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Abstract. Partial wave amplitudes for production and decay of baryon resonances are constructed in the
framework of the operator expansion method. The approach is fully relativistically invariant and allow us
to perform combined analyses of different reactions imposing directly analyticity and unitarity constraints.
All formulas are given explicitly in the form used by the Crystal Barrel collaboration in the (partly
forthcoming) analyses of the electro-, photo- and pion induced meson production data.

1 Introduction

The perturbative approach to the theory of strong interac-
tion (perturbative QCD) cannot be applied directly to the
region of low and intermediate energies. In spite of many
efforts to create a non-perturbative formulation for QCD
from first principles, a final breakthrough has not yet been
achieved even if recent results of lattice QCD indicate that
this situation might change in the future. A necessary step
towards a better understanding of strong interactions is
undoubtedly a precise knowledge of the experimental sit-
uation and a correct classification of strongly interacting
particles.

In meson spectroscopy, considerable progress had been
made during the last ten years. A variety of experiments
lead to the discovery of a large number of new meson
states. In particular scalar states, very purely known 15
years ago, are now one of the most studied systems. As
a result, it is now possible to investigate systematically
the question if additional states expected from QCD like
glueballs or hybrids hide in the observed meson spectrum.
Although there is still no agreement on the classification
of scalar states, the number of reliable classifications is
reduced to quite small number (see [1–4] and references
therein). We expect that the new GSI facility will help to
resolve the remaining ambiguities completely.

A very important observation is that those meson res-
onances which can be interpreted as dominant qq̄ states
are lying on linear trajectories, not only against the total
spin but also against their radial quantum number [5]. Ex-
citingly, this seems to be true also for baryons [6]. Almost
all known baryons lye on linear trajectories with the same
slope as that for mesons.
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Most information about baryons comes from pion- and
photon-induced production of single mesons. However the
experience from meson spectroscopy shows that excited
states decay dominantly into multi-body channels and are
not observed reliably in the elastic cross section. Thus re-
actions with three or more final states provide rich infor-
mation about the properties of hadronic resonances. One
of recent examples is the possible observation of a pen-
taquark [4] which up to now was seen only in reactions
with three or more final-state particles.

The task to extract pole positions and residues from
multi-body final states is however not a simple one. Main
problems can be traced to the large interference effects be-
tween different isobars and to contributions from singular-
ities related to multi-body interactions. In [7] an approach
based on the dispersion N/D method was put forward and
successfully applied to the analysis of meson resonances.
In this method allowed singularities in the reaction can
be classified, resonances which are closest to the physi-
cal region can be taken into account accurately, and other
contributions can be parameterized in an efficient way.

One of the key points in this approach is the operator
decomposition method which provides a tool for a univer-
sal construction of partial wave amplitudes for reactions
with two– and many–body final states. The operator de-
composition method has a long history. It was used for the
analysis of the reactions with three particle final states al-
ready in [8]. The full description of the method for the
nonrelativistic case was given in [9]. The full relativistic
approach for NN → NN(N∆) and γd → pn was de-
veloped in [10–12]. The construction of partial wave am-
plitudes for production of meson resonances in different
reactions can be found in [13–15].

In the present article we develop the operator expan-
sion method to describe baryon resonances in meson- and
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photon-induced reactions. The photon can be real or vir-
tual, we assume it to be virtual unless the opposite is
explicitly stated. The method is also very convenient to
calculate contributions from triangle and box diagrams
and to project t and u-channel exchange amplitudes into
partial waves. The latter feature is very important for
amplitudes near their unitarity limits where the unitar-
ity property must be taken into account explicitly.

The formulas given here reproduce exactly the am-
plitudes used by the Crystal-Barrel-ELSA collaboration
in their (partly forthcoming) analyses of single- and two-
body photoproduction reactions.

It must be emphasized that a wealth of data on baryon
resonances has been taken, is being analyzed or is going
to be produced in the near future. At MAMI in Mainz [16]
precision data were taken in the low–energy range which
will be extended to 1.4GeV photon energies in the close
future. The GRAAL [17] experiment has produced invalu-
able data in particular using linearly polarized photons;
the SAPHIR [18] experiment at Bonn has published a se-
ries of papers covering many basic photoproduction cross
sections. The experiment is now replaced by the Crys-
tal Barrel detector [19] which had produced before many
results at the Low-Energy-Antiproton-Ring (LEAR) at
CERN. And, last not least, Jlab at Newport News/Virginia
[20] has accumulated high statistic data sets on photo- and
electro-production of a variety of final states. First high–
quality data have been published.

1.1 Orbital angular momentum operators

X
(L)
µ1µ2...µL−1µL

Let us consider a decay of a composite particle with spin
J and momentum P (P 2 = s) into two spinless particles
with momenta k1 and k2. The only measured quantities
in such a reaction are the particle momenta. The angu-
lar dependent part of the wave function of the composite
state is described by operators constructed out of these
momenta and the metric tensor. Such operators (we will

denote them as X
(L)
µ1...µL) are called orbital angular mo-

mentum operators and correspond to irreducible repre-
sentations of the Lorentz group. They satisfy the following
properties [14]:

– Symmetry with respect to permutation of any two in-
dices:

X(L)
µ1...µi...µj ...µL

= X(L)
µ1...µj ...µi...µL

. (1)

– Orthogonality to the total momentum of the system,
P = k1 + k2.

Pµi
X(L)

µ1...µi...µL
= 0 (2)

– The traceless property for summation over two any
indices:

gµiµj
X(L)

µ1...µi...µj ...µL
= 0. (3)

Let us consider a one-loop diagram describing the de-
cay of a composite system into two spinless particles which
propagate and then form again a composite system. The
decay and formation processes are described by orbital an-
gular momentum operators. Due to conservation of quan-
tum numbers this amplitude must vanish for initial and
final states with different spin. The S-wave operator is a
scalar and can be taken as unit operator. The P-wave op-
erator is a vector. In the dispersion relation approach it
is sufficient that the imaginary part of the loop diagram
with S and P-wave operators as vertices is equal to 0. In
the case of spinless particles this requirement entails

∫

dΩ

4π
X(1)

µ = 0 (4)

where the integral is taken over the solid angle of the rel-
ative momentum. In general the result of such an integra-
tion is proportional to the total momentum of the system
Pµ (the only external vector):

∫

dΩ

4π
X(1)

µ = λPµ (5)

Convoluting this expression with Pµ and demanding λ = 0
we obtain the orthogonality condition (2). The orthog-
onality between D-wave and S-wave is provided by the
traceless condition (3); conditions (2,3) provide the or-
thogonality for all operators with different orbital angular
momenta.

The orthogonality condition (2) is automatically ful-
filled if the operators are constructed from the relative
momenta k⊥

µ and the tensor g⊥
µν . They both are orthogo-

nal to the total momentum of the system:

k⊥

µ =
1

2
g⊥µν(k1 − k2)ν g⊥µν = gµν − PµPν

s
(6)

In the center-of-mass system (c.m.s. from now onwards),
where P = (P0,P) = (

√
s, 0), the vector k⊥ is space-like:

k⊥ = (0,k).
The operator for spin J = 0 is a scalar (for example

a unit operator), and the operator for spin J = 1 is a
vector which can only be constructed from k⊥

µ . The orbital
angular momentum operators for L = 1 to 3 are:

X(0) = 1 , X(1)
µ = k⊥

µ ,

X(2)
µ1µ2

=
3

2

(

k⊥

µ1
k⊥

µ2
− 1

3
k2
⊥g⊥µ1µ2

)

,

X(3)
µ1µ2µ3

= (7)

5

2

[

k⊥

µ1
k⊥

µ2
k⊥

µ3
− k2

⊥

5

(

g⊥µ1µ2
k⊥

µ3
+ g⊥µ1µ3

k⊥

µ2
+ g⊥µ2µ3

k⊥

µ1

)

]

.

The operators X
(L)
µ1...µL for L ≥ 1 can be written in form

of a recurrent expression:

X(L)
µ1...µL

= k⊥

α Zα
µ1...µL

,

Zα
µ1...µL

=
2L− 1

L2

(

L
∑

i=1

X(L−1)
µ1...µi−1µi+1...µL

g⊥µiα −
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2

2L− 1

L
∑

i,j=1

i<j

g⊥µiµj
X(L−1)

µ1...µi−1µi+1...µj−1µj+1...µLα

)

. (8)

Convolution equality reads:

X(L)
µ1...µL

k⊥

µL
= k2

⊥X(L−1)
µ1...µL−1

. (9)

Based on eq.(9) and taking into account the traceless prop-

erty of X
(L)
µ1...µL , one can write down the orthogonality-

normalization condition for orbital angular operators:
∫

dΩ

4π
X(n)

µ1...µn
(k⊥)X(m)

µ1...µm
(k⊥) = δnmα(L)k2n

⊥ ,

α(L) =

L
∏

l=1

2l − 1

l
=

(2L − 1)!!

L!
. (10)

Iterating eq. (8) one obtains the following expression for

the operator X
(L)
µ1...µL :

X(L)
µ1...µL

(k⊥) = α(L)

[

k⊥

µ1
k⊥

µ2
k⊥

µ3
k⊥

µ4
. . . k⊥

µL
−

k2
⊥

2L − 1

(

g⊥µ1µ2
k⊥

µ3
k⊥

µ4
. . . k⊥

µL
+

g⊥µ1µ3
k⊥

µ2
k⊥

µ4
. . . k⊥

µL
+ . . .

)

+ (11)

k4
⊥

(2L−1)(2L−3)

(

g⊥µ1µ2
g⊥µ3µ4

k⊥

µ5
k⊥

µ6
. . . kµL

+

g⊥µ1µ2
g⊥µ3µ5

k⊥

µ4
k⊥

µ6
. . . kµL

+ . . .

)

+ . . .

]

.

The angular part of the amplitude for scattering of two
spinless particles (for example a ππ → ππ scattering) is
described as a convolution of the operators X (L)(k) and
X(L)(q) where k and q are relative momenta before and
after the interaction.

X(L)
µ1...µL

(k⊥)X(L)
µ1...µL

(q⊥) =

α(L)

(

√

k2
⊥

√

q2
⊥

)L

PL(z) .(12)

Here PL(z) are Legendre polynomials (see Appendix A)

and z = (k⊥q⊥)/(
√

k2
⊥

√

q2
⊥

) which are, in c.m.s., func-
tions of the cosine of the angle between initial and final
particles.
A comment: one should be careful with expression

√

k2
⊥

.
In c.m.s.,

√

k2
⊥

=
√

−k2 = i|k|

(
√

k2
⊥

√

q2
⊥

)L = (−1)L(|k||q|)L (13)

1.2 The boson projection operator

Let us consider the imaginary part of the one-loop diagram
when particles interact with relative momentum p, then

propagate with momentum k, and interact for a second
time getting the relative momentum q. The process can
be described by orbital angular momentum operators in
the form

X(L)
µ1...µL

(p⊥)

∫

dΩ

4π
X(L)

µ1...µL
(k⊥)X(L)

ν1...νL
(k⊥)X(L)

ν1...νL
(q⊥)

The projection operator Oµ1 ...µL
ν1 ...νL

for the partial wave with
angular momentum L is defined as:

∫

dΩ

4π
X(L)

µ1...µL
(k⊥)X(L)

ν1...νL
(k⊥) =

α(L)

2L + 1
k2L
⊥

Oµ1 ...µL
ν1...νL

(14)

and satisfies the following relations:

X(L)
µ1...µL

(k⊥)Oµ1 ...µL
ν1 ...νL

= X(L)
ν1...νL

(k⊥) ,

Oµ1 ...µL
α1...αL

Oα1...αL
ν1...νL

= Oµ1...µL
ν1...νL

. (15)

Due to properties (15), the product of any number of
loop diagrams will be described by the same projection
operator. This operator has the same symmetry, orthog-
onality and traceless properties as X-operators (for the
same set of up and down indices) but the O-operator does
not depend on the relative momentum of the constituents
and does not describe decay processes. It represents the
propagation of the composite system and defines the struc-
ture of the boson propagator (its numerator). More details
on the properties of X and O-operators can be found in
[14].

Taking into account the definition of the projection
operators (15) and the properties of the X-operators (12)
we obtain:

kµ1
. . . kµL

Oµ1 ...µL
ν1...νL

=
1

α(L)
X(L)

ν1...νL
(k⊥). (16)

This equation presents the basic property of the projection
operator: it projects any operator with L indices onto the
partial wave operator with angular momentum L.
The projection operator can also be calculated using the
recurrent expression:

Oµ1...µL
ν1...νL

=
1

L2

( L
∑

i,j=1

g⊥µiνj
Oµ1 ...µi−1µi+1...µL

ν1...νj−1νj+1...νL
−

4

(2L− 1)(2L − 3)
(17)

L
∑

i<j
k<m

g⊥µiµj
g⊥νkνm

Oµ1...µi−1µi+1...µj−1µj+1...µL
ν1...νk−1νk+1...νm−1νm+1...νL

)

The low order projection operators are:

O = 1 Oµ
ν = g⊥µν

Oµν
αβ =

1

2

(

g⊥µαg⊥νβ + g⊥µβg⊥να − 2

3
g⊥µνg⊥αβ

)

(18)
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1.3 The vector projection operator in the gauge
invariant limit

The sum over the possible polarisations of a vector particle
εµ with non zero mass corresponds to the vector projection
operator:

∑

α

εα
µε∗α

ν = Oµ
ν = g⊥µν (19)

which means that there are three independent polarisation
vectors orthogonal to the momentum of the particle and
normalized as εα

µε∗α
µ = −1.

However photon polarisation vectors have only two in-
dependent components, its momentum squared is equal to
0 and therefore, the projection operator can not have the
form (19). The invariant expression for the photon projec-
tion operator can be only constructed for the interaction
of the photon with another particle. In this case it has the
form:

g⊥⊥

µν = −
∑

α

εα
µεα

ν = gµν − PµPν

P 2
−

k⊥
µ k⊥

ν

k2
⊥

(20)

where k1 is momentum of the baryon, k2 -is momentum
of the photon, P = k1 + k2 and

k⊥

µ =
1

2
(k1 − k2)νg⊥µν =

1

2
(k1 − k2)ν

(

g⊥µν − PµPν

P 2

)

(21)

In the c.m.s. with the momentum of γ being parallel to
the z-axis, the g⊥⊥

µν tensor has a very simple form:

g⊥⊥

µν =







0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0






(22)

where the vector components are defined as
p = (E, px, py, pz).

The tensor (20) is orthogonal to the momentum of the
both particles:

g⊥⊥

µν k2µ = g⊥⊥

µν k1µ = 0 . (23)

and it extracts the gauge invariant part of the amplitude.
For the real photon:

Aµεα
µ = Aνg⊥⊥

νµ εα
µ (24)

and the expression Aνg⊥⊥
νµ is gauge invariant:

Aνg⊥⊥
νµ k2µ = 0.

2 Fermions

The wave function of a fermion is described as Dirac
bispinor, as object in Dirac space represented by γ ma-
trices. In the standard representation the γ matrices have
the following form:

γ0 =

(

1 0
0 −1

)

, γ =

(

0 σ
−σ 0

)

, γ5 =

(

0 1
1 0

)

(25)

where σ are 2 × 2 Pauli matrices. In this representation
the spinors for fermion particles with momentum p are:

u(p) =
1√

p0 + m

(

(p0 + m)ω
(pσ)ω

)

,

ū(p) =
((p0 + m)ω∗,−(pσ)ω∗)√

p0 + m
. (26)

Here ω represents a 2-dimensional spinor and ω∗ the con-
jugated and transposed spinor. The normalization condi-
tion can be written as:

ū(p)u(p) = 2m
∑

polarizations

u(p)ū(p) = m + p̂ (27)

We define p̂ = pµγµ.

3 The structure of fermion propagator

The wave function of a particle with spin J = L+1/2 and
momentum p is described by a tensor bispinor Ψµ1...µL

: it
is a tensor in Dirac space. As the tensor it satisfies the
same properties as a boson wave function:

pµi
Ψµ1...µL

= 0

Ψµ1...µi...µj ...µL
= Ψµ1...µj ...µi...µL

gµiµj
Ψµ1...µL

= 0 (28)

In addition the fermion wave function must satisfy the
following properties:

(p̂ − m)Ψµ1...µL
= 0

γµi
Ψµ1...µL

= 0 (29)

Conditions (28), (29) define the structure of the fermion
propagator (projection operator) which can be written in
the following form:

F µ1...µL
ν1...νL

(p) = (m + p̂)Rµ1...µL
ν1...νL

(30)

Here (m + p̂) corresponds to the propagator for a fermion
with J = 1/2.
The operator Rµ1...µL

ν1...νL
describes the tensor structure of

the propagator. It is equal to 1 for J = 1/2 particle and
is proportional to g⊥

µν − γ⊥
µ γ⊥

ν /3 for a particle with spin

J = 3/2 (γ⊥
µ = g⊥µνγν).

The conditions (28) are identical for fermion and boson
projection operators and therefore the fermion projection
operator can be written as:

Rµ1...µL
ν1...νL

= Oµ1 ...µL
α1...αL

T α1...αL

β1...βL
Oβ1...βL

ν1...νL
(31)

The T α1...αL

β1...βL
operator can be expressed in a rather sim-

ple form since all symmetry and orthogonality conditions
are imposed by O-operators. First, the T-operators are
constructed only out of metrical tensors and γ-matrices.
Second, a construction like γαi

γαj

γαi
γαj

=
1

2
gαiαj

+ σαiαj
, (32)

where σαiαj
=

1

2
(γαi

γαj
− γαj

γαi
)
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gives zero if multiplied with an O-operator (The first term
due to the traceless conditions and the second one due to
symmetry properties). The only structures which can then
be constructed are gαiβj

and σαiβj
. Moreover, taking into

account the symmetry properties of the O-operators, the
latter can be used as σα1β1

:

T α1...αL

β1...βL
=

L + 1

2L+1

(

gα1β1
− L

L+1
σα1β1

)

L
∏

i=2

gαiβi
(33)

Here the coefficients are calculated to satisfy the condi-
tions (29) for the fermion projection operator:

γµi
F µ1...µL

ν1...νL
= F µ1...µL

ν1...νL
γνj

= 0 (34)

F µ1...µL
α1...αL

F α1...αL
ν1...νL

= F µ1...µL
ν1...νL

(35)

It is not necessary to construct the T operator out of
the metric tensors and σ-matrices orthogonal to the mo-
mentum of the particle. Orthogonality is imposed by O-
operators. However, to use the same ingredients for all
operators, it is easier to introduce this property directly,
rewriting the T-operators as:

T α1...αL

β1...βL
=

L + 1

2L+1

(

g⊥α1β1
− L

L+1
σ⊥

α1β1

)

L
∏

i=2

g⊥αiβi
, (36)

σ⊥

µν =
1

2
(γ⊥

µ γ⊥

ν − γ⊥

ν γ⊥

µ )

3.1 Fermion propagator for an unstable particle

The numerator of a stable particle propagator has a very
simple structure in its c.m.s.:

m + P̂ = 2m

(

1 0
0 0

)

. (37)

Assume a resonance with an invariant mass
√

s (P 2 =
s). To maintain the orthogonality condition for the oper-
ators one should replace m → √

s in eq. (30). Then, for a
resonance in its c.m.s.:

√
s + P̂ = 2

√
s

(

1 0
0 0

)

. (38)

Such a structure is divergent at large energies and it
is reasonable to regularize it with the factor 2M/(2

√
s)

or simply with 1/(2
√

s) to provide a correct asymptotical
behavior. Therefore we use the following expression for
the numerator of a resonance propagator:

F µ1...µL
ν1...νL

(P ) =

√
s + P̂

2
√

s
Rµ1...µL

ν1...νL
(39)

4 πN scattering

Let us now construct vertices for the decay of a composite
baryon system with momentum P into the πN final state

with relative momentum k = 1/2(k1 − k2) (here k1 -is
the nucleon momentum). A particle with spin JP = 1/2−

decays into the πN channel in an S-wave, hence the or-
bital angular momentum operator is a scalar, e.g. a unit
operator. For the vertex we get:

ū(P )u(k1). (40)

Here u(P ) is a bispinor of the composite particle and u(k1)
is the bispinor of the nucleon. A resonance with spin 3/2+

decays into πN with an orbital angular momentum L = 1
and the vertex must be a vector, constructed out of k⊥

µ

and γ⊥
µ . However it is sufficient to take only k⊥

µ : first, due
to the properties (29) and second, due to the fact that the
projection operator (numerator of the fermion propaga-
tor) will automatically provide the correct structure. Thus
we obtain for the decay of particles with J = (L + 1/2),
P = (−1)L+1 (1/2−, 3/2+, 5/2−, 7/2+, . . .) the expression

Ψ̄µ1...µL
X(L)

µ1...µL
(k⊥)u(k1). (41)

Let us call below this set of states where the total angular
momentum is given by the orbital angular momentum plus
1/2 as ’plus’ or ’+’ states. ’Minus’ or ’-’ states are defined
analogously (J = (L − 1/2), P = (−1)L+1).

It is convenient to introduce vertex functions N±
µ1...µL

describing the decay of a resonance into a pseudoscalar
meson and a nucleon. Then for ’+’ states:

Ψ̄µ1...µL
N+

µ1...µL
(k⊥)u(k1)

N+
µ1...µL

(k⊥) = X(L)
µ1...µL

(k⊥) (42)

The angular dependent part of the πN → resonance →
πN transition amplitude can be constructed in a very sim-
ple way: the vertex function describing the interaction of
the meson and the nucleon convolutes with the interme-
diate state propagator and the decay vertex function:

ūfÑ±

µ1...µL
F µ1...µL

ν1...νL
(P )N±

ν1...νL
ui (43)

Here Ñ± is the left-hand vertex function (with two parti-
cles joining to one resonance) which is different from the
decay vertex function N± by the ordering of γ-matrices.
(This is important for N−

µ1...µL
vertices which will be given

on the next page). If q and k are the relative momenta
before and after interaction and k1 and q1 are the corre-
sponding nucleon momenta, the amplitude for πN scat-
tering via ’+’ states can be written as:

A = (44)

ū(k1) Xµ1...µL
(k⊥)F µ1...µL

ν1 ...νL
(P )Xν1...νL

(q⊥)u(q1)BW+
L (s)

where BW+
L (s) describes the energy dependence of the

intermediate state propagator. It is given, e.g., by a Breit-
Wigner amplitude, a K-matrix or an N/D expression.

Using equations (15) and (37) we obtain:

A = ū(k1)

√
s + P̂

2
√

s
u(q1)(

√

k2
⊥

√

q2
⊥

)L L + 1

2L+1
α(L)
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PL(z)BW+
L (s) − ū(k1)

√
s + P̂

2
√

s

L

2L+1
σ⊥

µν (45)

Xµµ2...µL
(k⊥)Xνµ2...µL

(q⊥)u(q1)BW+
L (s)

The formulas for the convolution of X-operators with
one free index in each operator is given in Appendix B,
eq.(167). Only the last, antisymmetric term, gives a nonzero
result:

A = (
√

k2
⊥

√

q2
⊥

)Lū(k1)

√
s + P̂

2
√

s

α(L)

2L+1
BW+

L (s)

[

(L + 1)PL(z) − σµνkµqν
√

k2
⊥

√

q2
⊥

P ′

L(z)
]

u(q1) (46)

Let us now construct the vertices for the decay of com-
posite particles with spin-parity 1/2+, 3/2−, 5/2+ . . . into
πN . The state with 1/2+ is a scalar in tensor space and
decays into πN with L = 1. Therefore this scalar should

be constructed from k⊥
µ . It cannot be k̂⊥ = k⊥

µ γµ since

such an operator is not orthogonal to the 1/2− state:

ū(P )k̂⊥u(k1) = ū(P )(k̂1 − αP̂ )u(k1) =

ū(P )u(k1)(m1 − a(s)
√

s). (47)

Here we used:

k1µ = k⊥

µ + a(s)Pµ, (48)

with a(s) =
Pk1

P 2
=

s + m2
N − m2

π

2s

Changing the parity in fermion sector can be done by
adding a γ5 matrix. Then the basic operator for the decay
of a 1/2+ state into a nucleon and a pseudoscalar meson
has the form:

iγ5k̂
⊥ (49)

where k̂⊥ is introduced just for convenience. Indeed

ū(P )iγ5k̂
⊥u(k1) = ū(P )iγ5(k̂1 − a(s)P̂ )u(k1) =

ū(P )iγ5u(k1)(m1 + a(s)
√

s). (50)

Let us denote the last expression in (50) as χ:

χi = mi + a(s)
√

s → (in c.m.s) mi + ki0 (51)

In general one can also introduce another scalar expression
using γ matrices and k⊥:

εijklγiγjk
⊥

k Pl (52)

where εijkl is the antisymmetric tensor. However using the
properties of the γ matrices:

iγ5γiγjγk = εijklγl (53)

one can show that this operator is identical to (49).
For the decay of systems with J = L − 1/2 into πN

we obtain:

Ψ̄µ1...µL−1
iγ5γνX(L)

νµ1...µL−1
(k⊥)u(k1) (54)

Therefore the vertex function can be written as:

Ψ̄µ1...µL−1
N−

µ1...µL−1
(k⊥)u(k1) (55)

N−

µ1...µL−1
(k⊥) = iγ5γνX(L)

νµ1...µL−1
(k⊥) (56)

leading to the following amplitude for the transition πN →
R → πN :

A = ū(k1)X
(L)
αµ1...µL−1

(k)γ⊥

α iγ5F
µ1...µL−1

ν1...νL−1
(P )iγ5γ

⊥

ξ

X
(L)
ξν1...νL−1

(q)u(q1)BW−

L (s) (57)

A = (
√

k2
⊥

√

q2
⊥

)L−1BW−

L (s)ūi(k1)

√
s + P̂

2
√

s

α(L)

2L−1
[

k̂⊥q̂⊥L PL−1(z) − k̂⊥
σ⊥

µνk⊥
µ q⊥ν

√

k2
⊥

√

q2
⊥

q̂⊥P ′

L−1(z)
]

uf (q1)

Taking into account that

k̂⊥q̂⊥ = (k⊥q⊥) + σ⊥

µνk⊥

µ q⊥ν =

√

k2
⊥

√

q2
⊥

(

z +
σ⊥

µνk⊥
µ q⊥ν

√

k2
⊥

√

q2
⊥

)

(58)

k̂⊥
σ⊥

µνk⊥
µ q⊥ν

√

k2
⊥

√

q2
⊥

q̂⊥ =
√

k2
⊥

√

q2
⊥

(

1 − z2 − z
σ⊥

µνk⊥
µ q⊥ν

√

k2
⊥

√

q2
⊥

)

(Remember z = (k⊥q⊥)/(
√

k2
⊥

√

q2
⊥

)) we obtain:

A = (
√

k2
⊥

√

q2
⊥

)LBW−

L (s)ūi(k1)

√
s + P̂

2
√

s

α(L)

L
×

[

(LzPL−1(z) − (1 − z2)P ′

L−1(z)) +

σ⊥
µνk⊥

µ q⊥ν
√

k2
⊥

√

q2
⊥

(LPL−1 + zP ′

L−1(z))
]

uf (q1). (59)

Using the properties of Legendre polynomials (given in
Appendix A) the final expression for πN scattering due
to ’-’ resonances reads:

A = (
√

k2
⊥

√

q2
⊥

)LBW−

L (s)ūi(k1)

√
s + P̂

2
√

s

α(L)

L
×

[

LPL(z) +
σ⊥

µνk⊥
µ q⊥ν

√

k2
⊥

√

q2
⊥

P ′

L(z)
]

uf (q1) (60)

Therefore the total πN → πN transition amplitude is
equal to:

A = (
√

k2
⊥

√

q2
⊥

)Lūi(k1)

√
s + P̂

2
√

s

[

f1 −
σ⊥

µνk⊥
µ q⊥ν

√

k2
⊥

√

q2
⊥

f2

]

uf (q1)

f1 =
∑

L

[ α(L)

2L+1
(L+1)BW+

L (s) +
α(L)

L
L BW−

L (s)
]

PL(z)

f2 =
∑

L

[ α(L)

2L+1
BW+

L (s) − α(L)

L
BW−

L (s)
]

P ′

L(z) (61)
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Let us calculate the amplitude (61) in the c.m.s. of the
resonance where P = (

√
s,0):

ūi(k1)

√
s+P̂

2
√

s
uf (q1) =

((k10+m)ω∗,−(k1σ)ω∗)√
k10+m

(

1 0
0 0

)

(

(q10+m)ω′

(q1σ)ω′

)

√
q10+m

=

ω∗√χiχfω′

σµν =

(

−iεµνjσj 0
0 −iεµνjσj

)

= −iεµνjσj I (62)

Here, ω and ω′ are two-dimensional spinors of the initial
and final state nucleons. Thus

A = (−1)L(|k||q|)L√χiχf ω∗

[

f1 − iεµνj
σjkµqν

|k||q| f2

]

ω′.

Defining the vector normal to the decay plane as

nj = −εµνj
kµqν

|k||q| (63)

we obtain the final expression

A = (−1)L(|k||q|)Lω∗√χiχf [f1 + i(σn)f2] ω (64)

When fitting πN scattering data, the following expression
(defined in the c.m.s.) is often used

AπN = ω∗ [G(s, t) + H(s, t)i(σn)] ω′

G(s, t) =
∑

L

[

(L+1)F+
L (s) − LF−

L (s)
]

PL(z)

H(s, t) =
∑

L

[

F+
L (s) + F−

L (s)
]

P ′

L(z) (65)

The F±

L are functions which depend only on energy. Com-
paring our expressions with (65) we obtain the following
correspondence:

F+
L = (−1)L+1(|k||q|)L√χiχf

α(L)

2L+1
BW+

L (s)

F−

L = (−1)L(|k||q|)L√χiχf
α(L)

L
BW−

L (s) (66)

5 Operators for the decay of baryons into a
nucleon and a vector particle

A vector particle (e.g. a virtual photon γ∗ or a ρ-meson)
has spin 1 and therefore the γ∗N system can form two
spin states with S = 1/2 and 3/2. In combination with
the orbital angular momentum, six sets of partial waves
can be formed

J = LγN + 1
2 , S = 1

2 , P = (−1)LγN+1, LγN = 0, 1, . . .

J = LγN − 3
2 , S = 3

2 , P = (−1)LγN+1, LγN = 2, 3, . . .

J = LγN + 1
2 , S = 3

2 , P = (−1)LγN+1, LγN = 1, 2, . . .

J = LγN − 1
2 , S = 1

2 , P = (−1)LγN+1, LγN = 1, 2, . . .

J = LγN − 1
2 , S = 3

2 , P = (−1)LγN+1, LγN = 1, 2, . . .

J = LγN + 3
2 , S = 3

2 , P = (−1)LγN+1, LγN = 0, 1, . . .

(67)

5.1 Operators for 1/2−, 3/2+, 5/2− . . . states

Let us start from the operators for the ’+’ states. A 1/2−

baryon decays into a baryon with JP = 1/2+ and a vector
particle in either S or D-wave. In case of an S-wave decay
the orbital angular momentum operator is a unit oper-
ator and the polarization vector can be convoluted only
with a γ matrix. However the γ matrix changes the parity
of the system. To compensate this unwanted change an
additional γ5 matrix has to be introduced. Therefore the
operator describing the transition of the state with spin
1/2− into a γ and 1/2+ fermion in S-wave is

ū(P )iγµγ5u(k1)εµ (68)

Here ū(P ) is the bispinor describing a baryon resonance
with momentum P , u(k1) is the bispinor for the final
fermion with momentum k1 and εµ is the polarization
vector of the vector particle. The operator (68) is a 1/2
spin operator and its combination with the orbital angular

momentum operators X
(n)
µ1...µn defines the first set of the

operators (67):

Ψ̄α1...αL
γµiγ5X

(L)
α1...αL

(k⊥)u(k1)εµ (69)

As before, Ψα1...αL
is a fermionic bispinor wave function

with spin J = L+1/2, and k⊥ is the component of the
relative momentum of the γ∗N system orthogonal to the
total momentum of the system. For these partial waves
the orbital angular momentum in the γ∗N system LγN

coincides with orbital angular momentum in πN which
we denote as L.
The decay of a 1/2− state into a 1/2+ and a vector par-
ticle in D-wave must be described by the D-wave orbital
angular momentum operator:

ū(P )γν iγ5X
(2)
µν (k⊥)u(k1)εµ (70)

One can easily write down the whole set of such operators
with J =LγN−3/2 by

Ψ̄α1...αL
γν iγ5X

(L+2)
µνα1...αL

(k⊥)u(k1)εµ (71)

Remember that L is the orbital angular momentum in the
decay of a resonance into πN (LγN =L + 2).
The third set of operators starts from the total momentum
3/2. The basic operator describes the P-wave decay of a
3/2+ system into a baryon and a vector particle. It has
the form

Ψ̄µγν iγ5X
(1)
ν (k⊥)u(k1)εµ (72)

The operators for a baryon with J = LγN +1/2 can be
written as

Ψ̄µα1...αL−1
γνiγ5X

(L)
να1...αL−1

(k⊥)u(k1)εµ (73)
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In case of photoproduction rather than electroproduc-
tion the operators (71) are reduced due to gauge invari-
ance to those given in (69). Gauge invariance requires

εµk1µ = εµk2µ = εµk⊥

µ = 0 (74)

Using (29) we obtain

Ψ̄α1...αL
γνiγ5X

(L+2)
µνα1...αL

(k⊥)u(k1)εµ =

−k2
⊥

α(L)

(2L−1)α(L−2)
Ψ̄α1...αL

γµiγ5X
(L)
α1...αL

(k⊥)u(k1)εµ (75)

Although operators (71) applied to the case of real pho-
tons produce the same angular dependence as the oper-
ators (69), the former can provide an additional energy
dependence which can be important for broad states.

It is convenient to write the decay amplitudes as a
convolution of the bispinor wave functions and the vertex

functions V
(i+)µ
α1...αL i = 1, 2, 3. Then eqns.(69,71,73) can be

rewritten as

Ψ̄α1...αL
V (i+)µ

α1...αL
(k⊥)u(k1)εµ

V (1+)µ
α1...αL

(k⊥) = γµiγ5X
(L)
α1...αL

(k⊥) (76)

V (2+)µ
α1...αL

(k⊥) = γνiγ5X
(L+2)
µνα1...αL

(k⊥)

V (3+)µ
α1...αL

(k⊥) = γνiγ5X
(L)
να1...αL−1

(k⊥)g⊥µαL

In the helicity approach the property discussed above means
that a 1/2 state is described by only one helicity ampli-
tude while states with higher spin are described by helicity
1/2 and 3/2 amplitudes.

5.2 Operators for 1/2+, 3/2−, 5/2+ . . . states

A 1/2+ particle decays into a fermion with JP = 1/2+

and spin-1 particle in relative P-wave only. The operator
for spin 1/2 of the γ∗N system can be constructed in the
same way as the corresponding operator for the ’+’-states.
The P-wave orbital angular momentum operator must be
convoluted with a γ-matrix. In this case, the γ5 operator
is not needed to provide the correct parity. The transition
amplitude can be written as

ū(P )γξγµX
(1)
ξ u(k1)εµ (77)

and the operator for the state with S = 1/2 and J =
LγN − 1/2 has the form

Ψ̄α1...αL−1
γξγµX

(L)
ξα1...αL−1

(k⊥)u(k1)εµ (78)

with L ≡ LπN = LγN .
For the ’minus’ states, the operators with S = 3/2 and J =
LγN−1/2 have the same orbital angular momentum as the
S = 1/2 operator. However here the polarization vector
convoluts with the index of the orbital angular momentum
operator. Then

Ψ̄α1...αL−1
X(L)

µα1...αL−1
(k⊥)u(k1)εµ (79)

The third set of operators starts from total spin 3/2. The
basic operator describes the decay of the 3/2− system into
the nucleon and a photon in relative S-wave. Thus

Ψ̄µu(k1)εµ, (80)

and we obtain the set:

Ψ̄α1...αL−1
X(L−2)

α2...αL−1
(k⊥)g⊥α1µu(k1)εµ (81)

Remember that for these states L = LγN + 2.
For real photons the operator (79) vanishes for J =

1/2+; for higher states these operators provide some ad-
ditional energy dependence in the partial waves (81). For

convenience we introduce vertex functions V
(i−)µ
α1...αL−1 i =

1, 2, 3 as it was done in the case of ’+’ states

Ψ̄α1...αL−1
V (i−)µ

µα1...αL−1
(k⊥)u(k1)εµ

V (1−)µ
α1...αL−1

(k⊥) = γξγµX
(L)
ξα1...αL−1

(k⊥) (82)

V (2−)µ
α1...αL−1

(k⊥) = X(L)
µα1...αL−1

(k⊥)

V (3−)µ
α1...αL−1

(k⊥) = X(L−2)
α2...αL−1

(k⊥)g⊥α1µ

6 Single meson photoproduction

The amplitude for the photoproduction of a single pseu-
doscalar meson (for the sake of simplicity let us take the
pion) is well known and can be found in the literature
(see for example [21] and references therein). The general
structure of the amplitude is

A = ω∗Jµεµω′

Jµ = if1σµ + f2(σq)
εµijσikj

|k||q| + if3
(σk)

|k||q|qµ + if4
(σq)

q2
qµ

(83)

where q is the momentum of the nucleon in the πN chan-
nel and k is the momentum of the nucleon in the γN
channel calculated in the c.m.s. of the reaction and σi are
Pauli matrices.

The functions fi have the following angular depen-
dence:

f1(z) =
∞
∑

L=0

[LM+
L + E+

L ]P ′

L+1(z) + [(L + 1)M−

L + E−

L ]P ′

L−1(z)

f2(z) =

∞
∑

L=1

[(L + 1)M+
L + LM−

L ]P ′

L(z)

f3(z) =

∞
∑

L=1

[E+
L − M+

L ]P ′′

L+1(z) + [E−

L + M−

L ]P ′′

L−1(z)

f4(z) =
∞
∑

L=2

[M+
L − E+

L − M−

L − E−

L ]P ′′

L(z). (84)
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Here L corresponds to the orbital angular momentum
in the πN system, PL(z) are Legendre polynomials z =
(kq)/(|k||q|) and E±

L and M±

L are electric and magnetic
multipoles describing transitions to states with J = L ±
1/2. In the following we will construct the γN → πN
transition amplitudes using the operators defined in the
previous sections and show that in c.m.s. these amplitudes
satisfy the equations (83, 84).

6.1 Photoproduction amplitudes for
1/2−, 3/2+, 5/2− . . . states

The angular dependence of the single-meson-production
amplitude via an intermediate resonance has the general
form

ū(q1)Ñ
±

α1...αn
(q⊥)F α1...αn

β1...βn
(P )V

(i±)µ
β1...βn

(k⊥)u(k1)εµ (85)

Here q1 and k1 are the momenta of the nucleon in the πN
and γN channel and q⊥ and k⊥ are the components of
the relative momenta which are orthogonal to the total
momentum of the resonance.

If states with J = L + 1/2 are produced from a γN
partial wave with spin 1/2 one has the following expression
for the amplitude:

A+(1/2) = ū(q1)X
(L)
α1...αL

(q⊥)

F α1...αL

β1...βL
(P )γµiγ5X

(L)
β1...βL

(k⊥)u(k1)εµBW (s) (86)

where BW (s) represent the dynamical part of the ampli-
tude. Taking into account the properties of the projection
operator this expression can be rewritten as

ū(q1)X
(L)
α1...αL

(q⊥)T α1...αL

β1...βL

√
s + P̂

2
√

s
X

(L)
β1...βL

(k⊥)

γµiγ5u(k1)εµ =

ū(q1)
[ L+1

2L+1
X(L)

α1...αL
(q⊥)X(L)

α1...αL
(k⊥) −

L

2L+1
σαβX(L)

αα2...αL
(q⊥)X

(L)
βα2...αL

(k⊥)
]

√
s + P̂

2
√

s
γµiγ5u(k1)εµ (87)

Using the expression for the convolution of two X-operators
with two external indices (as given in Appendix B) one
obtains

A+(1/2) = ū(q1)
L+1

2L+1
α(L)(

√

q⊥
√

k⊥)L

[

PL(z) − P ′
L(z)

L+1
σαβ

q⊥α k⊥

β

(
√

q⊥
√

k⊥)

]

√
s + P̂

2
√

s
γµiγ5u(k1)εµBW (s) (88)

In the c.m.s.

ū(q1)

√
s + P̂

2
√

s
γµiγ5u(k1)εµ = −√

χiχf iω∗(εiσi)ω
′ (89)

holds, leading to

A+(1/2) = ω∗√χiχf
L+1

2L+1
α(L)i(−εi)(

√

q⊥
√

k⊥)L

[

σiPL(z) + i
P ′

L(z)

L+1
εαβξσξσi

q⊥α k⊥
β

(
√

q⊥
√

k⊥)

]

ω′BW (s)(90)

Here all vectors are three-dimensional. Using in addition
the properties of Pauli matrices

σiσj = δij + iεijkσk (91)

one obtains the final expression

A+(1/2) = −ω∗√χiχf
α(L)

2L+1
εi(
√

q⊥
√

k⊥)L

[

iσi

(

(L+1)PL(z) + zP ′

L(z)
)

+ (σq)
εijmσjkm

|k||q| P ′

L(z)
]

ω′BW (s) (92)

Taking into account the properties of the Legendre poly-
nomials (given in Appendix A) the amplitude can be com-
pared with equations (83), (84). One finds the follow-
ing correspondence between the spin operators and mul-
tipoles:

E
+(1)
L = (−1)L√χiχf

α(L)

2L+1

(|k||q|)L

L+1
BW (s)

M
+(1)
L = E

+(1)
L (93)

In the case of photoproduction, only two γN operators
are independent for every resonance with spin 3/2 and
higher (for J = 1/2 states there is only one independent
operator). For the set of J = L + 1/2 states the second
operator has the amplitude structure

A+(3/2) = ū(q1)X
(L)
α1...αL

(q⊥)F α1...αL

µβ2...βL
(P )

γξiγ5X
(L)
ξβ2...βL

(k⊥)u(k1)εµBW (s) (94)

Using expressions given in Appendix B one obtains the
multipole decomposition

E
+(2)
L = (−1)L√χiχf

α(L)

2L+1

(|k||q|)L

L+1
BW (s)

M
+(2)
L = −E

+(2)
L

L
(95)

6.2 Photoproduction amplitudes for
1/2+, 3/2−, 5/2+ . . . states

The γN → πN amplitude for states with J = L − 1/2 in
the πN channel has the structure

A−(1/2) = ū(q1)γξiγ5X
(L)
ξα1...αL−1

(q⊥)F
α1...αL−1

β1...βL−1
(P )

γξγµX
(L)
ξβ1...βL−1

(k⊥)u(k1)εµBW (s) (96)



10 A. Anisovich et al.: Partial wave decomposition of pion and photoproduction amplitudes

For amplitude (96) we find the following correspondence to
the multipole decomposition (see Appendix B for details):

E
−(1)
L = (−1)L√χiχf |k|L|q|L α(L)

L2
BW (s)

M
−(1)
L = −E

−(1)
L (97)

Amplitudes including spin 3/2 operators have the struc-
ture

A−(3/2) = ū(q1)γξiγ5X
(L)
ξα1...αL−1

(q⊥)F
α1...αL−1

µβ2...βL−1
(P )

X
(L−2)
β2...βL−1

(k⊥)u(k1)εµBW (s) (98)

Using expressions in Appendix B the decomposition of this
amplitude into the multipole representation is the follow-
ing:

E
−(2)
L = (−1)L√χiχf |k|L−2|q|L α(L − 2)

(L−1)L
BW−(s)

M
−(2)
L = 0 (99)

6.3 Relations between the amplitudes in the spin-orbit
and helicity representation

The helicity amplitudes A1/2 and A3/2 are of course dif-
ferent from the spin 1/2 and 3/2 amplitudes A±(1/2),
A±(3/2). For ’+’ multipoles the relations between the he-
licity amplitudes and multipoles are

A1/2 = − 1

2

(

LM+
L + (L + 2)E+

L

)

A3/2 =
1

2

√

L(L+2)
(

E+
L − M+

L

)

(100)

For the ’-’ sector the relations are

A1/2 =
1

2

(

(L + 1)M−

L − (L − 1)E−

L

)

A3/2 = − 1

2

√

(L−1)(L+1)
(

E−

L + M+
L ) (101)

For ’+’ states we obtain the following decomposition of
the spin 1/2 amplitude (93):

A1/2 = − (L + 1)E
+(1)
L

A3/2 = 0 (102)

Obviously the spin 1/2 state can not have a helicity 3/2
projection. For the spin 3/2 state one gets

A1/2 = − L + 1

2
E

+(2)
L

A3/2 =
1

2

√

L + 2

L
(L + 1)E

+(2)
L (103)

The ratio of the helicity amplitudes can be calculated
directly if the ratio of the spin amplitudes is known. The
BW+(s) in both amplitudes is an energy dependent part

of the amplitude which depends on the model used in the
analysis. If a resonance is produced and decays with radius
r the regularization of the amplitude can be done with,
e.g., Blatt-Weisskopf formfactors (see Appendix C). If we
also explicitly extract the initial coupling constants g1/2

and g3/2 for the spin 1/2 and 3/2, then the expression for
the total amplitude for ’+’ states has the form

AL+
tot = (104)

[

g1/2 A+(1/2) + g3/2A
+(3/2)

] BW (s)

F (L, q2
⊥
, r)F (L, k2

⊥
, r)

.

In this case the multipole amplitudes can be rewritten as
following:

E
+(1)
L = (105)

(−1)L√χiχf
α(L)

2L+1

(|k||q|)L

L+1

BW (s)

F (L, q2
⊥
, r)F (L, k2

⊥
, r)

g1/2

E
+(2)
L = (106)

(−1)L√χiχf
α(L)

2L+1

(|k||q|)L

L+1

BW (s)

F (L, q2
⊥
, r)F (L, k2

⊥
, r)

g3/2

From (102) and (103) one can calculate the the ratio be-
tween helicity amplitudes for ’+’ states:

A3/2

A1/2
= −

1
2

√

L+2
L (L + 1)E

+(2)
L

L+1
2 E

+(2)
L + (L + 1)E

+(1)
L

= −
√

L + 2

L

1

1 + 2R
R =

g1/2

g3/2
(107)

This ratio does not depend on the final state of the photo-
production process and is valid for any photoproduction
reaction.

In the case of the ’-’ states we get for the spin 1/2
amplitude:

A1/2 = − LE
−(1)
L

A3/2 = 0 (108)

and for the spin 3/2 amplitudes

A1/2 = − L − 1

2
E

−(2)
L

A3/2 = − 1

2

√

(L − 1)(L + 1)E
−(2)
L (109)

Here the production vertices have the different orbital an-
gular momenta and therefore:

AL−

tot =
[

g1/2
A−(1/2)

F (L, k2
⊥

, r)
+ g3/2

A+(3/2)

F (L−2, k2
⊥
, r)

] BW (s)

F (L, q2
⊥
, r)

The multipole amplitudes can be rewritten as follows:

E
−(1)
L = (110)

(−1)L√χiχf |k|L|q|L α(L)

L2

BW (s)

F (L, q2
⊥

, r) F (L, k2
⊥
, r)

g1/2
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E
−(2)
L = (−1)L√χiχf |k|L−2|q|L α(L − 2)

(L−1)L

BW (s)

F (L, q2
⊥

, r) F (L − 2, k2
⊥

, r)
g3/2 (111)

For the ratio of helicity amplitudes one obtains:

A3/2

A1/2
=

1
2

√

(L − 1)(L + 1)E
−(2)
L

L−1
2 E

−(2)
L + LE

−(1)
L

=

√

L + 1

L − 1

1

1 + 2R κ

(112)

where

κ =
(2L − 1)(2L− 3)

L(L − 1)
|k|2 F (L−2, k2

⊥
, r)

F (L, k2
⊥

, r)
(113)

7 Operators for the decay of a baryon
resonance into pseudoscalar meson and a
baryon with spin 3/2

The spin of a pseudoscalar meson and of a baryon with
spin 3/2 combine to a total spin 3/2. In combination with
the orbital angular momentum operators four sets of par-
tial waves can be formed:

J = L∆ − 3/2, S = 3/2, P = (−1)L∆+1, L∆ = 2, 3, . . .

J = L∆ + 1/2, S = 3/2, P = (−1)L∆+1, L∆ = 1, 2, . . .

J = L∆ − 1/2, S = 3/2, P = (−1)L∆+1, L∆ = 1, 2, . . .

J = L∆ + 3/2, S = 3/2, P = (−1)L∆+1, L∆ = 0, 1, . . .

(114)

7.1 Operators for 1/2−, 3/2+, 5/2− . . . states

A 1/2− particle decays into a JP = 3/2+-particle and
pseudoscalar meson in D-wave. Only one of the indices of
the orbital angular momentum operator can be absorbed
by a γ-matrix. Again, to compensate the change of parity
due to the γ-matrix one has to introduce an additional γ5-
matrix. The operator describing the transition of a state
with spin 1/2− into a 0− and a 3/2+ state is

ū(P ) iγ5γνX(2)
µν Ψ∆

µ (115)

where ūp is a bispinor describing an initial state and Ψ∆
µ is

a vector bispinor for the final spin-3/2 fermion. The first
set of operators (114) derived from eq.(115) reads

Ψ̄α1...αL∆−2
iγ5γνX(L∆)

µνα1...αL∆−2
Ψ∆

µ L∆ = 2, 3, . . .(116)

However it is again convenient to rewrite this expression
using the orbital angular momentum L. In this case L∆ =
L+ 2, and

Ψ̄α1...αL
iγ5γνX(L+2)

µνα1...αL
Ψ∆

µ L = 0, 1, . . . (117)

The second set of operators starts from total spin 3/2. The
basic operator describes the decay of the 3/2+ system into
∆ and pion in a P-wave. It has the form

Ψ̄α iγ5γνX(1)
ν g⊥αµΨ∆

µ (118)

The second set of the operators (114) can be written as
(here L∆ = L)

Ψ̄α1...αL
iγ5γνX(L)

να2...αL
g⊥α1µΨ∆

µ L = 1, 2, . . . (119)

Thus the vertex functions for ’+’ states are

Ψ̄α1...αL
N (i+)µ

α1...αL
Ψ∆

µ N (1+)µ
α1...αL

= iγ5γνX(L+2)
µνα1...αL

N (2+)µ
α1...αL

= iγ5γνX(L)
να2...αL

g⊥α1µ

(120)

7.2 Operators for 1/2+, 3/2−, 5/2+ . . . states

A 1/2+ particle may decay into a JP = 3/2+ baryon and
0− meson in P-wave. In this case the P-wave orbital angu-
lar momentum operator must be converted with the vector
bispinor Ψ∆

µ . The γ5 operator is not needed to provide a
correct parity for the state. Then

ū(P )X(1)
µ Ψ∆

µ (121)

The operator for the state with S = 3/2 and J = L− 1/2
(L = L∆) has the form

Ψ̄α1...αL−1
X(L)

µα1...αL−1
Ψ∆

µ L = 1, 2, . . . (122)

As before, the second set of operators starts from total
spin S = 3/2. The basic operator describes the decay of
the 3/2− system into a 3/2+ particle and pion in S-wave.
Thus

Ψ̄µΨ∆
µ , (123)

and we obtain for this set

Ψ̄µα1...αL∆
X(L∆)

α1...αL∆
Ψ∆

µ L∆ = 0, 1, . . . (124)

Here L = L∆ + 2 and the amplitude can be rewritten as

Ψ̄α1...αL−1
X(L−2)

α2...αL−1
g⊥α1µΨ∆

µ L = 2, 3, . . . (125)

The vertex functions for ’-’ states are given by:

Ψ̄α1...αL−1
N (i−)µ

α1...αL−1
Ψ∆

µ N (1−)µ
α1...αL−1

= X(L)
µα1...αL−1

N (2−)µ
α1...αL−1

= X(L−2)
α2...αL−1

g⊥α1µ

(126)

7.3 Operators for the decay into states with different
parity

The operators given in the previous sections provide a full
set of operators for the decay of a baryon into meson with
spin 0 and fermion with spin 3/2. Indeed, for construction
of operators only the total spin of the system plays the
role. Thus the operators for J+ → 0− + 3/2+ decays have
the same form as the operators for J+ → 0+ + 3/2−,
J− → 0+ + 3/2+ and J− → 0− + 3/2− decays.
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8 Double pion photoproduction amplitudes

Let us construct the amplitudes for double pion photopro-
duction. Here reactions as shown in Fig. 1 are taken into
account where the decay into the final state proceeds via
production an intermediate baryon or meson resonance.
The general form of the angular dependent part of the

)1u(k

)2 (k∈ 3q

)1(qu

π π p → π 2 R→ 1 R→ p γ

2R

(L, S) )
2 Rπ, S

2 Rπ(L

2q

1R

Fig. 1. Photoproduction of two mesons due to the cascade of
a resonance

amplitude for such a process is

ū(q1)Ñα1...αn
(R2→µN)F α1...αn

β1...βn
(q1 + q2)

Ñ (j)β1...βn
γ1...γm

(R1→µR2)F
γ1...γm

ξ1...ξm
(P )V

(i)µ
ξ1...ξm

(R1→γN)

u(k1)εµ, P = q1 + q2 + q3 = k1 + k2 (127)

The resonance R1 with spin J = m + 1/2 is produced in
γN interaction, propagates and then decays into a me-
son and a baryon resonance R2 with spin J = n + 1/2.
Then the resonance R2 propagates and decays into the
final meson and a nucleon.

In the following the full vertex functions used for the
construction of amplitudes are given here for convenience
of the reader. One should remember that the Ñ functions
are different from N -functions by the order of γ-matrices.
For R → 0−+ 1/2+ transitions

Ñ+
µ1...µn

= X(n)
µ1...µn

Ñ−

µ1...µn
= iγνγ5X

(n+1)
νµ1...µn

(128)

holds, while we have

Ñ
(1+)µ
α1...αn = iγνγ5X

(n+2)
µνα1...αn Ñ

(1−)µ
α1...αn = X

(n+1)
µα1...αn

Ñ
(2+)µ
α1...αn = iγνγ5X

(n)
να2...αng⊥α1µ Ñ

(2−)µ
α1...αn = X

(n−1)
α2...αng⊥α1µ

(129)

for R → 0−+ 3/2+ transitions, and

V
(1+)µ
α1...αn = γµiγ5X

(n)
α1...αn V

(1−)µ
α1...αn = γξγµX

(n+1)
ξα1...αn

V
(2+)µ
α1...αn = γν iγ5X

(n+2)
µνα1...αn V

(2−)µ
α1...αn = X

(n+1)
µα1...αn

V
(3+)µ
α1...αn = γν iγ5X

(n+1)
να1...αng⊥µαn

V
(3−)µ
α1...αn = X

(n−1)
α2...αng⊥α1µ

(130)

for R → 1−+ 1/2+ transitions. Here n is related to the
total spin of the resonance by J = n + 1/2.

8.1 Amplitudes for baryons states decaying into a 1/2
state and a pion

In this section explicit expressions for the angular depen-
dent part of the amplitudes are given for the case of a
baryon produced in a γ∗N collision. The baryon decays
into a pseudoscalar particle and another (intermediate)
baryon with spin 1/2 (decaying in turn into meson and
nucleon).

8.1.1 The 1/2−, 3/2+, 5/2− . . . states

The amplitude for a ’+’ state (R1) produced in a γ∗N
collision in a partial wave (i) decaying into a 0− meson
and an intermediate 1/2+ baryon (R2) has the form

A(i) = ū(q1)Ñ
−(q⊥12)

q̂1+q̂2+
√

s12

2
√

s12
Ñ+

α1...αL
(q⊥1 )

F α1...αL

β1...βL
(P )V

(i+)µ
β1...βL

(k⊥)u(k1)εµ

= ū(q1) iq̂⊥12γ5
q̂1+q̂2+

√
s12

2
√

s12
X(L)

α1...αL
(q⊥1 )

√
s+P̂

2
√

s

Rα1...αL

β1...βL
V

(i+)µ
β1...βL

(k⊥)u(k1)εµ (131)

where the k1 and q1 are the momenta of the nucleon in
the initial and the final state, k⊥ = 1/2(k1 − k2)

⊥ and
q⊥1 = 1/2(q1 + q2 − q3)

⊥ are their components orthogonal
to the total momentum of the first resonance R1. Further,
s12 = (q1+q2)

2 and the factors 1/(2
√

s) and 1/(2
√

s12) are
introduced to suppress the divergency of the numerator
of the fermion propagators at large energies. The relative
momentum q⊥12 is the component of q1 and q2 orthogonal
to the total momentum q1 + q2. It is given by:

q⊥12µ =
1

2
(q1 − q2)ν

(

gµν − (q1 + q2)µ(q1 + q2)ν

(q1 + q2)2

)

(132)

The vertex functions (128)-(129) are given for the case
when the nucleon wave function is placed on the right-
hand side of the amplitude. Therefore the order of the
γ-matrices needs to be changed for the meson-nucleon ver-
tices in eq.(127).

If the baryon R2 has spin 1/2− one has to construct the
vertex for decay of ’+’ states into a 0− and a 1/2− particle.
However such operators coincide with the operators for the
decay of ’-’ states into a 0− + 1/2+ system. Therefore

A(i) = ū(q1)Ñ
+(q⊥12)

q̂1+q̂2+
√

s12

2
√

s12
Ñ−

α1...αL
(q⊥1 )

F α1...αL

β1...βL
(P )V

(i+)µ
β1...βL

(k⊥)u(k1)εµ =

ū(q1)
q̂1+q̂2+

√
s12

2
√

s12
iγνγ5X

(L+1)
να1...αL

(q⊥1 )

F α1...αL

β1...βL
(P )V

(i+)µ
β1...βL

(k⊥)u(k1)εµ (133)

In case of the photoproduction with real photons, the

V
(2+)µ
β1...βL

vertex is reduced to V
(1+)µ
β1...βL

, and can be omitted.
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8.1.2 The 1/2+, 3/2−, 5/2+ . . . states

If a ’-’ state is produced in a γ∗N interaction and then
decays into a pseudoscalar pion and 1/2+ baryon the am-
plitude has the structure

A(i) = ū(q1)Ñ
−(q⊥12)

q̂1+q̂2+
√

s12

2
√

s12
Ñ−

α1...αL−1
(q⊥1 )

F
α1...αL−1

β1...βL−1
(P )V

(i−)µ
β1...βL−1

(k⊥)u(k1)εµ =

ū(q1) iq̂⊥12γ5
q̂1+q̂2+

√
s12

2
√

s12
iγνγ5X

(L)
να1...αL−1

(q⊥1 )

F
α1...αL−1

β1...βL−1
(P )V

(i−)µ
β1...βL−1

(k⊥)u(k1)εµ (134)

If the intermediate baryon has spin 1/2− then:

A(i) = ū(q1)Ñ
+(q⊥12)

q̂1+q̂2+
√

s12

2
√

s12
Ñ+

α1...αL−1
(q⊥1 )

F
α1...αL−1

β1...βL−1
(P )V

(i−)µ
β1...βL−1

(k⊥)u(k1)εµ =

ū(q1)
q̂1+q̂2+

√
s12

2
√

s12
X(L)

α1...αL
(q⊥1 )

F
α1...αL−1

β1...βL−1
(P )V

(i−)µ
β1...βL−1

(k⊥)u(k1)εµ (135)

For photoproduction with real photons only amplitudes
with V (1−) and V (3−) vertex functions should be taken
into account.

8.2 Photoproduction amplitudes for baryon states
decaying into a 3/2 state and a pseudoscalar meson

Experimentally important is photoproduction of resonances
decaying into ∆(1232)π followed by a ∆(1232) decay into
a nucleon and a pion.

8.2.1 The 1/2−, 3/2+, 5/2− . . . states decaying into a
meson with spin 0 and a baryon with spin 3/2

The ’+’ states produced in a γ∗N collision can decay into
a pseudoscalar meson and an intermediate baryon with
spin 3/2+ in two partial waves. The amplitude depends
on indices (ij) where index (i) is related, as before, to the
partial wave in the γN channel while index (j) is related
to the partial wave in the decay of the resonance into the
spin 0 meson and the 3/2 resonance R2.

A(ij) = ū(q1) Ñ+
δ (q⊥12)F

δ
ν (q1 + q2) Ñ (j+)ν

α1...αL
(q⊥1 )

F α1...αL

β1...βL
(P )V

(i+)µ
β1...βL

(k⊥)u(k1)εµ (136)

If the intermediate baryon R2 has JP = 3/2−, the
structure of the amplitude structure is

A(ij) = ū(q1) Ñ−

δ (q⊥12)F
δ
ν (q1 + q2) Ñ (j−)ν

α1...αL
(q⊥1 )

F α1...αL

β1...βL
(P )V

(i+)µ
β1...βL

(k⊥)u(k1)εµ (137)

8.2.2 1/2+, 3/2−, 5/2+ . . . states decaying into a 0−

meson and a 3/2+ baryon

The amplitudes for ’-’ states decaying into 0− meson and
3/2+ intermediate baryon are

A(ij) = ū(q1) Ñ+
δ (q⊥12) F δ

ν (q1 + q2) Ñ (j−)ν
α1...αL−1

(q⊥1 )

F
α1...αL−1

β1...βL−1
(P )V

(i−)µ
β1...βL−1

(k⊥)u(k1)εµ (138)

and if the intermediate baryon R2 has the quantum num-
bers 3/2−

A(ij) = ū(q1) Ñ−

δ (q⊥12) F δ
ν (q1 + q2) Ñ (j+)ν

α1...αL−1
(q⊥1 )

F
α1...αL−1

β1...βL−1
(P )V

(i−)µ
β1...βL−1

(k⊥)u(k1)εµ (139)

9 t- and u-channel exchange amplitudes

Meson exchange in the t-channel plays an important role
in both, in photoproduction and in pion induced reactions.
Especially at large energies this mechanism dominates. In
the resonance region we expect that production of baryon
resonances in the s-channel dominates the interaction, at
least when neutral mesons are produced. Nevertheless the
t- and u-channel exchanges must be taken into account
carefully.

The most strait-forward parameterization of particle
exchange amplitudes is the exchange of Regge trajectories.
For construction of a cross-symmetrical amplitude it is
convenient to use the variable

ν =
1

2
(s − u).

The amplitude for t-channel exchange can be written
as

A = g1(t)g2(t)
1 + ξexp(−iπα(t))

sin(πα(t))

(

ν

ν0

)α(t)

(140)

Here gi are vertex functions, α(t) is the function which de-
scribes the trajectory, ν0 is a normalization factor (which
can be taken to be 1) and ξ is the signature of the tra-
jectory. The Pomeron, f0 and π exchanges have a positive
signature while ρ, ω and a1 exchanges have a negative one.

Accordingly, the Reggeon propagators can be written
as

R(+, ν, t) =
e−i π

2
α(t)

sin(π
2 α(t))

(

ν

ν0

)α(t)

,

R(−, ν, t) =
ie−i π

2
α(t)

cos(π
2 α(t))

(

ν

ν0

)α(t)

(141)

where ’+’ and ’-’ indicate the signature of the Regge-
trajectories. To eliminate the poles at t < 0 additional
Γ -functions are introduced in (141). If the Pomeron tra-
jectory is taken as 1.0 + 0.15t [22], negative t poles are at
α = 0,−2,−4, . . . and therefore

sin
(π

2
α(t)

)

→ sin
(π

2
α(t)

)

Γ

(

α(t)

2

)

(142)
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For the pion trajectory α(t) = −0.014 + 0.72t [22], and
the negative poles are at α = −2,−4, . . .. Regularization
must be taken as

sin
(π

2
α(t)

)

→ sin
(π

2
α(t)

)

Γ

(

α(t)

2
+ 1

)

(143)

For ρ, ω and a1 exchanges the negative poles start from
a = −1 and therefore

cos
(π

2
α(t)

)

→ cos
(π

2
α(t)

)

Γ

(

α(t)

2
+

1

2

)

. (144)

9.1 Single meson photoproduction due to ρ and ω
exchange

In the following, the 4-vectors of the initial photon and
proton are denoted as k1 and k2 and 4-vectors of the final
state nucleon (e.g. proton) and the meson (e.g. pion) as
q1 and q2 respectively (see Fig. 2). The photon couples to
the π−ρ(770) system in a P-wave, and the corresponding
amplitude for upper vertex is

Aupper = εµραεµαβγ q2β k2γ , (145)

where ρα is the polarization vector of ρ-meson.
Another vertex in this diagram describes the transition of

)t(kρ

)2(qπ

)1p(k )1p(q

)2(kγ

Fig. 2. The t-channel exchange diagram for single meson pho-
toproduction

the proton and the ρ-meson into the final proton. Such a
transition has the same vertex structure as the transition
γ∗N to a nucleon at the lower vertex:

A
(i−)
lower = ū(q1)V

(i−)µ(k⊥

1 )u(k1)ρµ i = 1, 2

k⊥

1µ = k1ν

(

gµν − q1µq1ν

q2
1

)

=
1

2
(k1 − kt)ν

(

gµν − q1µq1ν

q2
1

)

(146)

Here kt = k2 − q2 = q1 − k1 is the ρ-meson momentum of.
Summing over its polarizations yields

∑

polarization

ραρβ = gαβ − ktαktβ

k2
t

(147)

we obtain the following expression for the amplitude:

Ai− = εµεµαβγ q2β k2γ ū(q1)V
(i−)α(k⊥

1 )u(k1) i = 1, 2

(148)

The same amplitude structure corresponds also to ω- ex-
change.

9.2 Double meson photoproduction due to ρ and ω
exchange

Let us consider photoproduction of two meson (e.g. pions)
due to ρ exchange in t-channel with a 1/2 resonance in the
intermediate state (see Fig. 3). In this case we should add

)t(kρ

)3(qπ

)1p(k )1p(q

)2(kγ

)2(qπ

)∆N(

Fig. 3. The t-channel exchange diagram for double meson pho-
toproduction reactions

to eq.(148) the 1/2 propagator and the vertex for decay
of this resonance into final meson and nucleon:

Ai± = εµεµαβγ q3β k2γ ū(q1)Ñ
±(q⊥12)

q̂1+q̂2+
√

s12

2
√

s12

V (i±)α(k⊥

1 )u(k1) , i = 1, 2 (149)

with k⊥
1µ = k1ν

(

gµν − (q1 + q2)µ(q1 + q2)ν/s12

)

.

The definition of q⊥12 is given in (132). The ’-’ amplitude
corresponds to production of a 1/2+ intermediate state
while the ’+’ amplitude corresponds to production of a
1/2− intermediate state.

Two-meson photoproduction due to ρ exchange in t-
channel with a 3/2 resonance in the intermediate state can
be easily obtained following the procedure given above. In

Ai± = εµεµαβγ q3β k2γ ū(q1)Ñ
±

ξ (q⊥12)

F ξ
χ(q1 + q2)V

(i±)α
χ (k⊥

1 )u(k1) i = 1, 2, 3 (150)

the ’-’ amplitude corresponds to a 3/2− intermediate state
and ’+’ amplitude to 3/2+ intermediate state.

The examples of other t-channel and u-channel ex-
change amplitudes exchange amplitudes used in the anal-
ysis of the single and double meson photoproduction are
given in Appendix D.
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10 The cross section for photoproduction
processes

The differential cross section for production of two or more
particles has the form:

dσ =
(2π)4|A|2

4
√

(k1k2)2 − m2
1m

2
2

dΦn(k1 + k2, q1, . . . , qn)

(151)

where k1 and k2 are momenta of the initial particles (nu-
cleon and γ in the case of photoproduction) and qi are mo-
menta of final state particles. The dΦn(k1 +k2, q1, . . . , qn)
is the element of the n-body phase volume given by

dΦn(k1 + k2, q1, . . . , qn) = δ4(k1 + k2 −
n
∑

i=1

qi)

n
∏

i=1

d3qi

(2π)32q0i
(152)

The photoproduction amplitude can be written as

A = εµūiAµuf (153)

where εµ is the γ polarization vector and ūi and uf the
bispinors of the initial and final state nucleon. When the γ
and nucleon polarization are not measured the amplitude
squared is equal to

|A|2 =
1

4

∑

αjk

A A∗ =
1

4

∑

αjk

εα
µεα

ν ūj
i Aµuk

f ūk
fAtr

ν uj
i (154)

where one averages over the polarization of the initial and
sums over the polarization of the final state particles. Atr

is the hermitian conjugate amplitude.
For the unpolarized real photons:

−
∑

α

εα
µεα

ν = g⊥⊥

µν = gµν − PµPν

P 2
−

k⊥
µ k⊥

ν

k2
⊥

(155)

with P = k1 + k2 and

k⊥

µ =
1

2
(k1 − k2)νg⊥µν =

1

2
(k1 − k2)ν

(

g⊥µν − PµPν

P 2

)

Let us remind that in the c.m.s. with the momentum of γ
being parallel to the z-axis:

g⊥⊥

µν =







0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0






. (156)

The bispinors of fermions with momentum k1 summed
over polarization are convoluted (taking into account nor-
malization (27)) and yield

∑

j

uj(k1)ū
j(k1) = m + k̂1 (157)

and therefore

|A|2 =
1

4
g⊥⊥

µν Sp
[

(m + k̂1)Aµ(m + k̂1)A
tr
ν

]

. (158)

In case of a polarised target the density matrix of the

fermion propagator (m + k̂1) must be changed to the po-
larization density matrix:

m + k̂1 → (m + k̂1)(1 − γ5Ŝ) , (159)

where the 4-vector S is the polarization vector of the tar-
get. When a γ is linearly polarised along the x-axis the
polarization vector is: εµ = (0, 1, 0, 0) and we do not need
to average over two polarizations. Then one has to change
(158) by substituting

1

2
g⊥⊥

µν →







0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0






(160)

If one has a circular polarised beam

1

2
g⊥⊥

µν → 1

2







0 0 0 0
0 −1 −i 0
0 i −1 0
0 0 0 0






(161)

11 Conclusion

In the present paper the operator expansion approach
has been developed for the construction of amplitudes
for pion- and photon-induced reactions. The method is
relativistically invariant and can be easily applied to the
construction of amplitudes with multi-body final states.
For production of pseudoscalar mesons the identity of our
amplitudes to the well known CGLN amplitudes is explic-
itly shown. The formulas are given explicitly in the form
used by the Crystal Barrel at ELSA collaboration in the
analysis of single and double meson photoproduction.
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Appendices

A Properties of Legendre polynomials

The recurrent expression for Legendre polynomials is given
by

PL(z) =
2L − 1

L
z PL−1(z) − L − 1

L
PL−2(z) (162)
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The first and second derivative of the Legendre polynomi-
als can be expressed as

P ′

L(z) = L
PL−1(z) − z PL(z)

1 − z2
= (L + 1)

z PL − PL+1

1 − z2

(163)

P ′′

L(z) =
2z P ′

L(z) − L(L + 1) PL(z)

1 − z2

=
2P ′

L+1(z) − (L + 1)(L + 2) PL(z)

1 − z2
(164)

Some other useful expressions given here for convenience
are:

P ′

L−1 = P ′

L z − L PL, P ′

L+1 = P ′

L z + (L + 1) PL

P ′

L+1 − P ′

L−1 = (2L + 1)PL ,

P ′′

L+1 − P ′′

L−1 = (2L + 1)P ′

L

B Properties of angular momentum operators

In the following we list useful properties of angular mo-
mentum operators.

X(n+1)
µα1...αn

(q⊥)X(n)
α1...αn

(k⊥) = (165)

αn

n + 1
(
√

k2
⊥

)n(
√

q2
⊥

)n+1

[

− k1µ
√

k2
⊥

P ′

n +
q1µ
√

q2
⊥

P ′

n+1

]

X(n)
µα2...αn

(q⊥)X(n)
να2...αn

(k⊥) =

αn−1

n2
(
√

k2
⊥

)n(
√

q2
⊥

)n

[

g⊥µνP ′

n−1 −
(

q⊥µ q⊥ν
q2
⊥

+
k⊥

µ k⊥
ν

k2
⊥

)

P ′′

n +

1

2

(

q⊥µ k⊥
ν + k⊥

µ q⊥ν
√

k2
⊥

√

q2
⊥

)

(P ′

n + 2zP ′′

n ) + (166)

2n − 1

2

(

q⊥µ k⊥
ν − k⊥

µ q⊥ν
√

k2
⊥

√

q2
⊥

)

P ′

n

]

X(n+2)
µνα1...αn

(q⊥)X(n)
α1...αn

(k⊥) =

2

3

αn

(n + 1)(n + 2)
(
√

k2
⊥

)n(
√

q2
⊥

)n+2

(

X
(2)
µν (q⊥)

q2
⊥

P ′′

n+2 +

X
(2)
µν (k⊥)

k2
⊥

P ′′

n − 3

2

k⊥
µ q⊥ν + k⊥

ν q⊥µ − 2
3g⊥µν(k⊥q⊥)

√

k2
⊥

√

q2
⊥

P ′′

n+1

)

(167)

X(n)
αγ2...γn

(q⊥)Oτγ2...γn

µβ2...βn
X

(n)
ξβ2...βn

(k⊥) =

X(n)
αγ2...γn

(q⊥)
gτµ

n
X

(n)
ξγ2...γn

(k⊥) +

+
n − 1

n
Xn

αµγ3...γn
(q⊥)X

(n)
ξτγ3...γn

(k⊥) −
2(n − 1)

n(2n − 1)
X(n)

ατγ3...γn
(q⊥)X

(n)
ξµγ3...γn

(k⊥) (168)

C Blatt-Weisskopf formfactors

If a resonance with radius r decays into two particle with
(squared) momentum k2:

k2 =
(s − (m1 + m2)

2)(s − (m1 − m2))
2

4s
, (169)

where s is total energy and m1 and m2 are masses of the fi-
nal particles, then the first few expressions for formfactors
F (L, k2, r) are

F (0, k2, r) = 1

F (1, k2, r) =

√

(x + 1)

r

F (2, k2, r) =

√

(x2 + 3x + 9)

r2
(170)

F (3, k2, r) =

√

(x3 + 6x2 + 45x + 225)

r3

F (4, k2, r) =

√
x4 + 10x3 + 135x2 + 1575x + 11025

r4
,

where x = k2r2. Remember that
r(GeV −1) = r(fm)/(0.1973(fmGeV )).

D Structure of amplitudes for t-channel and u-channel
exchanges

D1 t-channel amplitudes

For the photoproduction of a single neutral pion, ρ and ω
exchanges play a significant role. The exchange of a π0 is
forbidden since the photon does not couple to a neutral
pion. When charged pions are produced the pion exchange
diagram can play an important role. The upper vertex
function for pion exchange is

Aupper = εµ
1

2
(k2 + kt)ν

(

gµν − q2µq2ν

m2
π

)

=

εµktν

(

gµν − q2µq2ν

m2
π

)

(171)

The lower vertex function is described by a N → πN
transition. Thus

A = εµktν

(

gµν − q2µq2ν

m2
π

)

ū(q1)N
−(k⊥

1 )u(k1) (172)

Remember that for single meson production

k⊥

1µ =
1

2
(k1 − kt)ν

(

gµν − q1µq1ν

q2
1

)

= k1ν

(

gµν − q1µq1ν

q2
1

)

(173)

This expression can be easily extended to the case of
double meson photoproduction. If the intermediate baryon
has spin 1/2 one obtains

A± = εµktν

(

gµν − q2µq2ν

m2
π

)

ū(q1)Ñ
±(q⊥12)

q̂1+q̂2+
√

s12

2
√

s12
N±(k⊥

1 )u(k1).(174)
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Here the ’-’ amplitude corresponds to a 1/2+ intermediate
state, the ’+’ to a 1/2− state,

k⊥

1µ = k1ν

(

gµν − (q1 + q2)µ(q1 + q2)ν/s12

)

, (175)

the definition of q⊥12 is given in eqn.(132) and the notation
of momenta is shown in Fig. 3.

For an intermediate resonance with spin J = L ± 1/2
the amplitude structure reads

A± = εµktν

(

gµν − q2µq2ν

m2
π

)

ū(q1)Ñ
±

α1α2...αn
(q⊥12)

F α1α2...αL

β1β2...βL
(q1 + q2)N

±

β1β2...βL
(k⊥

1 )u(k1) (176)

The upper vertex for ρ-meson production due to pion
exchange has the following structure

Aupper = εµεµαβγ
1

2
(q3 − q2)αq2β k2γ =

εµεµαβγ q3αq2β k2γ , (177)

while the lower vertex has the same structure as the πN
scattering amplitude. Therefore

A = εµεµαβγ q3αq2β k2γ ū(q1)N
−(k⊥

1 )u(k1) (178)

Here k⊥
1 is given by eq.(173).

The ρ meson can also be produced by Pomeron or f0

exchange. The upper vertex for such a case is εµ
1
2 (q3−q2)µ

and the amplitude is equal to

A = εµ
1

2
(q3 − q2)µū(q1)N

+(k⊥

1 )u(k1) (179)

The next amplitude which we consider is the f0 pro-
duction due to ρ (or ω) t-channel exchange. Such an am-
plitude has the structure:

Ai− = εµ

(

gµν − ktµktν

k2
t

)

ū(q1)V
(i−)
ν (k⊥

1 )u(k1) i = 1, 2

(180)

D2 u-channel amplitudes

)uN(k

)2(qπ)1p(k

)1p(q)2(kγ

Fig. 4. The u-channel exchange diagram for photoproduction
of single mesons

Apart from meson exchange amplitudes (which we de-
fine as t-channel exchanges), mesons can be produced from
baryon exchange in the u-channel. An example of such a
diagram is given in Fig. 4. For nucleon exchange, the ver-
tex for meson production (the lower vertex) is defined by

ū(ku)N−(q⊥2 )u(k1) ku = k1 − q2. (181)

Here the N− vertex describes the production of a pseu-
doscalar meson. Further,

q⊥2µ =

(

gµν − k1µk1ν

m2
p

)

1

2
(q2 − ku)ν =

(

gµν − k1µk1ν

m2
p

)

q2ν . (182)

)uN(k

)3(qπ)1p(k

)1p(q

)2(kγ )2(qπ)∆N(

Fig. 5. A u-channel exchange diagram for production of a
baryon resonance in photoproduction of two mesons

If the reaction is induced by a meson the upper vertex
has the same structure

ū(q1)N
−(k⊥

2 )u(ku) (183)

where

k⊥

2µ =

(

gµν − q1µq1ν

m2
p

)

1

2
(k2 − ku)ν =

(

gµν − q1µq1ν

m2
p

)

k2ν

The angular dependent part of the amplitude for the nu-
cleon exchange diagram is

A = ū(q1)N
−(k⊥

2 )
mp + k̂u

m2
p − k2

u

N−(q⊥2 )u(k1) (184)

In the case of photoproduction the upper vertex is defined

by V
(i−)
µ :

Ai = εµū(q1)V
(i−)(k⊥

2 )
mp + k̂u

m2
p − k2

u

N−(q⊥2 )u(k1), i = 1, 2

(185)

The production of 0++ states in double meson pro-
duction can be obtained from eqs.(184,185) by replacing
N−(q⊥2 ) by N+(q⊥2 ).
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In the case when a baryon resonance with J = L ±
1/2 is produced in the intermediate state (see Fig. 5) the
amplitude for meson induced reaction has the structure

A = ū(q1)N
±

α1α2...αL
(q⊥12)F

α1α2...αL

β1β2...βL
(q1 + q2)

N±

β1β2...βL
(k⊥

2 )
mp + k̂u

m2
p − k2

u

N−(q⊥3 )u(k1) (186)

and for γ∗ induced reactions

Ai± = ū(q1)V
(i±)
α1α2...αL

(q⊥12)F
α1α2...αL

β1β2...βL
(q1 + q2)

N±

β1β2...βL
(k⊥

2 )
mp + k̂u

m2
p − k2

u

N−(q⊥3 )u(k1) (187)

References

1. C. Amsler and F. E. Close, Phys. Lett. B 353 (1995) 385.
2. V. V. Anisovich and A. V. Sarantsev, Nucl. Phys. Proc.

Suppl. 54A (1997) 367.
3. P. Minkowski and W. Ochs, Eur. Phys. J. C 9 (1999) 283.
4. E. Klempt, Meson spectroscopy: glueballs, hybrids, and q

anti-q mesons, hep-ex/0101031 (2001).
5. A. V. Anisovich, V. V. Anisovich and A. V. Sarantsev,

Phys. Rev. D 62, 051502 (2000) [arXiv:hep-ph/0003113].
6. E. Klempt, Phys. Rev. C 66 (2002) 058201.
7. V. V. Anisovich, D. V. Bugg, A. V. Sarantsev and

B. S. Zou, Phys. Atom. Nucl. 57 (1994) 1595 [Yad. Fiz.
57 (1994) 1666].

8. V.V. Anisovich and L.G. Dakhno, JETP 44 (1963) 198;
V.V. Anisovich and A.A. Anselm, UFN 88, 287 (1965),
[Sov. Phys. Uspekhi 88, 177 (1966)].

9. C. Zemach, Phys. Rev. 97 (1965) B97; 97 (1965) B109.
10. A.V. Anisovich and A.V. Sarantsev, Sov. J. Nucl. Phys.

55 (1992) 1200.
11. V. V. Anisovich, M. N. Kobrinsky, D. I. Melikhov and A.

V. Sarantsev, Nucl. Phys. A 544 (1992) 747.
12. A.V. Anisovich and V.A. Sadovnikova, Sov. J. Nucl. Phys.

55 (1992) 1483; Eur. Phys. J. A2 (1998) 199.
13. S.U. Chung, Phys. Rev. D57 (1998) 431.
14. A. V. Anisovich, V. V. Anisovich, V. N. Markov,

M. A. Matveev and A. V. Sarantsev, J. Phys. G 28 (2002)
15.

15. A. V. Anisovich, V. V. Anisovich, M. A. Matveev and
V. A. Nikonov, Phys. Atom. Nucl. 66 (2003) 914 [Yad.
Fiz. 66 (2003) 946].

16. B. Krusche et al., Phys. Rev. Lett. 74 (1995) 3736.
R. Beck et al., Phys. Rev. Lett. 78 (1997) 606.

17. J. Ajaka et al., Phys. Rev. Lett. 81 (1998) 1797.
D. Rebreyend et al., Nucl. Phys. A 663 (2000) 436.
F. Renard et al., Phys. Lett. B 528 (2002) 215.
D. Rebreyend, private communication, 2004.

18. K. H. Glander et al., Eur. Phys. J. A 19 (2004) 251.
J. Barth et al., Eur. Phys. J. A. 18 (2003) 117.
J. Barth et al., Phys. Lett. B 572 (2003) 127.
J. Barth et al., Eur. Phys. J. A 17 (2003) 269.
S. Goers et al., Phys. Lett. B 464 (1999) 331.
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