

4π

= Nj Ns

∑

λ

F j
λ D

j ∗
λjλ(φ, θ, 0) f s

λ1
D s∗

λλ1
(φ2, θ2, 0) (2.2a)

f s
λ1

is the helicity-coupling amplitude corresponding to s → s1 + π2. For the example of
ω → γ+π0, we have f s

± = −f s
∓ and f s

0 = 0. The angles Ω2 = (θ2, φ2) describes the direction
of s1 in the sRF [see Fig. 1b].

The amplitude corresponding to the decay chain j ′ → s+ π′
1, followed by s→ s1 + π2, is

Aj ′

λ′

j λ1
(Ω′,Ω′

2) = Nj′ Ns

∑

λ

F j′

λ Dj′ ∗
λ′

jλ(φ′, θ′, 0) f s
λ1
D s∗

λ λ1
(φ′

2, θ
′
2, 0), Nj′ =

√

2j ′ + 1

4π

F j ′

λ =
∑

`′

(

2`′ + 1

2j ′ + 1

)1/2

Gj ′

`′ (`′0 sλ|j ′λ) (2.2b)

The angles Ω′ = (θ′, φ′) correspond to the direction s in the j ′ RF, while the angles Ω′
2 =

(θ′1, φ
′
2) describe the direction of s1 in the sRF. It is clear that the angles Ω2 and Ω′

2 are
different, because of the different paths taken to get to the sRF.

We need to employ a single amplitude for the decay s → s1 + π2. For this purpose, we
note that there is yet another way to describe the s decay; we can in fact go directly from
the J RF to the sRF, without going through the intermediate steps of j, and j ′. The decay
amplitude for this case is

As
λ λ1

(Ω1) = Ns f
s

λ1
D s∗

λ λ1
(φ1, θ1, 0) (2.3)

The angles Ω1 = (θ1, φ1) are of course different from Ω2 and Ω′
2.
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3 Amplitudes for p̄p→ ω + π0
+ π0

It is instructive to apply the above results to a problem considered by Giarritta[2]:

p̄p|rest(3S1 or 1P1) → ω + π0(π1) + π0(π′
1) ω → γ + π0(π2) (3.1)

So we have J = 1 for the parent system. We fix the coordinate system in the decay plane, such
that the z-axis is along the direction of ω and the y-axis is along the decay normal, ŷ ∝ ~ω×~π1.
We shall consider two intermediate states b1(1235) → ω+π1 and b′1(1235) → ω+π′

1, so that
we have j = j ′ = s = s1 = 1. The analogue of (1.1) for this example is

J −→
L

j(Ω0) + π′
1, j−→̀ s(Ω) + π1, s→ s1(Ω2) + π2

J −→
L′

j ′(Ω′
0) + π1, j ′−→

` ′

s(Ω′) + π′
1, s→ s1(Ω

′
2) + π2

(3.2)

where L (L′) and ` (` ′) are the orbital angular momenta in J and j(j ′) RFs, respectively.

The processes outlined in (3.2) are illustrated in Fig. 2. The amplitudes for J → j(Ω0)+π
′
1

�

���

����

���

	 �

� �	 �

�
	


��

�
�

�

� 






 


�

�

���	 �

� ��	 � �

Figure 2: The process p̄p → ω + π1 + π′
1. See (3.2) for the notations. From the p̄p RF(rest frame),

we go into the j RF or j ′ RF and then to the ω RF via pure time-like Lorentz transformations.

The coordinate system (x̂0, ŷ0, ẑ0) in the p̄p RF is such that ẑ0 is along the direction of ω and ŷ0 is

along the normal to the reaction plane (out of the paper). The helicity frames in j RF and j ′ RF

are denoted (x̂, ŷ, ẑ) and (x̂′, ŷ′, ẑ′). Two helicity frames for the ω RF are shown: (x̂2, ŷ2, ẑ2) and

(x̂′
2, ŷ

′
2, ẑ

′
2). The relevant angles are Ω0 = (θ0, 0), Ω′

0 = (θ′0, π), Ω = (θ,−π) and Ω′ = (θ′,−π). The

third helicity frame for the ω RF coincides with (x̂0, ŷ0, ẑ0).

and J → j ′(Ω′
0) + π1 are

AJ j
M λj

(Ω0) = NJ H
J
λj
DJ ∗

M λj
(0, θ0, 0) = HJ

λj
d J

M λj
(θ0), NJ =

√

2J + 1

4π

AJ j′

M λ′

j
(Ω′

0) = NJ H̄
J
λ′

j
DJ ∗

M λ′

j
(π, θ′0, 0) = exp[iM π] H̄J

λ′

j
d J

M λ′

j
(θ′0)

(3.3)
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where

HJ
λj

=
∑

L

(

2L + 1

2J + 1

)1/2

KJ
L (L0 jλj|Jλj)

H̄J
λ′

j
=

∑

L′

(

2L + 1

2J + 1

)1/2

K̄J
L′ (L′0 j ′λ′j|Jλ′j)

(3.4)

We allow for different states for j and j ′; for example, the j could stand for the b1(1235),
while the j ′ might represent the ρ(1700). The ‘bar’s over HJ and KJ indicate different
amplitudes for these states. However, if both intermediate states happen to be the b1(1235),
then the Bose symmetrization requires that H̄J = HJ and K̄J = KJ .

A state |sλ〉 for ω in (x̂2, ŷ2, ẑ2), more precisely to be denoted |sλ〉
2
, can be described by

a state |sν〉
0

given in (x̂0, ŷ0, ẑ0) via

|sλ〉
0

= R(π, β, 0) |sλ〉
2

(3.5)

so that

|sλ〉
2

= R†(π, β, 0) |sλ〉
0

=
∑

ν

|sν〉
0 0
〈sν|R†(π, β, 0) |sλ〉

0
=

∑

ν

D s∗
λ ν (π, β, 0) |sν〉

0 (3.6)

using unitarity of the D-functions. The decay amplitude (2.1) must be modified [see Ap-
pendix A] according to

Aj
λj λ(Ω) ≡

2
〈sλ|ψ〉 =⇒

0
〈sν|ψ〉 =

∑

λ
0
〈sν|sλ〉

2 2
〈sλ|ψ〉

=
∑

λ

D s∗
λ ν (π, β, 0)

2
〈sλ|ψ〉 ≡ Aj

λj ν(Ω, R)
(3.7)

so that it is now measured with respect to the state |sν〉
0

with a sum over λ

Aj
λj ν(Ω, R) =

∑

λ

Aj
λj λ(Ω)D s∗

λ ν (π, β, 0)

= Nj

∑

λ

F j
λ D

j ∗
λjλ(−π, θ, 0)D s∗

λ ν (π, β, 0)

= Nj

∑

λ

(−)−λj+λ F j
λ d

j
λjλ(θ) d

s
λ ν(β)

(3.8)

where R = R(π, β, 0) and Ω = (θ,−π). So the overall decay amplitude is

AJ j
M ν(Ω0,Ω, R) = NJ Nj

∑

λj

HJ
λj
d J

M λj
(θ0)

∑

λ

(−)λj−λ F j
λ d

j
λjλ(θ) d

s
λ ν(β) (3.9)

Note that the appearance of two rotations R(π, β, 0) and R(−π, θ, 0) with the second rotation
around the z-axis by −π. Consider a special case with θ0 = θ = β = 0. For this case, we
need to ensure that there be no net rotation of the coordinate axes, because there would
have been a rotation around by 2π and a spurious phase (−)2 m π for a z-component of spin
m, had the second rotation been R(+π, θ, 0) instead of R(−π, θ, 0).
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Consider next the decay amplitude for J → j ′ + π − 1 with j ′ → s+ π′
1. The |sλ〉′

2
for ω

in (x̂′2, ŷ
′
2, ẑ

′
2) can be expressed by

|sλ〉
0

= R(0, β ′, 0) |sλ〉′

2

|sλ〉′

2
= R†(0, β ′, 0) |sλ〉

0
=

∑

ν

d s
λ ν(β

′ ) |sν〉
0

(3.10)

The overall decay amplitude with respect to the state |sν〉
0

is, with R′ = R(0, β ′, 0) and
Ω′ = (θ′,−π),

AJ j′

M ν(Ω0,Ω
′, R′) = NJ Nj′

∑

λ′

j

(−)M−λ′

j H̄J
λ′

j
d J

M λ′

j
(θ′0)

∑

λ

F j′

λ d j′

λ′

jλ(θ
′) d s

λ ν(β
′ )

(3.11)

Once again, we note that there are two rotations R(π, θ′0, 0) and R(−π, θ′, 0), with the second
z-rotation given by −π. The |sν〉

0
decay itself, i.e. ω → γ + π0, is given in the standard

helicity prescription
〈Ω1, λ1|Ms|sν〉

0
= Ns f

s
λ1
D s∗

ν λ1
(φ1, θ1, 0) (3.12)

So we find, summing over ν,

AJ j
M λ1

(Ω0,Ω, R,Ω1) = NJ Nj

∑

λj

HJ
λj
d J

M λj
(θ0)

×
∑

λ

(−)λj−λ F j
λ d

j
λjλ(θ)

∑

ν

d s
λ ν(β) f s

λ1
D s∗

ν λ1
(φ1, θ1, 0)

(3.13)

and

AJ j′

M λ1
(Ω′

0,Ω
′, R′,Ω1) = NJ Nj′

∑

λ′

j

(−)M−λ′

j H̄J
λ′

j
d J

M λ′

j
(θ′0)

×
∑

λ

F j′

λ d j′

λ′

jλ(θ
′)

∑

ν

d s
λ ν(β

′ ) f s
λ1
D s∗

ν λ1
(φ1, θ1, 0)

(3.14)

The formulas above give the s (or γ) and its helicity λ1 in a single given frame—the desired
result and the purpose of this note.

For completeness, we shall work out the third type of isobar for (3.1), i.e. that of the
dipion system π1 + π′

1 described by |`3 λ3〉.

J −→
L3

`3(Ω3) + s, s→ s1(Ω1) + π2 (3.15)

The overall decay amplitude for |JM〉 → |sλ〉 + |`3 λ3〉 is

AJ `3
M λ1

(Ω3,Ω1) = NJ N`3

∑

λ λ3

EJ
λ λ3

DJ ∗
M λ−λ3

(0, 0, 0)

×D`3 ∗
λ3 0(φ3, θ3, 0)As

λλ1
(Ω1), N`3 =

√

2`3 + 1

4π

(3.16)
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Note that M = λ− λ3. E
J
λ λ3

is the usual helicity-coupling amplitude

EJ
λ λ3

=
∑

L3 S

(

2L3 + 1

2J + 1

)1/2

QJ
L3 S (L3 0 SM |JM)(s λ `3 −λ3|SM) (3.17)

where
|`3 − s| ≤ S ≤ `3 + s and |J − S| ≤ `0 ≤ J + S (3.18)

Ω3(θ3, φ3) is measured in the dipion RF defined by (−x̂0, ŷ0,−ẑ0). In general, φ3 = 0 or
φ3 = π, but we can always set φ3 = 0 by allowing negative values of θ3, i.e. −π < θ3 < π.
The overall amplitude becomes

AJ `3
M λ1

(Ω3,Ω1) = NJ N`3 Ns

∑

λ3

EJ
λ λ3

d `3
λ3 0(θ3) f

s
λ1
D s∗

λ λ1
(φ1, θ1, 0) (3.19)

where λ = M + λ3 and so there is no summation on λ.

In order to gain insight to the problem at hand, we shall work out the full amplitude
incorporating three different isobars. Observe

AJ
M λ1

= VJj A
J j
M λ1

(Ω0,Ω, R,Ω1) + VJj′ AJ j′

M λ1
(Ω′

0,Ω
′, R′,Ω1) + VJ`3 A

J `3
M λ1

(Ω1,Ω3) (3.20)

where VJj, VJj′ and VJ`3 are the parameters (complex in general) which govern the strength
of each isobar. The parameters should be a function of J but not of either M or the photon
helicity λ1. We see that, absorbing the normalization constants N into V ,

AJ
M λ1

= VJj







∑

λj

HJ
λj
d J

M λj
(θ0)

∑

λ

(−)λj−λ F j
λ d

j
λjλ(θ)

×
∑

ν

d s
λ ν(β)

}

f s
λ1
D s∗

ν λ1
(φ1, θ1, 0)

+VJj′







∑

λ′

j

(−)M−λ′

j H̄J
λ′

j
d J

M λ′

j
(θ′0)

∑

λ

F j′

λ d j′

λ′

jλ(θ
′)

×
∑

ν

d s
λ ν(β

′ )

}

f s
λ1
D s∗

ν λ1
(φ1, θ1, 0)

+VJ`3

{

∑

λ3

EJ
ν λ3

d `3
λ3 0(θ3)

}

f s
λ1
D s∗

ν λ1
(φ1, θ1, 0)

(3.21)

where ν = M + λ3 in the third term. The decay amplitude for ω → γ + π0 can now be
factored out in the expression given above.
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4 Nππ Systems

Consider the system Nπ1π
′
1 where N is a nucleon and there are two possible isobars Nπ1

and Nπ′
1. We use Fig. 2 in which the ω replaced by a nucleon N . So we now have s = 1/2.

The appropriate decay amplitude for a final state containing |sν〉
0

have already been given
in (3.9) and (3.11). The full amplitude is, absorbing the normalization constants N into V ,

AJ
M ν = VJj







∑

λj

HJ
λj
d J

M λj
(θ0)

∑

λ

(−)λj−λ F j
λ d

j
λjλ(θ) d

s
λ ν(β)







+ VJj′







∑

λ′

j

(−)M−λ′

j H̄J
λ′

j
d J

M λ′

j
(θ′0)

∑

λ

F j′

λ d j′

λ′

jλ(θ
′) d s

λ ν(β
′ )







+ VJ`3 E
J
ν λ3

d `3
λ3 0(θ3)

(4.1)

where ν = M+λ3. All three amplitudes above are now expressed in terms of a single nucleon
state |sν〉

0
defined in the coordinate system (x̂0, ŷ0, ẑ0).

5 Alternative Approach

The extra rotations by the Euler angles of previous sections can be avoided if canonical
frames had been employed for the intermediate states [see Fig. 1a]. See Appendix B for a
canonical prescription for dealing with general two-body decays.

For j → s+ π1 we have

Aj
mjν(Ωc) ∝ 〈Ωc sν|Mj|jmj〉

∝
∑

`

〈Ωc sν|jmj ` 〉〈jmj `|Mj|jmj〉 (5.1)

where Ωc describes the the direction of s in the canonical jRF and ν is the z-component of
spin s in the canonical sRF. Setting

Gj
` ∝ 〈jmj `|Mj|jmj〉 (5.2)

we see that, with m = mj − ν,

Aj
mjν(Ωc) =

∑

`

Gj
` (`m sν|jmj)Y

`
m(Ωc)

=
∑

`

N`G
j
` (`m sν|jmj)D

`∗
m 0(φc, θc, 0)

=
∑

`

N`G
j
` (`m sν|jmj) d

`
m 0(−θc), θc > 0

= (−)mj−ν
∑

`

N`G
j
` (`m sν|jmj) d

`
m 0(θc), θc > 0

(5.3)
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where φc = 0 and, from Appendix A of Ref.[1],

Y `
m(Ω) = N`D

`∗
m 0(φ, θ, 0), N` =

√

2`+ 1

4π
(5.4)

Likewise, for J → j + π′
1 we find

AJ j
M mj

(Ω0) =
∑

L

NLK
J
L (LM

L
jmj|JM)DL∗

M
L

0(φ0, θ0, 0), NL =

√

2L + 1

4π

=
∑

L

NLK
J
L (LM

L
jmj|JM) dL

M
L

0(θ0)

(5.5)

with φ0 = 0 and M
L

= M −mj.

The decay amplitude for J → j + π′
1 followed by j → s+ π1 is

AJ j
M ν(Ω0,Ωc) =

∑

L mj

NLK
J
L (LM

L
jmj|JM) dL

M
L

0(θ0)

× (−)mj−ν
∑

`

N`G
j
` (`m sν|jmj) d

`
m 0(θc)

(5.6)

Consider a special case L = M
L
= ` = m = 0. We then see that J = j = s and M = mj = ν.

In this case, the amplitude is independent of the angles Ω0 and Ωc and it is proportional to

AJ j
M ν(Ω0,Ωc) =

1

4π
KJ

0 G
j
0 (5.7)

where M = mj = ν. But we must obtain the same result from (3.9). For the purpose, we
first note that

HJ
λj

=
1√

2J + 1
KJ

0 and F j
λ =

1√
2j + 1

Gj
0 (5.8)

independent of the helicities. Setting J and s to j, and using the well-known property of the
d-functions [3]

dj
m′m(−β) = (−)m′−m dj

m′m(β), dj
mm′(β) = (−)m′−m dj

m′m(β), (5.9)

we find

AJ j
M ν(Ω0,Ω, R) = N2

j

∑

λj

Hj
λj
d j

M λj
(θ0)

∑

λ

(−)λj−λ F j
λ d

j
λjλ(θ) d

j
λ ν(β)

= N2
j

∑

λj

(−)M−λj Hj
λj
d j

M λj
(−θ0)

∑

λ

F j
λ d

j
λjλ(θ) d

j
λ ν(−β)

=
(−)M−ν

4π
KJ

0 G
j
0

∑

λj

d j
M λj

(−θ0)
∑

λ

d j
λjλ(θ) d

j
λ ν(−β)

=
1

4π
KJ

0 G
j
0 d

j
M ν(−θ0 + θ − β) =

1

4π
KJ

0 G
j
0

(5.10)
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since M = ν and −θ0 + θ − β = 0. That θ is equal to θ0 + β can be seen in Fig. 2, by
drawing the axes z0 and x0 at jRF, but this can also be checked explicitly by working out
one example with relevant angles in detail (see Appendix C).

Likewise, the decay amplitude for J → j ′ + π1 followed by j ′ → s+ π′
1 is

AJ j′

M ν(Ω
′
0,Ω

′
c) =

∑

L′ m′

j

NL′ KJ
L′ (L′M ′

L
j ′m′

j|JM) dL′

M ′

L
0(θ

′
0)

× (−)m′

j−ν
∑

` ν

N`G
j′

` (`m sν|j ′m′
j) d

`
m 0(θ

′
c)

(5.11)

Again, if L′ = M ′
L
= ` = m = 0, then the amplitude is independent of the angles Ω′

0 and Ω′
c

and it is given by

AJ j′

M ν(Ω
′
0,Ω

′
c) =

1

4π
KJ

0 G
j′

0 (5.12)

where M = m′
j = ν. We should obtain the same result from (3.11). Setting J = j ′ = s, we

obtain

AJ j′

M ν(Ω0,Ω
′, R′) = NJ Nj′

∑

λ′

j

(−)M−λ′

j H̄J
λ′

j
d J

M λ′

j
(θ′0)

∑

λ

F j′

λ d j′

λ′

jλ(θ
′) d s

λ ν(β
′ )

= N2
j′

∑

λ′

j

H̄J
λ′

j
d J

M λ′

j
(−θ′0)

∑

λ

F j′

λ d j′

λ′

j
λ(θ

′) d s
λ ν(β

′ )

=
1

4π
KJ

0 G
j′

0 d
j′

M ν(−θ′0 + θ′ + β ′) =
1

4π
KJ

0 G
j′

0

(5.13)

since M = ν and −θ′0 + θ + β ′ = 0 (see Appendix C).

Because of the use of canonical rest frames, the ket state |sν〉 is given in a common rest
frame. Its decay into γ + π0 is nevertheless most efficiently described in the helicity basis,
as shown in (2.3). So we see that we have adopted here a mixture of canonical and helicity
prescriptions for decay amplitudes. The overall decay amplitude which includes s→ s1 + π2

is, absorbing Ns and N`3 into appropriate V ’s,

AJ
M ν1

= VJj







∑

Lmj

NLK
J
L (LM

L
jmj|JM) dL

M
L

0(θ0)

×(−)mj−ν
∑

` ν

N`G
j
` (`m sν|jmj) d

`
m 0(θc)

}

f s
ν1
D s∗

ν ν1
(φ1, θ1, 0)

+VJj′







∑

L′ m′

j

NL′ KJ
L′ (L′M ′

L
j ′m′

j|JM) dL′

M ′

L
0(θ

′
0)

×(−)m′

j−ν
∑

` ν

N`G
j′

` (`m sν|j ′m′
j) d

`
m 0(θ

′
c)

}

f s
ν1
D s∗

ν ν1
(φ1, θ1, 0)

+VJ`3

{

∑

λ3

EJ
ν λ3

d `3
λ3 0(θ3)

}

f s
ν1
D s∗

ν ν1
(φ1, θ1, 0)

(5.14)
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where ν = M + λ3 in the third term. This is to be compared with (3.21).

The amplitude for Nπ1π
′
1 systems is, from (5.14), absorbing N`3 into VJ`3,

AJ
M ν =VJj







∑

L mj

NLK
J
L (LM

L
jmj|JM) dL

M
L

0(θ0)

×(−)mj−ν
∑

`

N`G
j
` (`m sν|jmj) d

`
m 0(θc)

}

+VJj′







∑

L′ m′

j

NL′ KJ
L′ (L′M ′

L
j ′m′

j|JM) dL′

M ′

L
0(θ

′
0)

×(−)m′

j−ν
∑

`

N`G
j′

` (`m sν|j ′m′
j) d

`
m 0(θ

′
c)

}

+VJ`3

{

∑

λ3

EJ
ν λ3

d `3
λ3 0(θ3)

}

(5.15)

which is to be comapred with (4.1).

6 Conclusions

The purpose of this note has been to show how one should treat the decay ω → γ + π0,
when it is observed through more than one sequential decays. The general solution requires
introduction of additional sets of Euler angles, applied to ω before it is allowed to decay (this
is because the helicity-coupling amplitudes f s

λ1
and the accompanying D-functions both

depend on the photon helicity λ1). In his thesis, Giarritta seems to imply that a general
solution requires introduction of a third angle in the D-functions. It has been shown in this
note that this is not the case.

The extra rotations are required because the γ helicity (λ1 = ±1) is an ‘external variable’
(even though it is eventually summed over outside of the overall amplitudes squared), and
hence it needs to be evaluated in a single frame. The reason we do not need this extra step,
e.g. for the decay ρ→ ππ, is that the decay products are both spinless. One recalls that the
decay amplitude for ω → 3π is formally identical to ρ → 2π, because its ‘helicity-coupling
amplitude’ are F± = 0 and F0 6= 0, and so the ω helicities do not appear in the amplitudes
(see Section 6, ref. [1]). This is simply an accident of the fact that we have JP = 1− for the
ω. If the ω had been JP = 1+, then the nonzero ‘helicity-coupling amplitude’ would have
been F± 6= 0 and F0 = 0 and so the ω helicities would have appeared as ‘external’ variables.

An analysis of Nππ systems in which there are two different Nπ isobars requires a similar
treatment.
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We have shown that a better treatment of the nonzero spins in the final states is to
employ the canonical prescription for decay amplitudes.

Appendix A:

Two-Body decays in Helicity Formalism

We start with a decay amplitude in helicity formalism and use it to derive the recoupling
coefficient between the rotationally invariant decay amplitudes in helicity and canonical
formalism. See Section 4 of Ref.[1] for a standard treatment of this problem; our purpose
here is to introduce a new set of notations which have been employed in Section 3 of this
note, and to show its efficacy in dealing with helicity states defined in different coordinate
systems.

Define

AJλ1λ2

M (Ω) =

√

2J + 1

4π
F J

λ1 λ2
DJ ∗

Mλ(φ, θ, 0) ≡
h
〈s1λ1 s2 −λ2|ψ〉 (6.1)

where λ = λ1 − λ2. With R = R(φ, θ, 0), we observe

|sλ〉
h

= R |sλ〉
0

=
∑

ν

|sν〉
0 0
〈sν|R |sλ〉

0
=

∑

ν

Ds
ν λ(R) |sν〉

0 (6.2)

where |sλ〉
0

is a helicity state defined in the original coordinate system (x0, y0, z0), i.e. ~p1−~p2

is along ẑ0. and |sλ〉
h

is a helicity state defined in the helicity coordinate system (xh, yh, zh)
[see Fig. 1]. The decay amplitude in the canonical formalism [see Appendix B] is

AJ
M ν1ν2

(Ω) ≡
0
〈s1ν1 s2ν2|ψ〉 =

∑

λ1 λ2

0
〈s1ν1|s1λ1〉h 0

〈s2ν2|s2 −λ2〉h h
〈s1λ1 s2 −λ2|ψ〉

=

√

2J + 1

4π

∑

λ1 λ2

F J
λ1 λ2

DJ ∗
Mλ(R) Ds1

ν1 λ1
(R)Ds2

ν2 −λ2
(R)

=

√

2J + 1

4π

∑

λ1 λ2

F J
λ1 λ2

∑

`

(

2`+ 1

2J + 1

)

(`m Sν|JM) (s1ν1 s2ν2|Sν)

× (`0Sλ|Jλ) (s1λ2s2 −λ2|Sλ)D`∗
m 0(R)

=
∑

`

√

2`+ 1

4π
GJ

` S (`m Sν|JM) (s1ν1 s2ν2|Sν)D`∗
m 0(R)

=
∑

`

GJ
` S (`m Sν|JM) (s1ν1 s2ν2|Sν)Y `

m(Ω)

(6.3)

where

GJ
`S =

(

2`+ 1

2J + 1

)1/2
∑

λ1 λ2

F J
λ1 λ2

(`0Sλ|Jλ) (s1λ2s2 −λ2|Sλ) (6.4)

We have derived the standard formula for decay amplitudes in canonical formalism.
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Appendix B:

Two-Body decays in Canonical Formalism

We give a brief description of the decay amplitudes in canonical formalism. Consider a
two-body state |s1m1〉 + |s2m2〉 with momentum ~p in the RF

|~pm1; −~pm2〉 = U [L(~p )] |s1m1〉U [L(−~p )] |s2m2〉

=
1

a
|Ωm1m2〉, a =

1

4π

√

p

w

(6.5)

where Ω = (θ, φ) describes the direction of ~p in the RF, and m1 and m2 are the z-compoents
of spin in the canonical quantization. The relevant boost operators have been denoted by
U [L(±~p )]. The decay amplitude for |JM〉 → |s1m1〉 + |s2m2〉 is, in the JRF,

AJ
Mm1m2

(Ω) = 〈~pm1; −~pm2|M|JM〉

= 4π

(

w

p

)1/2

〈Ωm1m2|M|JM〉

= 4π

(

w

p

)1/2
∑

` S

〈Ωm1m2|JM`S〉〈JM`S|M|JM〉

=
∑

` S

GJ
`S (`mSms|JM)(s1m1 s2m2|Sms)Y

`
m(Ω)

(6.6)

where ms = m1 +m2 and m = M −ms. The `S-coupling amplitude is given by

GJ
`S = 4π

(

w

p

)1/2

〈JM`S|M|JM〉 (6.7)

So the decay amplitude is

AJ
Mm1m2

(Ω) =
∑

` S

√

2`+ 1

4π
GJ

`S (`mSms|JM)(s1m1 s2m2|Sms)D
`∗
m0(φ, θ, 0) (6.8)

It is instructive to compare (6.8) with the decay amplitude given in helicity formalism

AJλ1λ2

M (Ω) =

√

2J + 1

4π
F J

λ1 λ2
DJ ∗

Mλ(φ, θ, 0) (6.9)

where λ = λ1 − λ2 and

F J
λ1 λ2

=
∑

` S

(

2`+ 1

2J + 1

)
1

2

GJ
`S (`0Sλ|Jλ) (s1λ2s2 −λ2|Sλ) (6.10)

so that

AJλ1λ2

M (Ω) =
∑

`S

√

2`+ 1

4π
GJ

`S (`0Sλ|Jλ) (s1λ2s2 −λ2|Sλ)DJ ∗
Mλ(φ, θ, 0) (6.11)
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Comparing this to (6.8), we see that

AJ
Mm1m2

(Ω) = AJλ1λ2

M (Ω), if φ = θ = 0 (6.12)

with m1 = λ1 and m2 = −λ2. Note, in addition, that the D-functions in helicity formalism
couple directly to J with the second subscript depending on λ = λ1 − λ2, whereas the D-
functions in the canonical formulation couple to ` with the second subscript set to zero.
Three rotational invariants {J` S} in canonical formalism have been transformed into three
rotational invariants {Jλ1 λ2} in helicity formalism.

Appendix C:

A Detailed Example for p̄p→ ω + π1 + π′
1

Consider an example given in Fig. 2, where two parallel sequential decays of (3.2) are
illustrated. In the overall CM system, we begin by setting

(x̂0, ŷ0, ẑ0) : x̂0 = (1, 0, 0), ŷ0 = (0, 1, 0), and ẑ0 = (0, 0, 1)

The illustration in Fig. 2 corresponds the 4-momenta given by

4-mom E px py pz

p̄p 1.7699 0 0 0
ω (s) 0.9857 0 0 0.6000
π1 0.3156 0.2000 0 -0.2000
π′

1 0.4686 -0.2000 0 -0.4000

(6.13)

with the relevant angles given by

Ω0 = (θ0, 0
◦), θ0 = 26.5650◦, Ω′

0 = (θ′0, 180◦), θ′0 = 45.000◦

Ω = (θ, 180◦), θ = 51.8542◦, Ω′ = (θ′, 180◦), θ′ = 60.8024◦
(6.14)

In the ωRF, the relevant 4-momenta are given by

4-mom E p θ φ px py pz

ω (s) 0.7820 0 0 0 0 0 0
γ (s1) 0.3785 0.3785 30◦ 60◦ 0.0946 0.1639 0.3278
π0 (π2) 0.4035 0.3785 150◦ 240◦ -0.0946 -0.1639 -0.3278

(6.15)

all measured in the coordinate system (x̂0, ŷ0, ẑ0).

We first bring γ and π0 into the overall CM system (p̄p RF) via pure, time-like Lorentz
transformations. Next we Lorentz-transform ω, π1, π

′
1, γ and π0 into jRF (j ′RF) and then

into ωRF (ω′RF), so that the final coordinate systems are (x̂2, ŷ2, ẑ2) [ (x̂′2, ŷ
′
2, ẑ

′
2) ]. We use

the helicity coordinate system of Fig. 1 for each stage. The results are

x̂2 = (−0.9042, 0,−0.4272), ŷ2 = (0,−1, 0), ẑ2 = (−0.4272, 0,+0.9042)
x̂′2 = (+0.9622, 0,−0.2723), ŷ′2 = (0,+1, 0), ẑ′2 = (+0.2723, 0,+0.9622)

(6.16)
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In these coordinate systemsm, the direction of γ is given by

γ direction θ
(2)
1 φ

(2)
1

Ω1 in (x̂2, ŷ2, ẑ2) 44.8459◦ -142.1188◦

Ω1 in (x̂′2, ŷ
′
2, ẑ

′
2) 25.8290◦ 83.6494◦

(6.17)

while the direction of γ and its momentum with respect to the original coordinate system is

γ direction θ
(0)
1 φ

(0)
1 p

(0)
x p

(0)
y p

(0)
z

Ω1 in (x̂0, ŷ0, ẑ0) 28.4982◦ 65.1666◦ 0.0758 0.1639 0.3326
Ω′

1 in (x̂0, ŷ0, ẑ0) 31.4652◦ 56.0532◦ 0.1103 0.1639 0.3228

(6.18)

These values are close to but not equal to the original values [see (6.15)] given by

Ω1 = (θ1, φ1), θ1 = 30◦, and φ1 = 60◦

which is in fact the dirction of γ measured in (x̂0, ŷ0, ẑ0) (or, equivalently, the γ 4-momentum
in the overall CM system has been Lorentz-transformed directly into the ωRF—without going
through the jRF or the j ′RF). Lorentz transformations in this example is confined to the
zx-plane; so the y-components remain invariant under the transformations. Comparing the
z- and x-components of the γ momenta in (6.15) and (6.18), we observe a small but finite
rotation in the zx-plane (or around the y-axis)

∆β = −3.2575◦, ∆β ′ = +2.7650◦ (6.19)

The rotation around the y-axis which takes (x̂2, ŷ2, ẑ2) into the original coordinate system
(x̂0, ŷ0, ẑ0) and again (x̂′2, ŷ

′
2, ẑ

′
2) into (x̂0, ŷ0, ẑ0) are

(α, β, γ) = (180◦, 25.2891◦, 0◦) and (α′, β ′, γ′) = (0◦, −15.8024◦, 0◦) (6.20)

we see that, from (6.14),

−θ0 + θ − β = 0, and − θ′0 + θ′ + β ′ = 0 (6.21)

Finally, we need to know the direction of s (or ω) with respect to the original coordinate
system (x̂0, ŷ0, ẑ0). There are two ways of measuring the angles; Ωc = (θc, φc) which describe
the direction of ω in the jRF and Ω′

c = (θ′c, φ
′
c) which describe the direction of ω in the j ′RF

Ωc = (θc, φc), θc = 25.2891◦, and φc = 180◦

Ω′
c = (θ′c, φ

′
c), θ′c = 15.8024◦, and φ′

c = 0◦
(6.22)
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