BNL PREPRINT

BNL-QGS-04-0915

Treatment of Particles with Spin in the Final State: Sequential Decays involving $\omega \rightarrow \gamma + \pi^0$ and $N\pi\pi$ Systems

—Version III—

Suh-Urk Chung

Physics Department, Brookhaven National Laboratory, Upton, NY 11973 [∗]

October 15, 2004

abstract

If the decay $\omega \to \gamma + \pi^0$ is involved in parallel sequential decays, then it is essential that a single helicity frame be used for the ω decay. The same comments apply to an analysis involving the treatment of N in $N\pi\pi$ systems.

It is shown that the decay amplitudes in canonical formalism provide an efficient method for dealing with non-zero spins in the final states.

[∗] under contract number DE-AC02-98CH10886 with the U.S. Department of Energy

1 Introduction

Consider a three-body system consisting of $(s + \pi_1 + \pi'_1)$, with two possible intermediate states $j \to s + \pi_1$ and $j' \to s + \pi'_1$, which is followed by $s \to s_1 + \pi_2$. We will take a concrete example where s is the ω , with a decay chain $\omega \to \gamma + \pi^0$. In this case then, s_1 is a photon, and so $s = s_1 = 1$ and $\pi_2 = \pi^0$.

Let J be the spin of the parent system. Then we have

$$
J \to j(\Omega_0) + \pi'_1, \qquad j \to s(\Omega) + \pi_1, \qquad s \to s_1(\Omega_2) + \pi_2
$$

$$
J \to j'(\Omega'_0) + \pi_1, \qquad j' \to s(\Omega') + \pi'_1, \qquad s \to s_1(\Omega'_2) + \pi_2
$$
 (1.1)

where $\Omega_0 = (\theta_0, \phi_0)$ is the direction of j in the parent rest frame, and similarly for j'; Ω describes s in the j RF (rest frame), while Ω_2 refers to s_1 in the s RF.

The decay $\omega \to \gamma + \pi^0$ must be described by a single frame in a given problem, but there are, in our example (1.1), three different frames Ω_2 and Ω'_2 in which the decay amplitudes are given. So we need to recast them into a single given frame. The purpose of this note is to show how this can be accomplished and illustrated with a simple but important reaction.

We shall employ the helicity formalism to describe the 'parallel sequential decays' given in (1.1). The canonical and helicity rest frames are illustrated in Fig.1b.

Figure 1: The orientation of the coordinate systems associated with a particle at rest in the (a) canonical $(\hat{x}_c, \hat{y}_c, \hat{z}_c)$, and (b) helicity description $(\hat{x}_h = \hat{y}_h \times \hat{z}_h, \hat{y}_h \propto \hat{z} \times \hat{p}, \hat{z}_h = \hat{p})$.

In Section 2, we consider the decay amplitudes for j, j' and s to illustrate the principles; in section 3 we treat the decay of J as well—for a simple, but practically important, example. Section 4 is reserved for a treatment of N in the $N\pi\pi$ system. The decay amplitudes in canonical formalism are given in Section 5. Conclusions are given Section 6.

2 Parallel Sequential Decays

We use the helicity description for the decay amplitude for $j \to s + \pi_1$

$$
A_{\lambda_j \lambda}^j(\Omega) = N_j F_\lambda^j D_{\lambda_j \lambda}^{j*}(\phi, \theta, 0), \qquad N_j = \sqrt{\frac{2j+1}{4\pi}} \qquad (2.1a)
$$

$$
F_{\lambda}^{j} = \sum_{\ell} \left(\frac{2\ell+1}{2j+1}\right)^{1/2} G_{\ell}^{j} \left(\ell 0 \, s\lambda | j\lambda\right) \tag{2.1b}
$$

where $\Omega = (\theta, \phi)$ describes the direction of s in the j RF (rest frame) [see Fig. 1b], and G_{ℓ}^{j} $^{\jmath}_{\ell}$ is the decay coupling constant for $j \to s + \pi_1$ with an orbital angular momentum ℓ . The decay amplitude for $j \to s + \pi_1$, followed by $s \to s_1 + \pi_2$, is

$$
A_{\lambda_j \lambda_1}^j(\Omega, \Omega_2) = N_j N_s \sum_{\lambda} A_{\lambda_j \lambda}^j(\Omega) f_{\lambda_1}^s D_{\lambda \lambda_1}^{s*}(\phi_2, \theta_2, 0), \qquad N_s = \sqrt{\frac{2s+1}{4\pi}}
$$

= $N_j N_s \sum_{\lambda} F_{\lambda}^j D_{\lambda_j \lambda}^{j*}(\phi, \theta, 0) f_{\lambda_1}^s D_{\lambda \lambda_1}^{s*}(\phi_2, \theta_2, 0)$ (2.2a)

 $f_{\lambda_1}^s$ is the helicity-coupling amplitude corresponding to $s \to s_1 + \pi_2$. For the example of $\omega \to \gamma + \pi^0$, we have $f_{\pm}^s = -f_{\mp}^s$ and $f_0^s = 0$. The angles $\Omega_2 = (\theta_2, \phi_2)$ describes the direction of s_1 in the $s \text{RF}$ [see Fig. 1b].

The amplitude corresponding to the decay chain $j' \rightarrow s + \pi'_1$, followed by $s \rightarrow s_1 + \pi_2$, is

$$
A_{\lambda'_{j}\lambda_{1}}^{j'}(\Omega', \Omega'_{2}) = N_{j'} N_{s} \sum_{\lambda} F_{\lambda}^{j'} D_{\lambda'_{j}\lambda}^{j' *}(\phi', \theta', 0) f_{\lambda_{1}}^{s} D_{\lambda\lambda_{1}}^{s *}(\phi'_{2}, \theta'_{2}, 0), \qquad N_{j'} = \sqrt{\frac{2j' + 1}{4\pi}}
$$

$$
F_{\lambda}^{j'} = \sum_{\ell'} \left(\frac{2\ell' + 1}{2j' + 1}\right)^{1/2} G_{\ell'}^{j'}(\ell' 0 s \lambda | j' \lambda)
$$
(2.2b)

The angles $\Omega' = (\theta', \phi')$ correspond to the direction s in the j'RF, while the angles Ω'_2 = (θ'_1, ϕ'_2) describe the direction of s_1 in the s RF. It is clear that the angles Ω_2 and Ω'_2 are different, because of the different paths taken to get to the s RF.

We need to employ a single amplitude for the decay $s \to s_1 + \pi_2$. For this purpose, we note that there is yet another way to describe the s decay; we can in fact go directly from the JRF to the s RF, without going through the intermediate steps of j, and j'. The decay amplitude for this case is

$$
A_{\lambda\lambda_1}^s(\Omega_1) = N_s f_{\lambda_1}^s D_{\lambda\lambda_1}^{s*}(\phi_1, \theta_1, 0)
$$
\n(2.3)

The angles $\Omega_1 = (\theta_1, \phi_1)$ are of course different from Ω_2 and Ω'_2 .

3 Amplitudes for $\bar{p}p \to \omega + \pi^0 + \pi^0$

It is instructive to apply the above results to a problem considered by $Giarritta[2]$:

$$
\bar{p}p|_{\text{rest}}(^{3}S_{1} \text{ or } ^{1}P_{1}) \to \omega + \pi^{0}(\pi_{1}) + \pi^{0}(\pi_{1}') \qquad \omega \to \gamma + \pi^{0}(\pi_{2})
$$
\n
$$
(3.1)
$$

So we have $J = 1$ for the parent system. We fix the coordinate system in the decay plane, such that the z-axis is along the direction of ω and the y-axis is along the decay normal, $\hat{y} \propto \vec{\omega} \times \vec{\pi}_1$. We shall consider two intermediate states $b_1(1235) \to \omega + \pi_1$ and $b'_1(1235) \to \omega + \pi'_1$, so that we have $j = j' = s = s_1 = 1$. The analogue of (1.1) for this example is

$$
J \longrightarrow j(\Omega_0) + \pi'_1, \qquad j \longrightarrow s(\Omega) + \pi_1, \qquad s \longrightarrow s_1(\Omega_2) + \pi_2
$$

$$
J \longrightarrow j'(\Omega'_0) + \pi_1, \qquad j' \longrightarrow s(\Omega') + \pi'_1, \qquad s \longrightarrow s_1(\Omega'_2) + \pi_2
$$
 (3.2)

where L (L') and ℓ (ℓ') are the orbital angular momenta in J and $j(j')$ RFs, respectively.

The processes outlined in (3.2) are illustrated in Fig. 2. The amplitudes for $J \to j(\Omega_0) + \pi'_1$

Figure 2: The process $\bar{p}p \to \omega + \pi_1 + \pi'_1$. See (3.2) for the notations. From the $\bar{p}p$ RF(rest frame), we go into the jRF or j'RF and then to the ω RF via pure time-like Lorentz transformations. The coordinate system $(\hat{x}_0, \hat{y}_0, \hat{z}_0)$ in the $\bar{p}p$ RF is such that \hat{z}_0 is along the direction of ω and \hat{y}_0 is along the normal to the reaction plane (out of the paper). The helicity frames in j RF and j' RF are denoted $(\hat{x}, \hat{y}, \hat{z})$ and $(\hat{x}', \hat{y}', \hat{z}')$. Two helicity frames for the ω RF are shown: $(\hat{x}_2, \hat{y}_2, \hat{z}_2)$ and $(\hat{x}'_2, \hat{y}'_2, \hat{z}'_2)$. The relevant angles are $\Omega_0 = (\theta_0, 0), \Omega'_0 = (\theta'_0, \pi), \Omega = (\theta, -\pi)$ and $\Omega' = (\theta', -\pi)$. The third helicity frame for the ω RF coincides with $(\hat{x}_0, \hat{y}_0, \hat{z}_0)$.

and $J \to j'(\Omega'_0) + \pi_1$ are

$$
A_{M\lambda_j}^{Jj}(\Omega_0) = N_J H_{\lambda_j}^J D_{M\lambda_j}^{J*}(0, \theta_0, 0) = H_{\lambda_j}^J d_{M\lambda_j}^J(\theta_0), \qquad N_J = \sqrt{\frac{2J+1}{4\pi}}
$$

$$
A_{M\lambda_j'}^{Jj'}(\Omega_0') = N_J \bar{H}_{\lambda_j'}^J D_{M\lambda_j'}^{J*}(\pi, \theta_0', 0) = \exp[i M \pi] \bar{H}_{\lambda_j'}^J d_{M\lambda_j'}^J(\theta_0')
$$
(3.3)

where

$$
H_{\lambda_j}^J = \sum_L \left(\frac{2L+1}{2J+1}\right)^{1/2} K_L^J (L0 j \lambda_j | J \lambda_j)
$$

$$
\bar{H}_{\lambda_j'}^J = \sum_{L'} \left(\frac{2L+1}{2J+1}\right)^{1/2} \bar{K}_{L'}^J (L'0 j' \lambda_j' | J \lambda_j')
$$
(3.4)

We allow for different states for j and j'; for example, the j could stand for the $b_1(1235)$, while the j' might represent the $\rho(1700)$. The 'bar's over H^J and K^J indicate different amplitudes for these states. However, if both intermediate states happen to be the $b₁(1235)$, then the Bose symmetrization requires that $\bar{H}^J = H^J$ and $\bar{K}^J = K^J$.

A state $|s\lambda\rangle$ for ω in $(\hat{x}_2, \hat{y}_2, \hat{z}_2)$, more precisely to be denoted $|s\lambda\rangle$, can be described by a state $|s\nu\rangle_{0}$ given in $(\hat{x}_{0}, \hat{y}_{0}, \hat{z}_{0})$ via

$$
|s\lambda\rangle_{0} = R(\pi, \beta, 0) |s\lambda\rangle_{2}
$$
\n(3.5)

so that

$$
|s\lambda\rangle_{2} = R^{\dagger}(\pi,\beta,0) |s\lambda\rangle_{0} = \sum_{\nu} |s\nu\rangle_{0} \langle s\nu| R^{\dagger}(\pi,\beta,0) |s\lambda\rangle_{0} = \sum_{\nu} D_{\lambda\nu}^{s*}(\pi,\beta,0) |s\nu\rangle_{0} \tag{3.6}
$$

using unitarity of the D-functions. The decay amplitude (2.1) must be modified [see Appendix A] according to

$$
A_{\lambda_j \lambda}^j(\Omega) \equiv \langle s \lambda | \psi \rangle \implies \langle s \nu | \psi \rangle = \sum_{\lambda} \langle s \nu | s \lambda \rangle_2 \langle s \lambda | \psi \rangle
$$

$$
= \sum_{\lambda} D_{\lambda \nu}^{s \ast}(\pi, \beta, 0) \langle s \lambda | \psi \rangle \equiv A_{\lambda_j \nu}^j(\Omega, R) \tag{3.7}
$$

so that it is now measured with respect to the state $|s\nu\rangle$ with a sum over λ

$$
A_{\lambda_j \nu}^j(\Omega, R) = \sum_{\lambda} A_{\lambda_j \lambda}^j(\Omega) D_{\lambda \nu}^{s*}(\pi, \beta, 0)
$$

= $N_j \sum_{\lambda} F_{\lambda}^j D_{\lambda_j \lambda}^{j*}(-\pi, \theta, 0) D_{\lambda \nu}^{s*}(\pi, \beta, 0)$
= $N_j \sum_{\lambda} (-)^{-\lambda_j + \lambda} F_{\lambda}^j d_{\lambda_j \lambda}^j(\theta) d_{\lambda \nu}^s(\beta)$ (3.8)

where $R = R(\pi, \beta, 0)$ and $\Omega = (\theta, -\pi)$. So the overall decay amplitude is

$$
A_{M\nu}^{Jj}(\Omega_0, \Omega, R) = N_J N_j \sum_{\lambda_j} H_{\lambda_j}^J d_{M\lambda_j}^J(\theta_0) \sum_{\lambda} (-)^{\lambda_j - \lambda} F_{\lambda}^j d_{\lambda_j\lambda}^j(\theta) d_{\lambda\nu}^s(\beta)
$$
(3.9)

Note that the appearance of two rotations $R(\pi, \beta, 0)$ and $R(-\pi, \theta, 0)$ with the second rotation around the z-axis by $-\pi$. Consider a special case with $\theta_0 = \theta = \beta = 0$. For this case, we need to ensure that there be no net rotation of the coordinate axes, because there would have been a rotation around by 2π and a spurious phase $(-)^{2m\pi}$ for a z-component of spin m, had the second rotation been $R(+\pi, \theta, 0)$ instead of $R(-\pi, \theta, 0)$.

Consider next the decay amplitude for $J \to j' + \pi - 1$ with $j' \to s + \pi'_1$. The $|s\lambda'_2\rangle$ \int_2' for ω in $(\hat{x}'_2, \hat{y}'_2, \hat{z}'_2)$ can be expressed by

$$
|s\lambda\rangle_{0} = R(0, \beta', 0) |s\lambda\rangle_{2}'
$$

$$
|s\lambda\rangle_{2}' = R^{\dagger}(0, \beta', 0) |s\lambda\rangle_{0} = \sum_{\nu} d_{\lambda\nu}^{s}(\beta') |s\nu\rangle_{0}
$$
 (3.10)

The overall decay amplitude with respect to the state $|s\nu\rangle$ is, with $R' = R(0, \beta', 0)$ and $\Omega' = (\theta', -\pi),$

$$
A_{M\nu}^{Jj'}(\Omega_0, \Omega', R') = N_J N_{j'} \sum_{\lambda'_j} (-)^{M-\lambda'_j} \bar{H}_{\lambda'_j}^J d_{M\lambda'_j}^J(\theta'_0) \sum_{\lambda} F_{\lambda}^{j'} d_{\lambda'_j\lambda}^{j'}(\theta') d_{\lambda\nu}^s(\beta') \tag{3.11}
$$

Once again, we note that there are two rotations $R(\pi, \theta_0', 0)$ and $R(-\pi, \theta', 0)$, with the second z-rotation given by $-\pi$. The $|s\nu\rangle$ decay itself, i.e. $\omega \to \gamma + \pi^0$, is given in the standard helicity prescription

$$
\langle \Omega_1, \lambda_1 | \mathcal{M}_s | s \nu \rangle_0 = N_s f_{\lambda_1}^s D_{\nu \lambda_1}^{s*} (\phi_1, \theta_1, 0)
$$
\n(3.12)

So we find, summing over ν ,

$$
A_{M\lambda_1}^{Jj}(\Omega_0, \Omega, R, \Omega_1) = N_J N_j \sum_{\lambda_j} H_{\lambda_j}^J d_{M\lambda_j}^J(\theta_0)
$$

$$
\times \sum_{\lambda} (-)^{\lambda_j - \lambda} F_{\lambda}^j d_{\lambda_j \lambda}^j(\theta) \sum_{\nu} d_{\lambda \nu}^s(\beta) f_{\lambda_1}^s D_{\nu \lambda_1}^{s*}(\phi_1, \theta_1, 0)
$$
 (3.13)

and

$$
A_{M\lambda_{1}}^{Jj'}(\Omega_{0}',\Omega',R',\Omega_{1}) = N_{J} N_{j'} \sum_{\lambda'_{j}} (-)^{M-\lambda'_{j}} \bar{H}_{\lambda'_{j}}^{J} d_{M\lambda'_{j}}^{J}(\theta_{0}') \times \sum_{\lambda} F_{\lambda}^{j'} d_{\lambda'_{j}\lambda}^{J'}(\theta') \sum_{\nu} d_{\lambda\nu}^{s}(\beta') f_{\lambda_{1}}^{s} D_{\nu\lambda_{1}}^{s*}(\phi_{1},\theta_{1},0)
$$
\n(3.14)

The formulas above give the s (or γ) and its helicity λ_1 in a single given frame—the desired result and the purpose of this note.

For completeness, we shall work out the third type of isobar for (3.1), i.e. that of the dipion system $\pi_1 + \pi'_1$ described by $|\ell_3 \lambda_3\rangle$.

$$
J \xrightarrow[L_3]{L_3} \ell_3(\Omega_3) + s, \quad s \to s_1(\Omega_1) + \pi_2 \tag{3.15}
$$

The overall decay amplitude for $|JM\rangle \rightarrow |s\lambda\rangle + | \ell_3 \lambda_3\rangle$ is

$$
A_{M\lambda_{1}}^{J\ell_{3}}(\Omega_{3},\Omega_{1}) = N_{J} N_{\ell_{3}} \sum_{\lambda\lambda_{3}} E_{\lambda\lambda_{3}}^{J} D_{M\lambda-\lambda_{3}}^{J*}(0,0,0)
$$

$$
\times D_{\lambda_{3}}^{\ell_{3}}(\phi_{3},\theta_{3},0) A_{\lambda\lambda_{1}}^{s}(\Omega_{1}), \qquad N_{\ell_{3}} = \sqrt{\frac{2\ell_{3}+1}{4\pi}}
$$
(3.16)

Note that $M = \lambda - \lambda_3$. $E_{\lambda \lambda_3}^J$ is the usual helicity-coupling amplitude

$$
E_{\lambda\lambda_3}^J = \sum_{L_3S} \left(\frac{2L_3+1}{2J+1}\right)^{1/2} Q_{L_3S}^J (L_3 0 SM | JM)(s\lambda \ell_3 - \lambda_3 | SM) \tag{3.17}
$$

where

$$
|\ell_3 - s| \le S \le \ell_3 + s
$$
 and $|J - S| \le \ell_0 \le J + S$ (3.18)

 $\Omega_3(\theta_3, \phi_3)$ is measured in the dipion RF defined by $(-\hat{x}_0, \hat{y}_0, -\hat{z}_0)$. In general, $\phi_3 = 0$ or $\phi_3 = \pi$, but we can always set $\phi_3 = 0$ by allowing negative values of θ_3 , i.e. $-\pi < \theta_3 < \pi$. The overall amplitude becomes

$$
A_{M\lambda_1}^{J\ell_3}(\Omega_3, \Omega_1) = N_J N_{\ell_3} N_s \sum_{\lambda_3} E_{\lambda\lambda_3}^{J} d_{\lambda_3}^{\ell_3} (\theta_3) f_{\lambda_1}^{s} D_{\lambda\lambda_1}^{s*} (\phi_1, \theta_1, 0)
$$
(3.19)

where $\lambda = M + \lambda_3$ and so there is no summation on λ .

In order to gain insight to the problem at hand, we shall work out the full amplitude incorporating three different isobars. Observe

$$
A_{M\lambda_1}^J = V_{Jj} A_{M\lambda_1}^{Jj} (\Omega_0, \Omega, R, \Omega_1) + V_{Jj'} A_{M\lambda_1}^{Jj'} (\Omega_0', \Omega', R', \Omega_1) + V_{J\ell_3} A_{M\lambda_1}^{J\ell_3} (\Omega_1, \Omega_3)
$$
(3.20)

where V_{Jj} , $V_{Jj'}$ and $V_{J\ell_3}$ are the parameters (complex in general) which govern the strength of each isobar. The parameters should be a function of J but not of either M or the photon helicity λ_1 . We see that, absorbing the normalization constants N into V,

$$
A_{M\lambda_{1}}^{J} = V_{Jj} \left\{ \sum_{\lambda_{j}} H_{\lambda_{j}}^{J} d_{M\lambda_{j}}^{J}(\theta_{0}) \sum_{\lambda} (-)^{\lambda_{j} - \lambda} F_{\lambda}^{j} d_{\lambda_{j}\lambda}^{j}(\theta) \right. \\ \times \sum_{\nu} d_{\lambda}^{s}(\beta) \right\} f_{\lambda_{1}}^{s} D_{\nu\lambda_{1}}^{s*}(\phi_{1}, \theta_{1}, 0) \\ + V_{Jj'} \left\{ \sum_{\lambda_{j}'} (-)^{M-\lambda_{j}'} \bar{H}_{\lambda_{j}'}^{J} d_{M\lambda_{j}'}^{J}(\theta_{0}') \sum_{\lambda} F_{\lambda}^{j'} d_{\lambda_{j}'}^{j'}(\theta_{0}') \right. \\ \times \sum_{\nu} d_{\lambda\nu}^{s}(\beta') \right\} f_{\lambda_{1}}^{s} D_{\nu\lambda_{1}}^{s*}(\phi_{1}, \theta_{1}, 0) \\ + V_{J\ell_{3}} \left\{ \sum_{\lambda_{3}} E_{\nu\lambda_{3}}^{J} d_{\lambda_{3}}^{s}(\theta_{3}) \right\} f_{\lambda_{1}}^{s} D_{\nu\lambda_{1}}^{s*}(\phi_{1}, \theta_{1}, 0) \tag{3.21}
$$

where $\nu = M + \lambda_3$ in the third term. The decay amplitude for $\omega \to \gamma + \pi^0$ can now be factored out in the expression given above.

4 $N\pi\pi$ Systems

Consider the system $N\pi_1\pi'_1$ where N is a nucleon and there are two possible isobars $N\pi_1$ and $N\pi'_{1}$. We use Fig. 2 in which the ω replaced by a nucleon N. So we now have $s = 1/2$. The appropriate decay amplitude for a final state containing $|s\nu\rangle$ have already been given in (3.9) and (3.11). The full amplitude is, absorbing the normalization constants N into V ,

$$
A_{M\nu}^{J} = V_{Jj} \left\{ \sum_{\lambda_j} H_{\lambda_j}^{J} d_{M\lambda_j}^{J}(\theta_0) \sum_{\lambda} (-)^{\lambda_j - \lambda} F_{\lambda}^{j} d_{\lambda_j \lambda}^{j}(\theta) d_{\lambda \nu}^{s}(\beta) \right\}
$$

+
$$
V_{Jj'} \left\{ \sum_{\lambda'_j} (-)^{M - \lambda'_j} \bar{H}_{\lambda'_j}^{J} d_{M\lambda'_j}^{J}(\theta'_0) \sum_{\lambda} F_{\lambda}^{j'} d_{\lambda'_j \lambda}^{j'}(\theta') d_{\lambda \nu}^{s}(\beta') \right\}
$$
(4.1)
+
$$
V_{J\ell_3} E_{\nu \lambda_3}^{J} d_{\lambda_3 0}^{l_3}(\theta_3)
$$

where $\nu = M + \lambda_3$. All three amplitudes above are now expressed in terms of a single nucleon state $|s\nu\rangle_0$ defined in the coordinate system $(\hat{x}_0, \hat{y}_0, \hat{z}_0)$.

5 Alternative Approach

The extra rotations by the Euler angles of previous sections can be avoided if canonical frames had been employed for the intermediate states [see Fig. 1a]. See Appendix B for a canonical prescription for dealing with general two-body decays.

For $j \to s + \pi_1$ we have

$$
A_{m_j\nu}^j(\Omega_c) \propto \langle \Omega_c s\nu | \mathcal{M}_j | j m_j \rangle
$$

$$
\propto \sum_{\ell} \langle \Omega_c s\nu | j m_j \ell \rangle \langle j m_j \ell | \mathcal{M}_j | j m_j \rangle
$$
 (5.1)

where Ω_c describes the the direction of s in the canonical jRF and ν is the z-component of spin s in the canonical sRF . Setting

$$
G_{\ell}^{j} \propto \langle jm_{j} \ell | \mathcal{M}_{j} | jm_{j} \rangle \tag{5.2}
$$

we see that, with $m = m_j - \nu$,

$$
A_{m_j\nu}^j(\Omega_c) = \sum_{\ell} G_{\ell}^j (\ell m s \nu | j m_j) Y_m^{\ell}(\Omega_c)
$$

=
$$
\sum_{\ell} N_{\ell} G_{\ell}^j (\ell m s \nu | j m_j) D_{m0}^{\ell *}(\phi_c, \theta_c, 0)
$$

=
$$
\sum_{\ell} N_{\ell} G_{\ell}^j (\ell m s \nu | j m_j) d_{m0}^{\ell}(-\theta_c), \quad \theta_c > 0
$$

=
$$
(-)^{m_j - \nu} \sum_{\ell} N_{\ell} G_{\ell}^j (\ell m s \nu | j m_j) d_{m0}^{\ell}(\theta_c), \quad \theta_c > 0
$$
 (5.3)

where $\phi_c = 0$ and, from Appendix A of Ref.[1],

$$
Y_n^{\ell}(\Omega) = N_{\ell} D_{m0}^{\ell *}(\phi, \theta, 0), \qquad N_{\ell} = \sqrt{\frac{2\ell + 1}{4\pi}} \tag{5.4}
$$

Likewise, for $J \to j + \pi'_1$ we find

$$
A_{M m_j}^{Jj}(\Omega_0) = \sum_L N_L K_L^J(L M_L j m_j |JM) D_{M_L 0}^{L*}(\phi_0, \theta_0, 0), \qquad N_L = \sqrt{\frac{2L+1}{4\pi}}
$$

=
$$
\sum_L N_L K_L^J(L M_L j m_j |JM) d_{M_L 0}^L(\theta_0)
$$
 (5.5)

with $\phi_0 = 0$ and $M_L = M - m_j$.

The decay amplitude for $J \to j + \pi'_1$ followed by $j \to s + \pi_1$ is

$$
A_{M\nu}^{Jj}(\Omega_0, \Omega_c) = \sum_{L m_j} N_L K_L^J(L M_L j m_j |JM) d_{M_L 0}^L(\theta_0)
$$

$$
\times (-)^{m_j - \nu} \sum_{\ell} N_{\ell} G_{\ell}^j(\ell m s \nu | j m_j) d_{m_0}^{\ell}(\theta_c)
$$
 (5.6)

Consider a special case $L = M_L = \ell = m = 0$. We then see that $J = j = s$ and $M = m_j = \nu$. In this case, the amplitude is *independent* of the angles Ω_0 and Ω_c and it is proportional to

$$
A_{M\,\nu}^{Jj}(\Omega_0, \Omega_c) = \frac{1}{4\pi} \, K_0^J \, G_0^j \tag{5.7}
$$

where $M = m_j = \nu$. But we must obtain the same result from (3.9). For the purpose, we first note that

$$
H_{\lambda_j}^J = \frac{1}{\sqrt{2J+1}} K_0^J \quad \text{and} \quad F_{\lambda}^j = \frac{1}{\sqrt{2j+1}} G_0^j \tag{5.8}
$$

independent of the helicities. Setting J and s to j , and using the well-known property of the d-functions [3]

$$
d_{m'm}^j(-\beta) = (-)^{m'-m} d_{m'm}^j(\beta), \quad d_{mm'}^j(\beta) = (-)^{m'-m} d_{m'm}^j(\beta), \tag{5.9}
$$

we find

$$
A_{M\nu}^{Jj}(\Omega_{0}, \Omega, R) = N_{j}^{2} \sum_{\lambda_{j}} H_{\lambda_{j}}^{j} d_{M\lambda_{j}}^{j}(\theta_{0}) \sum_{\lambda} (-)^{\lambda_{j} - \lambda} F_{\lambda}^{j} d_{\lambda_{j}\lambda}^{j}(\theta) d_{\lambda\nu}^{j}(\beta)
$$

\n
$$
= N_{j}^{2} \sum_{\lambda_{j}} (-)^{M-\lambda_{j}} H_{\lambda_{j}}^{j} d_{M\lambda_{j}}^{j}(-\theta_{0}) \sum_{\lambda} F_{\lambda}^{j} d_{\lambda_{j}\lambda}^{j}(\theta) d_{\lambda\nu}^{j}(-\beta)
$$

\n
$$
= \frac{(-)^{M-\nu}}{4\pi} K_{0}^{J} G_{0}^{j} \sum_{\lambda_{j}} d_{M\lambda_{j}}^{j}(-\theta_{0}) \sum_{\lambda} d_{\lambda_{j}\lambda}^{j}(\theta) d_{\lambda\nu}^{j}(-\beta)
$$

\n
$$
= \frac{1}{4\pi} K_{0}^{J} G_{0}^{j} d_{M\nu}^{j}(-\theta_{0} + \theta - \beta) = \frac{1}{4\pi} K_{0}^{J} G_{0}^{j}
$$

\n(5.10)

since $M = \nu$ and $-\theta_0 + \theta - \beta = 0$. That θ is equal to $\theta_0 + \beta$ can be seen in Fig. 2, by drawing the axes z_0 and x_0 at jRF, but this can also be checked explicitly by working out one example with relevant angles in detail (see Appendix C).

Likewise, the decay amplitude for $J \to j' + \pi_1$ followed by $j' \to s + \pi'_1$ is

$$
A_{M\nu}^{Jj'}(\Omega_0', \Omega_c') = \sum_{L'm'_j} N_{L'} K_{L'}^J (L'M'_L j'm'_j | JM) d_{M'_L 0}^{L'}(\theta_0')
$$

$$
\times (-)^{m'_j - \nu} \sum_{\ell \nu} N_{\ell} G_{\ell}^{j'} (\ell m s \nu | j'm'_j) d_{m0}^{\ell}(\theta_0')
$$
(5.11)

Again, if $L' = M'_l = \ell = m = 0$, then the amplitude is *independent* of the angles Ω'_0 and Ω'_c and it is given by

$$
A_{M\,\nu}^{J\,j'}(\Omega_0',\Omega_c') = \frac{1}{4\pi} \, K_0^J \, G_0^{j'} \tag{5.12}
$$

where $M = m'_j = \nu$. We should obtain the same result from (3.11). Setting $J = j' = s$, we obtain

$$
A_{M\nu}^{Jj'}(\Omega_0, \Omega', R') = N_J N_{j'} \sum_{\lambda'_j} (-)^{M-\lambda'_j} \bar{H}_{\lambda'_j}^J d_{M \lambda'_j}^J(\theta'_0) \sum_{\lambda} F_{\lambda}^{j'} d_{\lambda'_j \lambda}^{j'}(\theta') d_{\lambda \nu}^s(\beta')
$$

$$
= N_{j'}^2 \sum_{\lambda'_j} \bar{H}_{\lambda'_j}^J d_{M \lambda'_j}^J(-\theta'_0) \sum_{\lambda} F_{\lambda}^{j'} d_{\lambda'_j \lambda}^{j'}(\theta') d_{\lambda \nu}^s(\beta')
$$
(5.13)

$$
= \frac{1}{4\pi} K_0^J G_0^{j'} d_{M \nu}^{j'}(-\theta'_0 + \theta' + \beta') = \frac{1}{4\pi} K_0^J G_0^{j'}
$$

since $M = \nu$ and $-\theta'_0 + \theta + \beta' = 0$ (see Appendix C).

Because of the use of canonical rest frames, the ket state $|s\nu\rangle$ is given in a common rest frame. Its decay into $\gamma + \pi^0$ is nevertheless most efficiently described in the helicity basis, as shown in (2.3). So we see that we have adopted here a mixture of canonical and helicity prescriptions for decay amplitudes. The overall decay amplitude which includes $s \to s_1 + \pi_2$ is, absorbing N_s and N_{ℓ_3} into appropriate V 's,

$$
A_{M\nu_{1}}^{J} = V_{Jj} \left\{ \sum_{L m_{j}} N_{L} K_{L}^{J} (LM_{L} j m_{j} | JM) d_{M_{L}0}^{L}(\theta_{0}) \right.\times (-)^{m_{j}-\nu} \sum_{\ell \nu} N_{\ell} G_{\ell}^{j} (\ell m s \nu | j m_{j}) d_{m0}^{\ell}(\theta_{c}) \right\} f_{\nu_{1}}^{s} D_{\nu \nu_{1}}^{s*}(\phi_{1}, \theta_{1}, 0)+ V_{Jj'} \left\{ \sum_{L' m'_{j}} N_{L'} K_{L'}^{J} (L'M'_{L} j'm'_{j} | JM) d_{M'_{L}0}^{L'}(\theta_{0}') \right.\times (-)^{m'_{j}-\nu} \sum_{\ell \nu} N_{\ell} G_{\ell}^{j'} (\ell m s \nu | j'm'_{j}) d_{m0}^{\ell}(\theta_{c}') \right\} f_{\nu_{1}}^{s} D_{\nu \nu_{1}}^{s*}(\phi_{1}, \theta_{1}, 0)+ V_{J\ell_{3}} \left\{ \sum_{\lambda_{3}} E_{\nu}^{J}{}_{\lambda_{3}} d_{\lambda_{3}}^{\ell_{3}}(\theta_{3}) \right\} f_{\nu_{1}}^{s} D_{\nu}^{s*}(\phi_{1}, \theta_{1}, 0)
$$
\n(5.14)

where $\nu = M + \lambda_3$ in the third term. This is to be compared with (3.21).

The amplitude for $N\pi_1\pi'_1$ systems is, from (5.14), absorbing N_{ℓ_3} into $V_{J\ell_3}$,

$$
A_{M\nu}^{J} = V_{Jj} \left\{ \sum_{L m_{j}} N_{L} K_{L}^{J} (LM_{L} j m_{j} | JM) d_{M_{L}0}^{L}(\theta_{0}) \right.\n\times (-)^{m_{j} - \nu} \sum_{\ell} N_{\ell} G_{\ell}^{j} (\ell m s \nu | j m_{j}) d_{m0}^{\ell}(\theta_{c}) \right\}+ V_{Jj'} \left\{ \sum_{L' m'_{j}} N_{L'} K_{L'}^{J} (L'M'_{L} j' m'_{j} | JM) d_{M'_{L}0}^{L'}(\theta'_{0}) \right.\n\times (-)^{m'_{j} - \nu} \sum_{\ell} N_{\ell} G_{\ell}^{j'} (\ell m s \nu | j' m'_{j}) d_{m0}^{\ell}(\theta'_{c}) \right\}+ V_{J\ell_{3}} \left\{ \sum_{\lambda_{3}} E_{\nu}^{J} \lambda_{3} d_{\lambda_{3}0}^{\ell_{3}}(\theta_{3}) \right\}
$$
(5.15)

which is to be comapred with (4.1).

6 Conclusions

The purpose of this note has been to show how one should treat the decay $\omega \to \gamma + \pi^0$, when it is observed through more than one sequential decays. The general solution requires introduction of additional sets of Euler angles, applied to ω before it is allowed to decay (this is because the helicity-coupling amplitudes $f_{\lambda_1}^s$ and the accompanying D-functions both depend on the photon helicity λ_1). In his thesis, Giarritta seems to imply that a general solution requires introduction of a third angle in the D-functions. It has been shown in this note that this is not the case.

The extra rotations are required because the γ helicity $(\lambda_1 = \pm 1)$ is an 'external variable' (even though it is eventually summed over outside of the overall amplitudes squared), and hence it needs to be evaluated in a single frame. The reason we do not need this extra step, e.g. for the decay $\rho \to \pi \pi$, is that the decay products are both spinless. One recalls that the decay amplitude for $\omega \to 3\pi$ is formally identical to $\rho \to 2\pi$, because its 'helicity-coupling amplitude' are $F_{\pm} = 0$ and $F_0 \neq 0$, and so the ω helicities do not appear in the amplitudes (see Section 6, ref. [1]). This is simply an accident of the fact that we have $J^P = 1^-$ for the $ω$. If the $ω$ had been $J^P = 1⁺$, then the nonzero 'helicity-coupling amplitude' would have been $F_{\pm} \neq 0$ and $F_0 = 0$ and so the ω helicities would have appeared as 'external' variables.

An analysis of $N\pi\pi$ systems in which there are two different $N\pi$ isobars requires a similar treatment.

We have shown that a better treatment of the nonzero spins in the final states is to employ the canonical prescription for decay amplitudes.

Appendix A: Two-Body decays in Helicity Formalism

We start with a decay amplitude in helicity formalism and use it to derive the recoupling coefficient between the rotationally invariant decay amplitudes in helicity and canonical formalism. See Section 4 of Ref.[1] for a standard treatment of this problem; our purpose here is to introduce a new set of notations which have been employed in Section 3 of this note, and to show its efficacy in dealing with helicity states defined in different coordinate systems.

Define

$$
A_M^{J\lambda_1\lambda_2}(\Omega) = \sqrt{\frac{2J+1}{4\pi}} F_{\lambda_1\lambda_2}^J D_{M\lambda}^{J*}(\phi,\theta,0) \equiv \sqrt{\langle s_1 \lambda_1 \, s_2 \, -\lambda_2 | \psi \rangle} \tag{6.1}
$$

where $\lambda = \lambda_1 - \lambda_2$. With $R = R(\phi, \theta, 0)$, we observe

$$
|s\lambda\rangle_{h} = R |s\lambda\rangle_{0} = \sum_{\nu} |s\nu\rangle_{0} |s\nu| R |s\lambda\rangle_{0} = \sum_{\nu} D_{\nu}^{s} \lambda(R) |s\nu\rangle_{0}
$$
(6.2)

where $|s\lambda\rangle$ is a helicity state defined in the original coordinate system (x_0, y_0, z_0) , i.e. $\vec{p}_1 - \vec{p}_2$ is along \hat{z}_0 , and $|s\lambda\rangle$ is a helicity state defined in the helicity coordinate system (x_h, y_h, z_h) [see Fig. 1]. The decay amplitude in the canonical formalism [see Appendix B] is

$$
A_{M \nu_1 \nu_2}^J(\Omega) \equiv \int_0^{\sqrt{2}I_1} \frac{1}{2} \int_0^{\sqrt{2}I_2} \frac{1}{2} \int_0^{\sqrt{2}I_2} \frac{1}{2} \frac{1}{2} \int_0^{\sqrt{2}I_1} \frac{1}{2} \int_0^{\sqrt{2}I_2} \frac{1}{2} \int_0^{\sqrt{2}I_2} \frac{1}{2} \int_0^{\sqrt{2}I_1} \frac{1}{2} \sum_{\lambda_1 \lambda_2} F_{\lambda_1 \lambda_2}^J D_{M\lambda}^{J*}(\Omega) D_{\nu_1 \lambda_1}^{s_1}(\Omega) D_{\nu_2 - \lambda_2}^{s_2}(\Omega)
$$

\n
$$
= \sqrt{\frac{2J+1}{4\pi}} \sum_{\lambda_1 \lambda_2} F_{\lambda_1 \lambda_2}^J \sum_{\ell} \frac{2\ell+1}{2J+1} (\ell m S \nu | JM) (s_1 \nu_1 s_2 \nu_2 | S \nu) \times (\ell 0 S \lambda | J\lambda) (s_1 \lambda_2 s_2 - \lambda_2 | S\lambda) D_{m0}^{\ell*}(\Omega)
$$

\n
$$
= \sum_{\ell} \sqrt{\frac{2\ell+1}{4\pi}} G_{\ell S}^J(\ell m S \nu | JM) (s_1 \nu_1 s_2 \nu_2 | S \nu) D_{m0}^{\ell*}(\Omega)
$$

\n
$$
= \sum_{\ell} G_{\ell S}^J(\ell m S \nu | JM) (s_1 \nu_1 s_2 \nu_2 | S \nu) Y_m^{\ell}(\Omega)
$$

where

$$
G_{\ell S}^J = \left(\frac{2\ell+1}{2J+1}\right)^{1/2} \sum_{\lambda_1 \lambda_2} F_{\lambda_1 \lambda_2}^J \left(\ell 0 \, S \lambda | J \lambda\right) \left(s_1 \lambda_2 s_2 - \lambda_2 | S \lambda\right) \tag{6.4}
$$

We have derived the standard formula for decay amplitudes in canonical formalism.

Appendix B: Two-Body decays in Canonical Formalism

We give a brief description of the decay amplitudes in canonical formalism. Consider a two-body state $|s_1m_1\rangle + |s_2m_2\rangle$ with momentum \vec{p} in the RF

$$
|\vec{p}m_1; -\vec{p}m_2\rangle = U[L(\vec{p})] |s_1m_1\rangle U[L(-\vec{p})] |s_2m_2\rangle
$$

$$
= \frac{1}{a} |\Omega m_1 m_2\rangle, \qquad a = \frac{1}{4\pi} \sqrt{\frac{p}{w}}
$$
(6.5)

where $\Omega = (\theta, \phi)$ describes the direction of \vec{p} in the RF, and m_1 and m_2 are the z-compoents of spin in the canonical quantization. The relevant boost operators have been denoted by $U[L(\pm \vec{p})]$. The decay amplitude for $|JM\rangle \rightarrow |s_1m_1\rangle + |s_2m_2\rangle$ is, in the JRF,

$$
A_{Mm_1m_2}^J(\Omega) = \langle \vec{p}m_1; -\vec{p}m_2 | \mathcal{M} | JM \rangle
$$

= $4\pi \left(\frac{w}{p}\right)^{1/2} \langle \Omega m_1 m_2 | \mathcal{M} | JM \rangle$
= $4\pi \left(\frac{w}{p}\right)^{1/2} \sum_{\ell S} \langle \Omega m_1 m_2 | JM\ell S \rangle \langle JM\ell S | \mathcal{M} | JM \rangle$
= $\sum_{\ell S} G_{\ell S}^J \left(\ell m S m_s | JM \right) (s_1 m_1 s_2 m_2 | S m_s) Y_m^{\ell}(\Omega)$ (6.6)

where $m_s = m_1 + m_2$ and $m = M - m_s$. The ℓS -coupling amplitude is given by

$$
G_{\ell S}^{J} = 4\pi \left(\frac{w}{p}\right)^{1/2} \langle JM\ell S|M|JM\rangle \tag{6.7}
$$

So the decay amplitude is

$$
A_{Mm_1m_2}^J(\Omega) = \sum_{\ell S} \sqrt{\frac{2\ell+1}{4\pi}} G_{\ell S}^J \left(\ell m \, S m_s | JM\right) \left(s_1 m_1 \, s_2 m_2 | S m_s\right) D_{m0}^{\ell*}(\phi, \theta, 0) \tag{6.8}
$$

It is instructive to compare (6.8) with the decay amplitude given in helicity formalism

$$
A_M^{J\lambda_1\lambda_2}(\Omega) = \sqrt{\frac{2J+1}{4\pi}} F_{\lambda_1\lambda_2}^J D_{M\lambda}^{J*}(\phi, \theta, 0)
$$
\n(6.9)

where $\lambda = \lambda_1 - \lambda_2$ and

$$
F_{\lambda_1 \lambda_2}^J = \sum_{\ell S} \left(\frac{2\ell+1}{2J+1} \right)^{\frac{1}{2}} G_{\ell S}^J \left(\ell 0 \, S \lambda | J \lambda \right) \left(s_1 \lambda_2 s_2 - \lambda_2 | S \lambda \right) \tag{6.10}
$$

so that

$$
A_M^{J\lambda_1\lambda_2}(\Omega) = \sum_{\ell S} \sqrt{\frac{2\ell+1}{4\pi}} G_{\ell S}^J \left(\ell 0 \, S\lambda | J\lambda\right) \left(s_1 \lambda_2 s_2 - \lambda_2 | S\lambda\right) D_{M\lambda}^{J*}(\phi, \theta, 0) \tag{6.11}
$$

Comparing this to (6.8), we see that

$$
A_{Mm_1m_2}^J(\Omega) = A_M^{J\lambda_1\lambda_2}(\Omega), \qquad \text{if} \quad \phi = \theta = 0 \tag{6.12}
$$

with $m_1 = \lambda_1$ and $m_2 = -\lambda_2$. Note, in addition, that the D-functions in helicity formalism couple directly to J with the second subscript depending on $\lambda = \lambda_1 - \lambda_2$, whereas the Dfunctions in the canonical formulation couple to ℓ with the second subscript set to zero. Three rotational invariants $\{J\ell S\}$ in canonical formalism have been transformed into three rotational invariants $\{J\lambda_1\lambda_2\}$ in helicity formalism.

Appendix C: A Detailed Example for $\bar{p}p \to \omega + \pi_1 + \pi_1'$

Consider an example given in Fig. 2, where two parallel sequential decays of (3.2) are illustrated. In the overall CM system, we begin by setting

$$
(\hat{x}_0, \hat{y}_0, \hat{z}_0): \quad \hat{x}_0 = (1, 0, 0), \quad \hat{y}_0 = (0, 1, 0), \quad \text{and} \quad \hat{z}_0 = (0, 0, 1)
$$

The illustration in Fig. 2 corresponds the 4-momenta given by

$$
\begin{array}{c|cccc}\n4\text{-mom} & E & p_x & p_y & p_z \\
\hline\n\bar{p}p & 1.7699 & 0 & 0 & 0 \\
\omega(s) & 0.9857 & 0 & 0 & 0.6000 \\
\pi_1 & 0.3156 & 0.2000 & 0 & -0.2000 \\
\pi_1' & 0.4686 & -0.2000 & 0 & -0.4000\n\end{array} \tag{6.13}
$$

with the relevant angles given by

$$
\Omega_0 = (\theta_0, 0^\circ), \ \theta_0 = 26.5650^\circ, \qquad \Omega'_0 = (\theta'_0, 180^\circ), \ \theta'_0 = 45.000^\circ \n\Omega = (\theta, 180^\circ), \ \theta = 51.8542^\circ, \qquad \Omega' = (\theta', 180^\circ), \ \theta' = 60.8024^\circ
$$
\n(6.14)

In the ω RF, the relevant 4-momenta are given by

all measured in the coordinate system $(\hat{x}_0, \hat{y}_0, \hat{z}_0)$.

We first bring γ and π^0 into the overall CM system ($\bar{p}p$ RF) via pure, time-like Lorentz transformations. Next we Lorentz-transform ω , π_1 , π'_1 , γ and π^0 into jRF (j'RF) and then into ω RF (ω' RF), so that the final coordinate systems are $(\hat{x}_2, \hat{y}_2, \hat{z}_2)$ [$(\hat{x}'_2, \hat{y}'_2, \hat{z}'_2)$]. We use the helicity coordinate system of Fig. 1 for each stage. The results are

$$
\begin{aligned}\n\hat{x}_2 &= (-0.9042, 0, -0.4272), & \hat{y}_2 &= (0, -1, 0), & \hat{z}_2 &= (-0.4272, 0, +0.9042) \\
\hat{x}'_2 &= (+0.9622, 0, -0.2723), & \hat{y}'_2 &= (0, +1, 0), & \hat{z}'_2 &= (+0.2723, 0, +0.9622)\n\end{aligned}\n\tag{6.16}
$$

In these coordinate systemsm, the direction of γ is given by

$$
\begin{array}{c|c}\n\gamma \text{ direction} & \theta_1^{(2)} & \phi_1^{(2)} \\
\hline\n\Omega_1 \text{ in } (\hat{x}_2, \hat{y}_2, \hat{z}_2) & 44.8459^\circ & -142.1188^\circ \\
\Omega_1 \text{ in } (\hat{x}_2', \hat{y}_2', \hat{z}_2') & 25.8290^\circ & 83.6494^\circ\n\end{array} \tag{6.17}
$$

while the direction of γ and its momentum with respect to the original coordinate system is

$$
\begin{array}{c|cccccc}\n\gamma \text{ direction} & \theta_1^{(0)} & \phi_1^{(0)} & p_x^{(0)} & p_y^{(0)} & p_z^{(0)} \\
\hline\n\Omega_1 \text{ in } (\hat{x}_0, \hat{y}_0, \hat{z}_0) & 28.4982^\circ & 65.1666^\circ & 0.0758 & 0.1639 & 0.3326 \\
\Omega'_1 \text{ in } (\hat{x}_0, \hat{y}_0, \hat{z}_0) & 31.4652^\circ & 56.0532^\circ & 0.1103 & 0.1639 & 0.3228\n\end{array} \tag{6.18}
$$

These values are close to but not equal to the original values [see (6.15)] given by

$$
\Omega_1 = (\theta_1, \phi_1), \quad \theta_1 = 30^{\circ}, \text{ and } \phi_1 = 60^{\circ}
$$

which is in fact the dirction of γ measured in $(\hat{x}_0, \hat{y}_0, \hat{z}_0)$ (or, equivalently, the γ 4-momentum in the overall CM system has been Lorentz-transformed directly into the ω RF—without going through the jRF or the $j'RF$). Lorentz transformations in this example is confined to the zx -plane; so the y-components remain invariant under the transformations. Comparing the z- and x-components of the γ momenta in (6.15) and (6.18), we observe a small but finite rotation in the zx -plane (or around the y-axis)

$$
\Delta \beta = -3.2575^{\circ}, \qquad \Delta \beta' = +2.7650^{\circ} \tag{6.19}
$$

The rotation around the y-axis which takes $(\hat{x}_2, \hat{y}_2, \hat{z}_2)$ into the original coordinate system $(\hat{x}_0, \hat{y}_0, \hat{z}_0)$ and again $(\hat{x}'_2, \hat{y}'_2, \hat{z}'_2)$ into $(\hat{x}_0, \hat{y}_0, \hat{z}_0)$ are

$$
(\alpha, \beta, \gamma) = (180^{\circ}, 25.2891^{\circ}, 0^{\circ})
$$
 and $(\alpha', \beta', \gamma') = (0^{\circ}, -15.8024^{\circ}, 0^{\circ})$ (6.20)

we see that, from (6.14),

$$
-\theta_0 + \theta - \beta = 0, \quad \text{and} \quad -\theta'_0 + \theta' + \beta' = 0 \tag{6.21}
$$

Finally, we need to know the direction of s (or ω) with respect to the original coordinate system $(\hat{x}_0, \hat{y}_0, \hat{z}_0)$. There are two ways of measuring the angles; $\Omega_c = (\theta_c, \phi_c)$ which describe the direction of ω in the jRF and $\Omega_c' = (\theta_c', \phi_c')$ which describe the direction of ω in the j'RF

$$
\Omega_c = (\theta_c, \phi_c), \quad \theta_c = 25.2891^{\circ}, \text{ and } \phi_c = 180^{\circ}
$$

\n $\Omega_c' = (\theta_c', \phi_c'), \quad \theta_c' = 15.8024^{\circ}, \text{ and } \phi_c' = 0^{\circ}$ \n(6.22)

Acknowledgment

The author is indebted to R. Hackenburg, R. Longacre and L. Trueman for their helpful comments upon reading a number of preliminary drafts of this note.

References

- [1] S. U. Chung, 'Spin Formalisms,' CERN Yellow Report, CERN 71-8 (1971); Updated Version, http://cern.ch/suchung/.
- [2] P. Giarritta, 'Search for New mesons in $p\bar{p}$ Annihilation into $\omega \pi^0 \pi^0$ and $\omega \eta \pi^0$,' PhD Thesis, University of Zurich (2000) [Thesis Adviser: C. Amsler].
- [3] M. E. Rose, 'Elementary Theory of Angular Momentum,' John Wiley & Sons, Inc., Eq. (4.16) and Eq. (4.17).