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Abstract

This report is the result of the collaboration and research effort of the Quarkonium Working Group over
the last three years. It provides a comprehensive overview of the state of the art in heavy-quarkonium
theory and experiment, covering quarkonium spectroscopy,decay, and production, the determination of
QCD parameters from quarkonium observables, quarkonia in media, and the effects on quarkonia of
physics beyond the Standard Model. An introduction to common theoretical and experimental tools is
included. Future opportunities for research in quarkoniumphysics are also discussed.
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Foreword

As the community of high energy physicists impatiently awaits for the startup of the LHC and the open-
ing of the new energy fronteer, it is very welcome news that somuch challenging and exciting data are
constantly being produced in the field of quarkonium physics. The proliferation of puzzling measure-
ments has led over the past several years to new challenges for the theorists, requiring the introduction
of new ideas, and providing new probes for the understandingof QCD at its deeper levels.

Ten years ago, reports by the CDF collaboration signaled theend of an era in quarkonium physics,
but at the same time opened new windows on this field, which so much contributed to the development
of QCD. The observation of the top quark with a mass of about 175 GeV closed all hopes to include
toponium in the family of clean and useful quarkonium states. In parallel, the observation of an excess
in charmonium production by orders of magnitude over what predicted in the then available theoretical
models gave birth to the modern theoretical understanding of charmonium production. Since then, in
addition to successful explanations, a large sets of puzzles kept being generated by data obtained at the
Tevatron, at HERA, and in low-energye+e− colliders: the apparent violation of universality emerging
when comparing data from the hadron and theep colliders, the poor agreement (at the limit of inconsis-
tency!) between the predictions for the polarization of theJ/ψ produced in hadronic collisions and the
actual data, the excess of double charmonium production first observed by Belle. The solution to these
puzzles still awaits to be settled, as new data keep pouring in.

But the surprises and advances have not been limited to the complex issue of the production mech-
anisms. The spectroscopy of quarkonium has also received challenging inputs from the observation
of new narrow states, whose understanding requires an addeddose of sophistication in the theory, to-
gether perhaps with the need for inclusion of more exotic patterns of bound states (hybrids, molecules,
tetraquarks). Progress in lattice calculations and effective field theories has turned quarkonium physics
into a powerful tool to measure the mass of the heavy quarks and the strength of the QCD coupling,
providing accuracies comparable to or better than those allowed by any other technique. The properties
of production and absorption of quarkonium in a nuclear medium are beginning to provide quantitative
inputs for the study of QCD at high density and temperature, giving a unique experimental test bed for
analytical and lattice studies.

The interplay of solid theoretical work and of accurate and versatile experimental techniques has
brought quarkonium physics to a renaissance, with a flourishing of activity second only to the golden age
which followed the charmonium discovery almost 30 years ago. The appearance of this Yellow Report,
which documents the state of the art through the contributions of the leaders in the field, represents there-
fore a timely and much needed publication. The inclusion of both the theoretical and the experimental
perspectives leads to a precious resource for the active researcher, as well as for the young newcomers to
the field.

I am happy to praise the organizers of the Quarkonium WorkingGroup, the conveners and all the
participants, who have worked so hard over the past couple ofyears to produce this Report, which will
provide an essential guide to this ever-exciting area of research for years to come.

Michelangelo Mangano
CERN TH Division
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Preface

At the eve of the LHC and the search of new physics beyond the Standard Model at energy scales of
several TeV, there is still a sector of the Standard Model which evades our control, the sector of strongly
interacting particles, i.e. quarks and gluons. We believe to have the field theory that describes strong
interaction, QCD, but we are not yet able to extract from it ina controlled way a great part of the hadron
properties. These same hadron properties obviously play a relevant role in many searches for new physics
and new phenomena, CP violation being a strong case in hand. At LHC again hadron processes will take
the stage. It is, therefore, relevant to get hold of the strong sector of the Standard Model. For several
reasons heavy quarkonium offers a unique opportunity in this direction. Quarkonium systems may be
crucially important to improve our understanding of QCD. They probe all the energy regimes of QCD,
from the hard region, where an expansion in the coupling constant is possible, to the low-energy region,
where nonperturbative effects dominate. Heavy quark-antiquark bound states are thus an ideal and to
some extent unique laboratory where our understanding of nonperturbative QCD and its interplay with
perturbative QCD may be tested in a controlled framework.

Moreover, in the last few years a wealth of new experimental results has become available. The
diversity, quantity and accuracy of the data currently being collected is impressive and includes

– data on quarkonium formation from BES at BEPC, E835 at Fermilab, KEDR (upgraded) at VEPP-
4M, and CLEO-III at CESR;

– clean samples of charmonia produced in B-decays, in photon-photon fusion and in initial state
radiation from the B-meson factory experiments BaBar at SLAC and Belle at KEK, including the
unexpected observation of associated(cc)(cc) production;

– heavy quarkonia production from gluon-gluon fusion inpp̄ annihilations at 2 TeV from the CDF
and D0 experiments at Fermilab, including the first observation ofBc candidates;

– charmonia production in photon-gluon fusion from the ZEUSand H1 experiments at DESY;
– charmonia production in heavy-ion collisions from the PHENIX and STAR experiments at RHIC,

and the NA60 experiment at CERN.

These experiments may operate as heavy quarkonium factories, producing quarkonium states in
large amounts. If properly analyzed and interpreted, the data can lead to surprising results and major
progress in our understanding of QCD. This is exemplified by the very recent discovery of a new un-
expected narrow charmonium state, temporarily labelledX(3872), which was announced by the Belle
collaboration at the Lepton-Photon conference 2003 and confirmed within a month by the CDF collabo-
ration at Fermilab, during the 2nd QWG workshop.

In the near future, even larger data samples are expected from the CLEO-c and BES-III upgraded
experiments, while the B factories, the Fermilab Tevatron and the DESY experiments will continue to
supply valuable data for several years. New facilities willbecome operational (LHC at CERN, Panda at
GSI, much higher luminosity B factories at KEK and SLAC, a Linear Collider, etc.) offering fantastic
challenges and opportunities, which we must start facing today. Considerable efforts are also being
made to study deconfined quark matter, at SPS, RHIC and LHC energies, for which heavy quarkonium
is among the most crucial probes. The complexity of these studies requires a close communication and
the exchange of ideas between experts in quarkonium physicsand heavy-ion collisions.

Effective field theories, such as Nonrelativistic QCD (NRQCD), provide new tools and definite
predictions concerning, for instance, heavy quarkonium production and decays. New effective field
theories for heavy quarkonium, as potential NRQCD (pNRQCD)and velocity NRQCD (vNRQCD),
have been recently developed and are producing a wealth of new results. The lattice implementation
of such effective theories has been partially carried out and many more results with drastically reduced
systematic uncertainties are expected in the near future. The progress in the understanding of non-
relativistic effective field theories makes it possible to go beyond phenomenological models and, for
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the first time, face the possibility to provide a unified description of all aspects of heavy-quarkonium
physics. This allows to use quarkonium as a benchmark for ourunderstanding of QCD, for the precise
determination of relevant Standard Model parameters (e.g.heavy quark masses,αs) and for new physics
searches.

It is crucial, now, to ensure an efficient communication between experimentalists and theorists,
within the broad quarkonium physics community. This has been the main motivation for the creation
of an international research collaboration, the Quarkonium Working Group (http://www.qwg.to.infn.it),
which constitutes the support platform of this CERN Yellow Report.

The aim of the QWG is essentially twofold. First, to guarantee an intense and efficient exchange
of results and ideas between experimentalists and theorists, now that many new measurements are be-
coming available. Second, to overcome the dispersion of theresearch in this field and jointly study the
different approaches and techniques, by establishing new collaborations and improving existing ones.
The concrete goals are:

– to achieve a better understanding of the dynamics of the strong interaction and of strongly coupled
theories, using quarkonium systems;

– to gain detailed knowledge of the physics of confinement/deconfinement;
– to improve the determination of the fundamental parameters of the Standard Model and constrain

the allowed parameter space for new physics;
– to identify missing experimental information required toimprove our understanding of QCD, and

to identify theoretical calculations needed for the interpretation of current and future experiments;
– to make these information available to people working in related fields.

This Yellow Report presents the state of the art in heavy quarkonium physics at the end of 2004
and is a first step to achieve the goals of the QWG. The YR includes experimental and theoretical results
by different approaches and different communities (high energy, perturbative, lattice, nuclear, . . . ) in
a common language. The progress in the field and the impact of such progress to other areas are pre-
sented, open problems and outstanding puzzles are discussed, and the future opportunities of this field
are outlined.

Given the richness of the physics involved in the project, the research goals have been pursued by
specifying seven main topics organized by theoretical and experimental topic conveners:

– Quarkonium spectroscopy [Conveners: G. Bali, N. Brambilla, J. Soto (TH); R. Mussa (EXP)];
– Quarkonium decays [Conveners: E. Eichten, A. Vairo (TH); C. Patrignani (EXP)];
– Quarkonium production [Conveners: G. Bodwin, E. Braaten,M. Krämer (TH); A. B. Meyer,

V. Papadimitriou (EXP)];
– Precision determination of Standard Model parameters [Conveners: A. Hoang, M. Jamin (TH);

S. Eidelman (EXP)];
– Quarkonium in media [Conveners: D. Kharzeev, M. P. Lombardo, H. Satz (TH); C. Lourenço,

M. Rosati (EXP)];
– Beyond the Standard Model [Convener: M. A. Sanchis-Lozano(TH)];
– Future opportunities [Conveners: S. Godfrey, M. A. Sanchis-Lozano (TH)].

The Quarkonium Working Group was initiated in 2002 by Nora Brambilla, Roberto Mussa and
Antonio Vairo, who were, shortly after, joined by Armin Böhrer and Michael Krämer as QWG conveners
team. Most of the topic conveners listed above belong to the initial group of people that supported the
QWG and contributed to its research programme. The CERN TH Division and CERN, and especially
Michelangelo Mangano, have played an important role in the history of the QWG, by hosting the first
QWG meeting and by supporting the enterprise of compiling the CERN Yellow Report.

The QWG has organized three international meetings, which were held at CERN (2002), Fermilab
(2003) and IHEP Beijing (2004). Approximately 250 theoretical and experimental physicists participated
at the meetings. The organizers, participants and supporting institutions are listed below. The third
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meeting was preceded by the first QWG graduate school organized at the ITP Beijing with about 100
participating graduate students.

We would like to express here our sincerest thanks to all the people that have contributed to this
enterprise and made this document possible, in particular the topic conveners and the organizers and par-
ticipants of the three QWG meetings. We also gratefully acknowledge the support from the institutions
that hosted the QWG meetings. Finally we would like to express our deepest thanks to Armin Böhrer
who has been of key relevance at the starting of the QWG by realizing and hosting in Siegen the first
QWG web page, designing the QWG logo, participating in the organization of the first two QWG work-
shops and supporting in all the ways the development of the QWG. We also thank E. Berger, D. Kharzeev
and A. Zieminski for having been topical conveners of a topical section later absorbed by other ones.
As of September 2004, Vaia Papadimitriou has joined the QWG conveners team. As of December 2004,
Aldo Deandrea and Xiaoyan Shen have agreed to join the topical conveners team.

The Quarkonium Working Group has very quickly coalesced into an active, international com-
munity of physicists working and collaborating on quarkonium physics, QCD and the related impact on
the Standard Model and physics beyond the Standard Model. Given the continuous flux of data and the
order of magnitude(s) improvement in the statistical analysis coming and expected to come from present
and future accelerator experiments, this promises to remain a very rich research area for several years to
come. To fully benefit from it, we believe it is important thatthe community of physicists working in
the field maintains a common area of discussion, transcending individual experimental and theoretical
collaborations. It is our hope that the Yellow Report will provide a basis for such future developments.

the QWG Conveners
Nora Brambilla, Michael Krämer, Roberto Mussa, Antonio Vairo
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Chapter 1

COMMON THEORETICAL TOOLS

Authors:G. Bali, N. Brambilla, J. Soto, A.Vairo

1. QCD1

Quantum Chromodynamics (QCD) [1] is the sector of the Standard Model (SM) which is relevant for
the strong interactions. It is obtained from the full SM by setting the weak and electromagnetic coupling
constants to zero and freezing the scalar doublet to its vacuum expectation value. What remains is a
Yang–Mills (YM) theory with local gauge groupSU(3) (color) vectorially coupled to six Dirac fields
(quarks) of different masses (flavors). The vector fields in the YM Lagrangian (gluons) live in the adjoint
representation and transform like connections under the local gauge group whereas the quark fields live
in the fundamental representation and transform covariantly. The QCD Lagrangian reads

LQCD = −1

4
F aµνF

a µν +
∑

{q}
q̄ (iγµDµ −mq) q , (1.1)

where{q} = u, d, s, c, b, t, F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , Dµ = ∂µ − iT aAaµ. fabc are the

SU(3) structure constants andT a form a basis of the fundamental representation of theSU(3) algebra.
When coupled to electromagnetism, gluons behave as neutralparticles whereasu, c andt quarks have
charges+2/3 andd, s andb quarks have charges−1/3.

The main properties of QCD follow:

• It is Poincaré, parity, time reversal and (hence) charge conjugation invariant. It is in addition
invariant underU(1)6 which implies individual flavor conservation.

• Being a non-Abelian gauge theory, the physical spectrum consists of color singlet states only.
The simplest of these states have the quantum numbers of quark-antiquark pairs (mesons) or of three
quarks (baryons), although other possibilities are not excluded.

• The QCD effective coupling constantαs(q) decreases as the momentum transfer scaleq in-
creases (asymptotic freedom) [2,3]. This allows to make perturbative calculations inαs at high energies.

• At low energies it develops an intrinsic scale (mass gap), usually referred asΛQCD, which
provides the main contribution to the masses of most hadrons. At scalesq ∼ ΛQCD, αs(q) ∼ 1 and
perturbation theory cannot be used. Investigations must becarried out using nonperturbative techniques,
the best established of which is lattice QCD.

1Author: J. Soto
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Quarks are conventionally divided into lightmq ≪ ΛQCD, q = u, d, s and heavymQ ≫ ΛQCD,
Q = c, b, t

mu = 1.5 ÷ 4.0MeV , md = 4 ÷ 8MeV , ms = 80 ÷ 130MeV ,

(1.2)

mc = 1.15 ÷ 1.35GeV , mb = 4.1 ÷ 4.4GeV , mt = 174.3 ± 5.1GeV .

These areMS masses at scale2 GeV,mc andmb for the light quarks, charm and bottom respectively.
All values are taken from [4]. The extraction of the values ofthe heavy quark masses will be discussed
in chapter 6.

• If light quark masses are neglected, theU(1)3 flavor conservation symmetry of the QCD La-
grangian in this sector is enlarged to aU(3)⊗U(3) group. The axialU(1) subgroup is explicitly broken
by quantum effects (axial anomaly). The vectorU(1) subgroup provides light flavor conservation. The
remainingSU(3) ⊗ SU(3) subgroup, known as chiral symmetry group, turns out to be spontaneously
broken down to the diagonalSU(3) (flavor symmetry). This produces eight Goldstone bosons, which,
upon taking into account the explicit breaking of the symmetry due to the non-zero quark masses, acquire
masses that are much smaller thanΛQCD.

• Hadrons containing heavy quarks have masses of the order ofmQ rather than of the orderΛQCD.
They enjoy particular kinematical features that allow for specific theoretical treatments. The study of
hadrons containing two heavy quarks is the aim of this report.

2. Effective field theories2

From the point of view of QCD the description of hadrons containing two heavy quarks is a rather chal-
lenging problem, which adds to the complications of the bound state in field theory those coming from
a nonperturbative low-energy dynamics. A proper relativistic treatment of the bound state based on the
Bethe–Salpeter equation [5] has proved difficult. Perturbative calculations have turned out unpractical at
higher order and the method has been abandoned in recent QED calculations. Moreover, the entangle-
ment of all energy modes in a fully relativistic treatment ismore an obstacle than an advantage for the
factorization of physical quantities into high-energy perturbative and low energy nonperturbative con-
tributions. Partial semirelativistic reductions and models have been often adopted to overcome these
difficulties at the price to introduce uncontrolled approximations and loose contact with QCD. The fully
relativistic dynamics can, in principle, be treated without approximations in lattice gauge theories. This
is in perspective the best founded and most promising approach. As we will detail in the following, it is
not without difficulties at the present for heavy quarkonium.

A nonrelativistic treatment of the heavy quarkonium dynamics, which is suggested by the large
mass of the heavy quarks, has clear advantages. The velocityof the quarks in the bound state provides a
small parameter in which the dynamical scales may be hierarchically ordered and the QCD amplitudes
systematically expanded. Factorization formulas become easier to achieve. A priori we do not know
if a nonrelativistic description will work well enough for all heavy quarkonium systems in nature. For
instance, the charm quark may not be heavy enough. The fact that most of the theoretical predictions
presented in the report are based on such a nonrelativistic assumption and the success of most of them
may be seen as a support to the assumption.

On the example of positronium in QED, a nonrelativistic bound state is characterized by at least
three scales: the scale of the massm (called hard), the scale of the momentum transferp ∼ mv (soft) and
the scale of the kinetic energy of the quark and antiquark in the centre-of-mass frameE ∼ p2/m ∼ mv2

(ultrasoft). The scalesmv andmv2 are dynamically generated,v is the heavy-quark velocity in the

2Authors: N. Brambilla, A. Vairo
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centre-of-mass frame. In a nonrelativistic system:v ≪ 1, and the above scales are hierarchically ordered:
m ≫ mv ≫ mv2. In perturbation theoryv ∼ αs. Feynman diagrams will get contributions from
all momentum regions associated with the scales. Since these momentum regions depend onαs each
Feynman diagram contributes to a given observable with a series inαs and a non trivial counting. For
energy scales close toΛQCD perturbation theory breaks down and one has to rely on nonperturbative
methods. The wide span of energy scales involved makes also alattice calculation in full QCD extremely
challenging since one needs a space-time grid that is large compared to the largest length of the problem,
1/mv2, and a lattice spacing that is small compared to the smallestone,1/m. To simulate, for instance,
a bb̄ state wherem/mv2 ∼ 10, one needs lattices as large as1004, which are beyond present computing
capabilities [6] (see also the next sections of the chapter).

We may, however, also take advantage of the existence of a hierarchy of scales by substituting QCD
with simpler but equivalent Effective Field Theories (EFTs). EFTs have become increasingly popular
in particle physics during the last decades. They provide a realization of Wilson renormalization group
ideas and fully exploit the properties of local quantum fieldtheories. An EFT is a quantum field theory
with the following properties: a) it contains the relevant degrees of freedom to describe phenomena that
occur in certain limited range of energies and momenta and b)it contains an intrinsic energy scaleΛ
that sets the limit of applicability of the EFT. The Lagrangian of an EFT is organized in operators of
increasing dimension, hence, an EFT is in general non-renormalizable in the usual sense. In spite of
this, it can be made finite to any finite order in1/Λ by renormalizing (matching) the constants (matching
coefficients) in front of the operators in the Lagrangian until that order. This means that one needs more
renormalization conditions when the order in1/Λ is increased. However, even if the only way of fixing
the constants would be by means of experimental data, this would reduce but not spoil the predictive
power of the EFT. If the data are abundant, the constants can be fit once for ever and used later on to
make predictions on new experiments.

The prototype of EFT for heavy quarks is the Heavy Quark Effective Theory (HQET), which
is the EFT of QCD suitable to describe systems with only one heavy quark [7]. These systems are
characterized by two energy scales:m andΛQCD. HQET is obtained by integrating out the scalem
and built as a systematic expansion in powers ofΛQCD/m. As discussed above, bound states made
of two heavy quarks are characterized by more scales. Integrating out only the scalem, which for
heavy quarks can be done perturbatively, leads to an EFT, Nonrelativistic QCD (NRQCD) [6, 8, 9], that
still contains the lower scales as dynamical degrees of freedom. Disentangling the remaining scales is
relevant both technically, since it enables perturbative calculations otherwise quite complicate, and more
fundamentally, since it allows to factorize nonperturbative contributions into the expectation values or
matrix elements of few operators. These may be eventually evaluated on the lattice, extracted from the
data or calculated in QCD vacuum models. In the last few years, the problem of systematically treating
these remaining dynamical scales in an effective theory framework has been addressed by several groups
and has now reached a solid level of understanding (a list of references to the original literature can be
found in [10–12]). In one approach an additional effective theory (pNRQCD) very close to a quantum-
mechanical description of the bound system, containing only the heavy quarkonium field and ultrasoft
degrees of freedom, is matched to NRQCD [13–15]. An alternative approach, formulated only for the
weak coupling casemv2 ≫ ΛQCD, does not involve matching from NRQCD, but instead matches a
different effective theory (vNRQCD) to full QCD directly atthe hard scale [16–18].

In the next section we will give a brief general introductionto NRQCD, since this is the framework
for many applications reviewed in this report. More specificpresentations of NRQCD can be found
in Chapter 3, Sec. 2.2, Chapter 4, Sec. 3.1 and Chapter 5, Sec.1.1. NRQCD on the lattice will be
presented mainly in the following Sec. 3.23 and in Chapter 3,Sec. 2.21. In Chapter 4, Sec. 4.2 a short
presentation of SCET, an EFT suited to describe collinear fields interacting with soft degrees of freedom,
in combination with NRQCD may be found.
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2.1 Nonrelativistic QCD

NRQCD is obtained by integrating out modes of energy and momentumm from QCD Green functions
describing heavy quark-antiquark pairs. It is characterized by an ultraviolet (UV) cut-offνNR = {νp, νs}
that satisfiesE, p,ΛQCD ≪ νNR ≪ m; νp is the UV cut-off of the relative three-momentum of the heavy
quark and antiquark;νs is the UV cut-off of the energy of the heavy quark and antiquark, and of the four-
momenta of the gluons and light quarks. NRQCD is, therefore,designated to describe the dynamics of
heavy quark-antiquark pairs (not necessarily of the same flavor) at energy scales in the centre-of-mass
frame much smaller than their masses. At these energies quark-antiquark pairs cannot be created so it is
enough to use Pauli spinors for both the heavy quark and the heavy anti-quark degrees of freedom. Other
degrees of freedom of the theory are gluons and light quarks of four momentum smaller thanνs.

The high-energy modes that have been integrated out have a relevant effect on the low-energy
physics. This effect is not lost, but encoded into the matching coefficientsc and new local interactions of
the NRQCD Lagrangian. In principle, there are infinite such terms to be included, in practice only few of
them are needed. Each operator can be counted inv. The velocityv andαs (in the matching coefficients)
are the two small expansion parameters of NRQCD. If we aim at an accuracy of order(αks v

n) we have
to keep in the Lagrangian only terms and matching coefficients that contribute up to that order to the
physical observable under study. The couplingsm, g, c are determined by the requirement that NRQCD
reproduces the results of QCD up to order(αks v

n).

If the quark and antiquark have the same flavor, they can annihilate into hard gluons. In NRQCD
their effect is encoded in the imaginary parts of the four-fermion matching coefficients (denoted byf
in the following). Their role in the description of heavy quarkonium annihilations in NRQCD will be
discussed in Chapter 4.

In general, at each matching step the non-analytic behaviour in the scale that is integrated out
becomes explicit in the matching coefficients. Since in thiscase we are integrating out the mass, it be-
comes an explicit parameter in the expansion in powers of1/m in the Lagrangian, while the dependence
in ln(m/ν) is encoded into the matching coefficients.

Up to field redefinitions the NRQCD Lagrangian for one heavy flavor of massm andnf massless
quarks atO(1/m2), but including the kinetic energy termD4/(8m3), reads [8,9,19,20]:

LNRQCD = Lg + Ll + Lψ + Lχ + Lψχ, (1.3)

Lg = −1

4
FµνaF aµν + cg1

1

4m2
gfabcF

a
µνF

µ b
αF

να c, (1.4)

Ll =

nf∑

i=1

q̄ii /Dqi + cll1
g2

8m2

nf∑

i,j=1

q̄iT
aγµqi q̄jT

aγµqj + cll2
g2

8m2

nf∑

i,j=1

q̄iT
aγµγ5qi q̄jT

aγµγ5qj

+cll3
g2

8m2

nf∑

i,j=1

q̄iγ
µqi q̄jγµqj + cll4

g2

8m2

nf∑

i,j=1

q̄iγ
µγ5qi q̄jγµγ5qj, (1.5)

Lψ = ψ†
{
iD0 + c2

D2

2m
+ c4

D4

8m3
+ cF g

σ ·B
2m

+cD g
D ·E − E · D

8m2
+ icS g

σ · (D× E − E × D)

8m2

}
ψ

+chl1

g2

8m2

nf∑

i=1

ψ†T aψ q̄iγ0T
aqi + chl2

g2

8m2

nf∑

i=1

ψ†γµγ5T
aψ q̄iγµγ5T

aqi
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+chl3

g2

8m2

nf∑

i=1

ψ†ψ q̄iγ0qi + chl4

g2

8m2

nf∑

i=1

ψ†γµγ5ψ q̄iγµγ5qi, (1.6)

Lχ = c.c. ofLψ, (1.7)

Lψχ =
f1(

1S0)

m2
O1(

1S0) +
f1(

3S1)

m2
O1(

3S1) +
f8(

1S0)

m2
O8(

1S0) +
f8(

3S1)

m2
O8(

3S1), (1.8)

O1(
1S0) = ψ†χχ†ψ, O1(

3S1) = ψ†σχχ†σψ,

O8(
1S0) = ψ†Taχχ†Taψ, O8(

3S1) = ψ†Taσχχ†Taσψ,

whereψ is the Pauli spinor that annihilates the quark,χ is the Pauli spinor that creates the antiquark,
iD0 = i∂0 − gAa0 T

a, iD = i∇ + gAa T a, Ei = F i0 a T a, Bi = −ǫijkF jk a T a/2 and c.c. stands for
charge conjugate. The allowed operators in the Lagrangian are constrained by the symmetries of QCD.
However, due to the particular kinematical region we are focusing, Lorentz invariance is not linearly
realized in the heavy quark sector. In practice, Lorentz invariance is realized through the existence of
relations between the matching coefficients, e.g.c2 = c4 = 1, cS = 2cF − 1 [19,21–25].

The matching coefficients may be calculated in perturbationtheory. For the heavy quark (anti-
quark) bilinear sector as well as for the purely gluonic sector up toO(1/m2) the matching coefficients
have been obtained at one loop in [19]. The complete LL running of these coefficients in the basis of
operators (1.4)-(1.6) has been calculated in [20]. ForcF a NLL evaluation can be found in [26]. In the
four heavy fermion sector the matching coefficientsf of the1/m2 operators have been obtained at one
loop in [27]. As discussed above, in this sector the matchingcoefficients have a non-zero imaginary part.
Due to their relevance in heavy quarkonium decay processes,the calculation of corrections of higher
order inαs has a long history [9, 28–34]. We summarize it in Sec. 3.11 of Chapter 4. An updated list of
imaginary parts of four fermion matching coefficients may befound in [35].

Since several scales remain dynamical in NRQCD, it is not possible to give a homogeneous power
counting for each operator without extra assumptions, i.e.the power counting inv is not unambiguous.
To obtain a better defined power counting one should go to EFTsof lower energy. It should be noticed
that the importance of a given operator for a practical calculation does not depend only on its size, but
also on the leading power ofαs of the corresponding matching coefficient.

Finally, since modes of energym have been removed from the Lagrangian, NRQCD lattice simu-
lations may use lattices that are coarser by about a factor1/v4 (∼ 100 in thebb̄ case) than those needed
by full QCD [6]. We will come back to this in Sec. 3.23.

2.2 Lower energy EFTs

Effective field theories suited to describe the low energy modes of the heavy quarkonium dynamics that
will be used in this report are pNRQCD and vNRQCD. Here we willnot give details on these EFTs
since specific introductions to pNRQCD can be found in Chapter 3, Sec. 2.3 and Chapter 4, Sec. 3.13,
and to vNRQCD in Chapter 6, Sec. 5. For detailed recent reviews on effective field theories for heavy
quarkonium we refer the reader to [10] and [11], which are mainly devoted to pNRQCD and vNRQCD
respectively.

What we want to point out here is that in all these EFTs objectslike potentials show up. For short
range (or weakly coupled) quarkonia the potentials may be built order by order in perturbation theory.
At higher order the pure potential picture breaks down and the interaction of the heavy quark fields with
the low-energy gluons has to be taken into account (see the pNRQCD Lagrangian of Chapter 3, Eq.
(3.9) and the vNRQCD Lagrangian of Chapter 6, Eqs. (6.20) and(6.21)). For long range (or strongly
coupled) quarkonia the potentials are nonperturbative objects that may be expressed in terms of gluon
fields expectation values. Noteworthy, the pNRQCD Lagrangian in the strong coupling regime reduces
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exactly, under some circumstances, to the simple case of a heavy quarkonium field interacting with a
potential (see Chapter 3, Eq. (3.11)).

The potential picture that emerges from these EFTs is quite different from the one of traditional
potential models and superior. Not only the potential is derived from QCD, but higher-order corrections
can be systematically included without being plagued by divergences orad hoccut-offs; these are ab-
sorbed in the renormalization procedure of the EFT. Nevertheless, traditional potential models, which so
much have contributed to the early understanding of the heavy quarkonium properties, may be still useful
and will often appear in the report. First, a potential modelcan be seen, in absence of competitive lattice
data, as a specificansatzon the form of the low-energy QCD dynamics encoded in the potential defined
by an EFT. Second, potential models still provide the only available tool to describe physical systems for
which a suitable EFT has not been built yet. This is, for instance, the case of systems coupled to open
flavor channels.

3. Lattice introduction†

Low energy nonperturbative QCD can either be modelled or simulated on the Lattice. Lattice gauge
theory methods are particularly powerful in heavy quark physics when combined with effective field
theories (EFTs). Lattice QCD input significantly increasesthe predictive power of EFTs as more and
more low energy parameters can be calculated reliably directly from QCD and less fits to experimental
data are required for this purpose. Past lattice QCD resultswere often obtained within the quenched
approximation (neglecting sea quarks) or with unrealistically heavy up and down quarks andnf = 2,
rather thannf = 2 + 1. At present these limitations are gradually being removed.

We shall only describe general aspects of lattice gauge theory simulations. Recent reviews of
different aspects of Lattice QCD can for instance be found inRefs. [36–46]. Several books [47–52] on
the subject have been written and the summary talks of the yearly proceedings of lattice conferences (see
Ref. [53] for the most recent ones) provide an overview of thefield. Ref. [54] contains collections of
early papers.

Obviously there are infinitely many gauge invariant ways to discretize the continuum QCD action.
We will summarise and define the actions most commonly used and address limitations of the method,
before we discuss extrapolations and sources of systematicerrors.

3.1 General aspects

Lattice simulations rely on stochastic (Monte-Carlo) methods. Hence all results inevitably carry statisti-
cal errors which however are no problem of principle as they can be made arbitrarily small on (arbitrarily)
big computers or by means of algorithmic and methodologicalimprovements. In order to carry out path
integral quantisation in a mathematically sound ways, the discretisation of space-time appears necessary.
This also enables us to map continuous problems onto a finite computer. Discretisation, i.e. for instance
replacing derivatives∂tφ(t) by [φ(t+ a)− φ(t− a)]/(2a) with “lattice spacing”a and, in this example,
lattice “errors” ofO(a2), inevitably carries the smell ofinexactness. We stress however that the very
nature of QCD itself requires us to introduce an ultra-violet regulator and, as we shall see below, lattice
discretisation is one possible choice. Continuum results are then obtained by removing the regulator,
a→ 0.

Observables are calculated (“measured”) taking their expectation values in the path integral ap-
proach: this amounts to calculating averages over all possible “configurations” of gauge fields on the
lattice, weighted with the respective exponent of the action. In simulations with sea quarks, producing
these configurations is costly and the ILDG [55] (International Lattice Data Grid) is due to be set up,
with the aim of standardising formats of organising and labelling such lattice data, in a way that allows
for easy distributed storage, retrieval and sharing of suchdeposits among different lattice groups.

†Author: G. Bali
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The typical observables aren-point Green functions. In order to determine a hadronic rest mass
one has to construct an operator with the respective quantumnumbers: spinJ , parity P , charge con-
jugationC, isospin, flavour content etc.. This is then projected onto zero momentum and the 2-point
Green function calculated, creating the particle at time0 and destroying it at timet. For larget this
will then decay exponentially,∝ exp(−mt), with m being the ground state mass within the channel in
question. There exist numerous “wave functions” with the right quantum numbers, some with better and
some with inferior overlap to the physical ground state. It is a refined art to identify spatial “smearing”
or “fuzzing” functions that maximise this overlap and allowto extract the mass at moderatet-values,
where the signal still dominates over the statistical noise. The multi-exponentialt-dependence of Green
functions complicates the identification of excited states, i.e. sub-leading or sub-sub-leading exponents.
By working with very precise data, realising a variational multi-state basis of test wave functions [56],
and employing sophisticated fitting techniques [57,58], ithas however in some cases become possible to
calculate moderately low lying radial excitations.

Lattice QCD is formulated in Euclidean space time: in the continuum, this amounts to replacing
Lorentz boosts andO(3) rotational symmetry byO(4) rotations. The reason for this is that a real (and
bounded) action is required to allow for a probabilistic interpretation of the path integral measure and
computer simulation. As an analytical continuation to Minkowski space time of a finite number of finite-
precision data points is impossible, the predictive power is confined to quantities that have a Euclidean
space time interpretation such as masses and matrix elements.

Lattice discretisation unavoidably breaks rotationalO(4) invariance, on the scale of the lattice
spacinga. As the continuum limita → 0 is approached, any fixed physical correlation lengthξ will
become much larger than the lattice spacing. Provided the interaction ranges that appear within the
action are localised in space time, all physics will become independent of the underlying discretisation
and a universal continuum limit will be reached, in whichO(4) invariance is restored. Asymptotic
freedom implies that such a continuum limit is approached asthe lattice coupling constant,g → 0.

ReplacingO(4) invariance by its hypercubic subgroup means that in particular higher spin states
are hard to identify. For instanceJ = 4 cannot easily be distinguished fromJ = 0 on a hypercubic
lattice. At finite lattice spacinga, only discrete translations in space and imaginary time arepossible.
This results in the maximum modulus of Euclidean four-momentum components ofπ/a, providing the
required ultraviolet regularisation. Although an infrared cut-off is not necessary in principle, on a finite
computer only a finite number of lattice points can be realised. Typically toroidal boundary conditions
are taken in all directions for the gauge fields while fermions, being Grassmann-valued fields, are an-
tiperiodic in time. This results in quantisation of momentum components in steps of2π/(La) whereL
denotes the number of lattice points along the dimension in question: not all momenta can be realised and
this leads to kinematic constraints when it comes to calculating decay matrix elements or to extracting a
particle mass from a dispersion relation.

The temporal extentaLτ of the lattice can also be interpreted as an inverse temperature (see e.g.
Ref. [59]) and in this case QCD matter at high temperature canbe simulated. There are some subtleties
related to this approach. For instance the limit of infinite Euclidean time cannot be taken anymore.
Details of thermal field theory are discussed in Chapter 7.

While the lattice regulator inevitably violates Poincaréinvariance it preserves gauge invariance
and most global symmetries of QCD. The exception was chiral symmetry which, one had to hope, would
become restored in the continuum limit. However, within thepast 10 years, formulations of chiral lattice
fermions [60,61] have evolved that implement an exact lattice chiral symmetry, which in the continuum
limit corresponds to the continuum chiral symmetry. These are known as overlap fermions or domain
wall fermions (which in some sense are a special case of the former) and in some literature (somewhat
inaccurately) as Ginsparg–Wilson fermions since the lattice-Dirac operator used obeys the so-called
Ginsparg-Wilson relation [62]. We shall refer to these implementations as chiral fermions.

At presently available light quark masses chiral fermions are typically two orders of magnitude
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more expensive to simulate than traditional formulations.As the quark mass is decreased chiral fermions
become more competitive. Obvious advantages of chiral formulations are the applicability of chiral
perturbation theory also at finite lattice spacing and a morecontinuum-like mixing between many lattice
operators. With respect to quarkonia in which both valence quarks are heavy these new developments
are at present of limited significance as light quark mass effects are usually sub-leading.

Lattice QCD is afirst principlesapproach. No parameters apart from those that are inherent to
QCD, i.e. strong coupling constant at a certain scale and quark masses, have to be introduced. In order
to fix thesenf + 1 parametersnf + 1 low energy quantities are matched to their experimental values.
In simulations of quarkonia the lattice spacinga(β,mi), that corresponds to given values of the inverse
lattice strong coupling,β = 6/g2 and lattice quark massesmi, is frequently obtained by matching to
spin-averaged experimental level splittings. In simulations with un-realistic sea quark content one might
hope that this increases the reliability of other predictions as the systematics are partly correlated. With
realistic sea quark content the predictive power with respect to quarkonium physics can be enhanced by
using independent input such as the experimental proton massmp or the pion decay constant,fπ, instead.
A scale that cannot directly be accessed by experiment but which owes its popularity to the accuracy and
ease with which it can be calculated is the Sommer scaler0 [63], implicitly defined through,

r2
dV (r)

dr

∣∣∣∣
r=r0

= 1.65 , (1.9)

whereV (r) denotes the static quark-antiquark potential and the numerical value on the right hand side
is adjusted such that fits of the bottomonium spectrum to phenomenological or lattice potentials yield
r0 ≈ 0.5 fm. r0 is also well-defined in the theory with sea quarks and its model dependence is much
smaller than that of the string tension. Within the quenchedapproximation scale uncertainties cannot be
avoided anyway and hence such model dependence is admissible. In simulations with sea quarks this
is different butr0 still provides a convenient reference scale, that can be used to relate different lattice
results with each other.

3.2 Actions and finitea effects

We shall discuss the gauge and heavy quark actions that are usually employed. In simulations with sea
quarks, in addition a light quark action needs to be specified.

Results from lattice simulations are inevitably obtained at a finite lattice spacinga. Ideally, they
are then extrapolated to the physically relevant (and universal) continuum limita → 0. Within the
quenched approximation, such extrapolations have become the standard while in simulations with light
sea quarks a sufficient variation of the lattice spacing is often still prohibitively expensive in terms of
computer time. The leading ordera behaviour depends on the choice of the discretisation.

One can follow Symanzik [64] and use a continuum effective field theory to show that the cutoff
effects have the forman(ln Λa)m, whereΛ denotes a low energy scale of the order of a few hundred
MeV andm ≥ 0. The leading power is usually (see below)n = 1 or 2 and within this leading term,
m = 0. By changing the discretisation, the leading terms can be reduced or eliminated. This strategy is
called “improvement”, and it is used to hasten the approach to the continuum limit.

In a classical mechanical system improvement is straightforward. However, even in this case there
exists a break-even point at which further improvement becomes computationally more expensive than
the equivalent reduction of the lattice spacing, due to the exploding number of terms and interaction
range. Typically this point is reached aroundn ≈ 5. In a quantum field theory the situation is more
complex. In QCD the (Wilson) coefficients of improvement terms obtain quantum corrections which can
be obtained perturbatively as a power series in the strong coupling constantg2, in a suitable scheme.
Following an effective field theory philosophy, such calculations can be done and the size of next order
corrections estimated. However, at sufficiently smalla anyc1g2n(a)a + c2a

2 expression will be domi-
nated by the first term that, in this example, is proportionalto a. To eliminate such terms the coefficient
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has to be determined nonperturbatively. Otherwise little is gained in a continuum limit extrapolation,
other than a reduction of the slope of the leading order term.At a given finitea value there is however
still some gain from improvement as the results will be more continuum-like. Examples for a systematic
nonperturbative improvement programme exist [65].

In the lattice literature often the word “scaling” is meant to imply that an effective continuum limit
is reached: within the “scaling region” mass ratios appear to be independent ofa, within statistical errors.
If a is reduced even further, eventually one will encounter “asymptotic scaling”, i.e. lattice massesa(g)m
will depend on the couplingg2 in the way expected from the perturbative two-loopβ function. It is quite
clear by now that “asymptotic scaling” in terms of the bare lattice coupling might never be achieved on
large lattices. However, asymptotic scaling has been verified for a particular choice of the coupling, as a
function of the linear extent of tiny lattices, see e.g. Ref.[66].

3.21 Gauge actions

In lattice simulations,SU(3) group elementsUx,µ are typically represented as complex3 × 3 matrices
that live on directed links connecting a lattice sitexwith the neighbouring sitex+aµ̂. Traces of products
of such “link variables” or “links” along closed paths (Wilson loops) are gauge invariant. The simplest
non-trivial such example is a1× 1 square, an elementary “plaquette”. The lattice action should preserve
gauge invariance which means that it can be expressed as a sumover such loops. Fermion fieldsψx and
ψ̄x are living on the lattice sites and a quark can be “transported” from sitex+ aµ̂ to sitex by means of
a left multiplication withUx,µ: the combinationψ̄xUx,µψx+aµ̂ is gauge invariant.

The simplest gauge action is the so-called Wilson action [67], which is proportional to the trace of
the sum over all elementary plaquettes:

SW = −β
∑

x,µ>ν

Re trΠx,µ,ν , (1.10)

wherex runs over all lattice sites andΠx,µν = Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,ν. Up to an irrelevant constant

the Wilson action agrees with the Euclidean continuum action toO(a2):

SYM =

∫
d4x

1

4g2

8∑

a=1

F aµν(x)F
a
µν(x) = SW + const.+ O(a2) , (1.11)

where we identifyβ = 6/g2. Asymptotic freedom tells us thata→ 0 asβ → ∞. In simulations without
sea quarks it has been established thatβ = 6 corresponds to a lattice spacinga ≈ 0.1 fm ≈ (2 GeV)−1.
With sea quarks (using the same gluonic action) the same lattice spacing will be obtained at a somewhat
smallerβ-value as the running ofa(g) with the couplingg will be somewhat slower. As mentioned above,
perturbation theory in terms of the lattice couplingg2 is not yet reliable aroundg2 ≈ 1, to describe the
running ofa(g2) (asymptotic scaling).

The O(a2) artifacts within Eq. (1.11) can be replaced byO(a4) lattice corrections, by adding
two paths consisting of six links, for instance a1 × 2 rectangle and a “chair”. The result is known as
the Symanzik-Weisz action [68] and the coefficients of the individual terms have been calculated to one
loop [O(g2)] accuracy [69]. At tree level, only the coefficient of the rectangle assumes a non-trivial
value. One (somewhat arbitrary) choice in the space of actions is the Iwasaki-action [70], again the
sum of plaquette and rectangle, but with the relative weightfixed to a constant, originally motivated by
demanding invariance of physical mass ratios under numerical renormalisation group transformations,
within a certainβ window. In addition to simulations with these gauge actions[71–73], there have
also been simulations employing a combination of the plaquette in the fundamental and in its adjoint
representation [72] as well as simulations on anisotropic lattices, using an anisotropic Wilson action [74–
76] or anisotropic variants of actions including Symanzik-Weisz style terms [77].
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The main motivation for adding such extra terms to the actionis to achieve a more continuum-like
behaviour already at finite lattice spacing. It also turns out that simulations with chiral fermions benefit
from such a choice which implies a “smoother” gauge field background.

In order to achieve fullO(a2) improvement the coefficients of the extra terms would have tobe
determined nonperturbatively, for instance by imposing continuum relations: in the pure gauge theory
example above one could impose rotational invariance of thestatic quark potential at two distances, e.g.
V (3, 0, 0) = V (2, 2, 1), V (5, 0, 0) = V (3, 4, 0) to fix the two coefficients, or use dispersion relations
of glueballs or torelons. This is labour-some and in generalthe fermions will not be nonperturbatively
improved beyondO(a2) anyway. So in practice, only approximate improvement has been implemented,
either by using the perturbative coefficients at a given order or by employing a so-called “tadpole” im-
provement prescription.

The latter is motivated by two observations. The first one is that short-distance lattice quantities
differ considerably from their continuum counterparts, even at lattice spacings at which one would, based
on theMS scheme continuum experience, assume perturbation theory to be valid. For instance around
a−1 = 2 GeV the numerical value for the plaquette with Wilson actionreads� = 1

3〈tr Π〉 ≈ 0.6 while
atg = 0 this should obviously be normalised toone. This is closely related to the breaking of continuum
rotational symmetry on the scale of a lattice spacinga. Parisi [78] hypothesized that such ultra-violet
effects could largely be factored out and put into commutingpre-factors. This mean-field improvement
amounts to dividing links that appear within lattice operators by constant factors, e.g.u0 = �

1/4. An
independent observation is that lattice perturbation theory, whose convergence behaviour in terms of the
lattice couplingg2 is well known to be quite bad, differs from continuum perturbation theory largely
by a class of lattice-specific tadpole diagrams which are numerically large. By normalising everything
with respect to other “measured” observables likeu0 these contributions cancel at one loop order and
one might hope that tadpole dominance and cancellation approximately generalises to higher orders as
well [79].

Finally, there is the idea of (classically) “perfect” actions [80]. If one found an action that lies right
on top of a renormalisation group trajectory then, independent of the lattice spacinga, one would obtain
continuum results. Such actions can be identified by demanding independence of physical results under
a change of the underlying scale. An action that contains a finite set of couplings is suggested and these
are then optimised with respect to such constraints. In practice, one can of course at best construct an
action that is close to such a trajectory in which case decreasing the lattice spacing still helps to reduce
deviations of the nearly perfect action from a real renormalisation group trajectory which one attempts
to approximate. An example of such an (approximately) perfect action and its construction can be found
in Ref. [81].

3.22 Light quark actions

The Dirac action is bi-linear in the quark fields. In the language of perturbation theory this amounts to
the non-existence of vertices containing an odd number of quark fields. This means that the quark part
of a lattice calculation can to some extent be separated fromthe gauge field evaluation: the gluon fields
contain all information of the QCD vacuum, including sea quark loops, provided these are un-quenched
(see below). Hadronicn-point functions can be obtained from contractions of colour fields,Γ-matrices
and quark-propagators, calculated on this gluonic background.

We denote a discretisation of the continuum Euclidean Diracoperator[Dµγµ + mi] asMi[U ].
Each quark flavouri now contributes a factor,

Sfi = (ψ̄,Mi[U ]ψ), (1.12)

to the action, where the scalar product(·, ·) is over allV = L3lτ sites of Euclidean space time, colour
and Dirac-spinor index. Note thatMi depends on the gauge fieldsU . Components ofM−1

i correspond
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to quark propagators. Often it is sufficient to calculate propagators that originate from only one source
point. In this case only one space-time row of the otherwise12V × 12V matrix M−1

i needs to be
calculated. As the non-diagonal contributions to the Diracoperator all originate from a first order co-
variant derivative,Mi will be a sparse matrix with non-vanishing elements only in the vicinity of the
(space time) diagonal. This tremendously helps to reduce the computational task. Quark propagators can
be contracted into hadronic Green functions, expectation values (over gauge configurations) of which
will decay with the mass in question in the limit of large Euclidean times.

One complication arises from the fermions as these are represented by anti-commuting Grassmann
numbers. Realising these directly on a computer implies a factorial (with the number of lattice points)
complexity [82] but fortunately they can be integrated out analytically as,

∫
[dψ][dψ̄]e(ψ̄,Mi[U ]ψ) = detMi[U ] =

∫
[dφ][dφ+]e(φ

+,M−1
i [U ]φ), (1.13)

whereφ andφ+ are auxiliary Boson (pseudo-fermion) fields. The price one pays is that calculating
detMi[U ] (or M−1

i ) involves effective interactions over several lattice sites. This renders simulations
containing sea quark effects two to three orders of magnitude more expensive than using the quenched
(or valence quark) approximation,detMi[U ] = const..

As one would expect ratios of light hadron masses from lattice simulations of quenched QCD have
been found to be inconsistent with the observed spectrum [83]. However, the differences are typically
smaller than 10 %, suggesting that the quenched approximation has some predictive power if cautiously
consumed. Apart from the obvious short-comings like a stable Υ(4S), the consequences of violating
unitarity at light quark mass can become dramatic in some channels [84]. Roughly speaking as the
axial anomaly does not exist in quenched QCD theη′ will be a surplus light Goldstone Boson or, more
precisely, a ghost particle. The impact of this can be investigated in quenched chiral perturbation theory.

Ultimately, one needs to include sea quarks and there are three classes of light quark actions:
staggered, Wilson-type, and chiral.

After trivially rescaling the quark fields,ψx → a−3/2ψx, ψ̄ → a−3/2ψ̄x, to allow for a representa-
tion as dimensionless numbers, a naı̈ve discretisation of the Dirac action would read,

SN =
∑

x

{
maψ̄xψx +

1

2

∑

µ

γµψ̄x

[
Ux,µψx+aµ̂ − U †

x−aµ̂,µψx−aµ̂
]}

. (1.14)

This action corresponds to the continuum action, up toO(a2) terms, however, it turns out that it corre-
sponds to 16 mass-degenerate species of Dirac fermions in the continuum limit, rather than to one: the
famous fermion-doubling problem [87, 88]. In the lattice literature these species are now often called
tastes, instead of flavours, to emphasize that they are unphysical.

It has been noted however that by means of a unitary transformation, the naı̈ve action can be diag-
onalised in spinor-space, into four identical non-interacting terms, each corresponding to four continuum
tastes. The result is the so-called Kogut–Susskind (KS) action [89], in which 16 spin-taste components
are distributed within a24 hypercube, a construction that is known in the continuum as Kähler fermions.
The advantage is that one taste of KS fermions corresponds tonf = 4 continuum tastes rather than
nf = 16. Another nice feature is that even at finite lattice spacing one of the 15 (n2

f − 1) pions will
become exactly massless asm → 0. The price that one pays is strong spin-taste mixing at finitelattice
spacing and large coefficients accompanying the leadingO(a2) lattice artifacts. KS-type fermions are
referred to as “staggered” and there are improved versions of them, most notably the Naik action [90],
the AsqTad [91] (a squared tadpole improved) action and HYP actions [92, 93] (in which parallel trans-
porters are smeared “iteratively” within hypercubes). Thelatter two choices notably reduce the tastes
mixing interactions.

In order to bring downnf = 4 to nf = 1, as required to achievenf = 2 + 1, sometimes the
determinant within Eq. (1.13) is replaced by its fourth positive root [94,95]. It can be shown that within
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perturbation theory this indeed corresponds to replacing thenf -factors accompanying sea quark loops
by nf/4. However, some caution is in place. The operator

√
M is non-local [96] and if its non-locality

altered
√

detM = det
√
M , universality could be lost in the continuum limit. One might argue that

A is not the only operator with the propertydetA =
√

detM but also in the Schwinger model there
exist some discouraging results for the behaviour of the topological winding number at small quark
masses [97]. Moreover, the valence quark action automatically differs from the one used for the sea
quarks as each taste of sea quarks will correspond to 4 tastesof valence quarks [98].

Nonetheless, large scale simulations with this action are pursued at present as the computational
costs of going to light sea quark masses appear much smaller than with other actions. Moreover, as long
as the sea quark masses are not too small, this approximationto QCD is not completely wrong and in
fact likely to be more realistic than quenched QCD. Indeed, in quarkonium physics where light quark
mass effects are sub-leading, first results appear very encouraging [95]. There also exist first theoretical
attempts of constructing a local representation of thenF < 4 staggered action [99,100].

Another “solution” to the fermion doubling problem are Wilson fermions [88]: the lattice ana-
logue of the term,−1

2aDµDµ, is added to theM of Eq. (1.14). This increases the masses of the 15
doublers by amounts that are proportional toa−1, removing the un-wanted modes. Like in the case
of staggered fermions the chiral symmetry that QCD classically enjoys atm = 0 is explicitly broken
at any finite lattice spacinga. In addition, one encounters additive mass renormalisation and a rather
awkward eigenvalue spectrum of the lattice Dirac operator as well asO(a) lattice terms. The latter can
be removed by adding yet another counterterm toM : ∝ −icswσµνFµν . The resulting action is known
as the Sheikholeslami-Wohlert (SW) or clover action [101].The csw coefficient is known to one loop
[O(g2)] in perturbation theory [101, 102] but has also been determined nonperturbatively in quenched
QCD with Wilson gauge action [65], innf = 2 QCD with Wilson [103] andnf = 3 QCD with Iwasaki
gauge actions [104]. Another variant is the FLIC (fat link irrelevant clover) action [105]. Finally, there
exists twisted mass QCD [106], in which an imaginary mass term is introduced into the Wilson action.
Unfortunately, in this case there will be mixing between parity partners within Green functions, some-
thing that one also encounters in staggered formulations. However, the changed eigenvalue spectrum of
M renders smaller quark masses accessible. Moreover, in the case of a purely imaginary renormalized
mass parameter,O(a) improvement holds.

Finally, formulations of chiral lattice fermions exist. These are automaticallyO(a) improved and
do not suffer from the fermion doubling problem. Realisations of these fall into three categories: overlap
fermions, based on the Neuberger action [60], domain wall fermions, which live on a 5-dimensional
lattice and become chiral as the size of the fifth dimension issent to infinity [61] and perfect actions [80,
85,86]. As always there is no free lunch and at presently accessible sea quark masses these formulations
are around two orders of magnitude more expensive than the “traditional” quark actions, described above.
For this reason, these formulations have not yet been applied to quarkonia (although one quenched study
with “chiral” charm quarks exists [107]) but in the future asalgorithmic and hardware development will
reduce costs, gauge configurations with chiral sea quarks will become increasingly available, in particular
also because at lighter quark masses chiral fermions will become more competitive.

3.23 Heavy quark actions

To a very good approximation bottom quarks can be neglected from the sea as their presence will only
affect the theory at very short distances. This is also true for charm quarks but, depending on the phe-
nomenology one is interested in, to a somewhat lesser extent. In principle nothing speaks against em-
ploying the same quark actions as above to the heavy quark sector as well. With a naive treatment of
cutoff effects, lattice corrections∝ (ma)n arise. This suggests that to make contact with the continuum
limit, the conditionm < a−1 has to apply: asm becomes large the lattice spacing has to be made finer
and finer, the number of lattice points larger and larger and computational costs will explode, if not for
charm then certainly for bottom.
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One possible way out would be to introduce an anisotropy,ξ = aσ/aτ with a temporal lattice
spacingaτ ≪ m−1 while the spatial lattice spacing can be kept coarser. An obvious application of
anisotropic actions is finite temperature physics [108] butan anisotropy has also been employed suc-
cessfully in investigations of pure gauge theories [77, 109] as well as in charmonium physics [74, 76].
Obviously, the anisotropy of the gauge action has to be matched to that of the light quark and heavy quark
actions, in order to obtain a sensible continuum limit. Thismatching certainly becomes very expensive
when sea quarks are included and even more so in the presence of improvement terms.

Another starting point are effective field theories, in particular NRQCD which relies on a power
counting in terms of the relative heavy quark velocity,v. In addition, EFTs automatically provide the
framework for factorisation of physical processes into nonperturbative low energy QCD and perturba-
tive high energy QCD contributions. The fermionic part of the O(v4) Euclidean continuum NRQCD
Lagrange density with quark fieldsψ and anti-quark fieldsχ reads [6,8],

L = −ψ† [D4 +H]ψ − χ†[D4 −H†]χ+ Lψχ, (1.15)

with

H = m+ δm − c2
D2

2m
− cF

gσ · B
2m

− c4
(D2)2

8m3
(1.16)

− icD
g(D · E −E · D)

8m2
+ cS

gσ · (D × E − E × D)

8m2
+ · · · ,

where the matching coefficientsci(m/µ, g2) = 1 + O(g2), δm = O(g2) are functions of the matching
scaleµ and couplingg2. In the continuumc2 = c4 = 1, however, this is in general different on the
lattice, where rotational invariance is broken and toO(v4) an additional term∝ a2

∑
iD

4
i /m appears.

There are many obvious ways of discretising the above equation on the lattice and often the published
expressions involve “tadpole” improvement factorsu0 = 1 + O(g2). On a lattice with infinite temporal
extent it is possible to use a discretisation of the above Hamiltonian within the kernel of a time-symmetric
evolution equation [110] such that fields at timet+a can be computed entirely from fields at timet (and
vice versa). This turns the computation of propagators particularly economical. In reality, computations
are performed on a finite torus but as long as propagators falloff sufficiently fast in Euclidean time, the
resulting error of this approximation will be small.

In addition there are the four-fermion interaction termsLψχ which (in the case of flavour singlet
quarkonia) are accompanied by factors∝ αs and have to be considered atO(v4). In principle it is known
how to do this in lattice simulations [110]. For theBc system, where annihilation is not possible, there
will be further suppression of these terms by an additional factorαs. Finally, due to integrating out heavy
quark loops, two new purely gluonic operators are encountered [19, 27], accompanied by factors1/m2.
This “un-quenching” of the heavy quark can in principle easily be implemented in lattice simulations
too. However, this is obviously an effect, less important than achieving a realistic light flavour sea quark
content.

Starting from a latticized NRQCD action there are in principle different ways to calculate quark
propagators. Usually the full fermionic matrix that appears within a lattice discretisation of Eq. (1.16) is
inverted, as described above, exploiting a Hamiltonian evolution equation. As an alternative one could
also analytically expand the Green functions of interest inpowers of1/m and calculate the resulting
coefficients individually. It is worthwhile to mention thatin the continuum the expression “HQET” refers
to heavy-light systems and “NRQCD” to quarkonia. In the lattice literature however, NRQCD is used for
both, heavy-heavy and heavy-light system, indicating thatthe propagator is obtained as the inverse of the
lattice NRQCD quark matrix. The term HQET implies an expansion of heavy quark propagators about
the static limit. As these are somewhat smeared out in space,NRQCD propagators can be determined
more accurately than HQET ones, however, with the inventionof new “fat” static quark actions [92] that
reduceδm within Eq. (1.16) above this has recently changed.
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Them/µ dependence of the matching coefficientsci has been calculated in theMS scheme to
various orders in perturbation theory but so far no result onthema dependence exists in lattice schemes.
This seems to be changing, however [111]. Such corrections are important as in the Coulomb-limit, in
which NRQCD power counting rules are formulated,αs = O(v). The differenceδm between kinetic
and rest mass can be determined nonperturbatively from theΥ dispersion relation.

The Fermilab method [112] constitutes a hybrid between heavy quark and light quark methods. It
is based on an expansion in terms of the lattice spacing, starting from the Wilson quark action that encom-
passes the correct heavy quark symmetry. Forma ≪ 1 this is equivalent to the Symanzik-improvement
programme, the lowest order correction resembling the SW/clover term. However, atma > 1 the result
is interpreted in terms of the heavy quark terms that one obtains from a1/m expansion. Evidently, the
light-quark clover term has the same structure as theσ · B fine structure interaction, in particular on
anisotropic lattices, where the difference can be attributed to the matching coefficients.

An extension of the Fermilab method is an effective field theory framework for describing dis-
cretization effects [113]. This theory lumps all discretization effects into short-distance coefficients of
the NRQCD/HQET effective Lagrangian. Compared to the continuum HQET or NRQCD, the coef-
ficients now depend on both short distances,m−1

Q and a. This theory is also a natural extension of
Symanzik’s theory of cutoff effects into the regimemQa 6≪ 1 [114]. The theory of heavy-quark cutoff
effects is not limited to the Fermilab method and can be used to compare the relative size of cutoff effects
in various ways of discretising the heavy-quark action [115].

Finally, it is possible to solve NRQCD on the lattice by computing static propagators with field
strength insertions, in the spirit of the1/m HQET expansion. This can either be done on the level of
quarkonium Green functions (an approach that so far has never been attempted) or within the framework
of static potentials and relativistic corrections derivedfrom NRQCD [15,116]. When constructing Green
functions one has to keep the power counting in mind as well asthe fact that the lowest order NRQCD
Lagrangian goes beyond the static limit as the kinetic term is required. It is also possible to put pN-
RQCD [14] onto the lattice. In the limitΛ < mv2 quarkonia are represented as colour singlet or colour
octet states, propagating in the QCD vacuum [117]. This condition is only met for would-be toponium
and to some extent for the lowest lying bottomonium states. However, this approach is conceptionally
interesting and reduces the number of relevant decay matrixelements.

3.3 Extrapolations

In lattice simulations there are in general three kinds of effects: finite volume effects, lattice artifacts and
errors due to wrong light quark masses. Within NRQCD there are additional error sources due to the
truncation of the effective field theory at a fixed order in thevelocity v and determination of matching
coefficients to a given accuracy inαs. In addition to these controlled errors there are error sources that
are not controlled by a small parameter like quenching or theuse of ill-defined light quark actions. The
statistical analysis of lattice data is not trivial but we shall not discuss the possible errors, caveats and
pitfalls here as this would be too technical.

Due to the confinement phenomenon and screening of colour, finite size effects are usually quite
benign and — once the lattice is sufficiently large — fall off at least like1/(La)3. Because of this it
is often sufficient to repeat simulations on 2-3 different volumes to check if finite size effects can be
resolved within statistical errors, rather than to attemptproper infinite volume extrapolations. Obviously,
higher lying states and charmonia are spatially more extended than lower lying states and bottomonia.
In simulations with sea quarks the lattice size has to be large, compared to the pion mass. For instance
the conditionLa > 4/mπ yieldsLa > 5.7 fm at physical pion mass. There are no large-volume lattice
results as yet obtained at such light quark masses. To disentangle possible finite volume from other
systematic effects, sequences of lattice simulations at different lattice spacings are often obtained at a
volume that is fixed in physical units.
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The powern of the dominant finite lattice spacing effectO(an) is in general known and can
be fitted to lattice data if sufficient leverage ina is provided. In the context of “improvement” (to a
given order of perturbation theory orad hoc) sometimes the coefficient of the leading order term is
small since it is suppressed by powers ofg2 such that the sub-leading term has to be accounted for as
well. Within the context of effective field theories one cannot extrapolate to the continuum limit as the
lattice spacing provides the cut-off scale but one can checkindependence of the results with respect
to variations ofa. Once thema dependences of the short range matching coefficients are determined,
the scaling should improve. A notable exception is the Fermilab action which has a continuum limit.
However, the functional form in the cross-over region betweenma > 1 andma < 1 is not as simple as
an(ln a)m.

As computer power is limited, lattice sea quark masses are typically not much smaller than the
strange quark mass but with the so-called AsqTad “nf = 2 + 1” action valuesm ≈ 0.2ms have been
reported [95]. Lattice results have to be chirally extrapolated to the physical limit. Chiral corrections
to quarkonium mass splittings are to leading order proportional tom2

π [118]. While within present-day
lattice calculations of light hadronic quantities as well as ofB andD physics, such finite mass effects
are frequently the dominant source of systematic error, in the case of quarkonia, the dependence appears
to be much milder, due to the absence of a light valence quark content.

If effective field theories are realised or simulations are only available at very few lattice spacings
cut-off effects can be estimated by power counting rules and/or by varying the action(s). In the absence
of fully un-quenched results, some experience can be gainedby comparing to experiment, on the likely
effect of implementing a wrong number of sea quarks but this error source is not controllable fromfirst
principles.A real ab initio study must go beyond the valence quark approximation.
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Chapter 2

COMMON EXPERIMENTAL TOOLS

Convener:R. Mussa

Authors: A. Böhrer, S. Eidelman, T. Ferguson, R. Galik, F. Harris, M.Kienzle, A. B. Meyer, A. Meyer,
X. H. Mo, V. Papadimitriou, E. Robutti, G. Stancari, P. Wang,B. Yabsley, C. Z. Yuan

1. Overview†

This chapter aims to provide an overview of the experimentalfacilities which are contributing to pro-
vide the wealth of data on heavy quarkonia during the currentdecade. The experiments can be sorted
in 7 broad classes, according to the accelerator which is being used. The world laboratory on heavy
quarkonium can count on dedicated experiments working in the most important HEP facilities, such as:

• 3 τ -charm factories, described in section 2.:BES, which provided record samples ofJ/ψ’s and
ψ ′’s in the last years, and will run a new intensive program at these energies from 2006 on (BES-
III), CLEO , which after 25 years of running atΥ(nS) energies is presently involved in a 3 years
program (CLEO-c) across open charm threshold, but alsoKEDR which, exploiting the polarimeter
in the VEPP-4 collider, has recently provided high precision measurements ofJ/ψ andψ ′ masses;

• 3 B-factories: after CLEO,BaBar andBelle, described in section 3., have proved to have a large
physics potential also as charmonium factories, through a rich variety of reactions (B decays to
charmonium,γγ , ISR, doublecc̄), and can easily be exploited to study bottomonium physics;

• 1 p̄p charmonium factory: the Antiproton Accumulator of the Tevatron, at Fermilab, was exploited
by theE835experiment, described in section 4., to scan all known narrow charmonium states in
formation frompp̄ annihilation.

In these last years, clean record samples of all the narrow vector resonances have been accumu-
lated. Table 1. shows the record samples of charmonia produced (or formed) in:

• one B-factory (via B decays,γγ, radiative return) with 250fb−1 (such quantity is continuously
increasing at present);

• the highest statistics runs recently done by theτ -charm factory BES (58 MJψ’s and 14 Mψ(2S))

• the data samples formed in thepp̄ charmonium experiment E835

In 2003, CLEO-III accumulated the largest data samples ofΥ(1, 2, 3S) states: 29M, 9M, 6M re-
spectively. If the production ofΥ states may now stop for a while, the available samples on charmonium
are expected to boost in the future years, not only as a resultof the steady growth in data from B-factories,
but mainly from the dedicated efforts of the CLEO-c project,which aims to take 1 billionJ/ψ’s in 2006,
and the BES-III upgrade, from 2007 on. Anotherpp̄ charmonium factory is going to start data taking at
GSI in the next decade.

†Author: R. Mussa
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Particle ψ(2S) ηc(2S) χc2 χc1 χc0 J/ψ ηc(1s)

B decays 0.8M 0.4M 0.3M 0.9M 0.75M 2.5M 0.75M
γγ - 1.6M 1M - 1.2M - 8.0 M
ISR 4M - - - - 9M -
ψ(2S) decays 14M ? 0.9M 1.2M 1.2M 8.1M 39K
J/ψ decays - - - - - 58M 0.14 M
pp̄ 2.8M ? 1M 1M 1.2M 0.8M 7M

Table 2.1: This table summarizes the numbers of charmonium states produced or formed , not necessarily detected, in the

B-factories,τ -charm factories and inpp̄.

Beside the dedicated experiments, many other facilities provide not just valuable information on
the mechanisms of heavy quarkonium production, but have nonetheless a high chance to discover new
states:

• A Z-factory: the four LEP experiments, described in section5., studied heavy quarkonium pro-
duction inγγ fusion.

• 2 Hadron Colliders, described in section 6.: Tevatron, where CDF and D0 can investigate the
production mechanisms of prompt heavy quarkonium at high energy and RHIC, where Star and
Phenix can search in heavy quarkonium suppression the signature of deconfined quark-gluon
plasma.

• 1 ep Collider: HERA, described in 7., where the experimentsH1 andZeuscan study charmonium
photoproduction, andHera-B studies charmonium production in pA interactions.

The list of available sources of new data is far from complete: other Fixed Target Experiments,
such as NA50, NA60, study charmonium production in pN, NN interactions.

At the end of the chapter, a set of appendices give details on some of the experimental techniques
which are widely employed in this field, for the determination of narrow resonance parameters such as
masses, widths and branching ratios. These appendices aim to focus on some of systematic limits that
the present generation of high statistics experiments is likely to reach, and give insights on the future
challenges in this field:

• Appendix 8.1 explains the physical principle of resonant depolarization, which provides the abso-
lute energy calibration of the narrow vector states of charmonium and bottomonium.

• Results from alle+e−scanning experiments crucially depend on the subtraction of radiative cor-
rections on the initial state: a detailed and comprehensivereview of the analytical expression
which connects the experimental excitation curve to physical quantities such as partial widths and
branching ratios is given in appendix 8.2.

• Scanning techniques usingpp̄ annihilations are less affected by radiative corrections;the physical
limits of the stochastic cooling on antiproton beams are reviewed in appendix 8.3.

• Appendix 8.4 reviews the available software tools to calculate the luminosity inγγ fusion exper-
iments, an issue which may become relevant as we hope to measure γγ widths with accuracies
better than 10% with the current high statistics samples from B-factories.

• Recent evidences both ine+e− andpp̄ formation experiments have shown that the interference
between continuum and resonant amplitudes can be observed in the charmonium system and may
soon lead to a better understanding of some experimental puzzles, and therefore to a substantial
reduction on systematic errors on branching fractions. This issue is addressed in appendix 8.5.
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2. τ -charm factories

2.1 BES†

BES is a conventional solenoidal magnet detector that is described in detail in Ref. [1]; BESII is the
upgraded version of the BES detector, which is described in Ref. [2] and shown in Fig. 2.1. In BESII, a
12-layer vertex chamber (VC) surrounding the 1.2 mm thick beryllium beam pipe provides trigger and
track coordinate information. A forty-layer main drift chamber (MDC), located radially outside the VC,
provides trajectory and energy loss (dE/dx) information for charged tracks over85% of the total solid
angle. The momentum resolution isσp/p = 0.017

√
1 + p2 (p in GeV/c), and thedE/dx resolution

for hadron tracks is∼ 8%. An array of 48 scintillation counters surrounding the MDC measures the
time-of-flight (TOF) of charged tracks with a resolution of∼ 200 ps for hadrons. Radially outside the
TOF system is a 12 radiation length, lead-gas barrel shower counter (BSC), operating in self-quenching
streamer mode. This measures the energies of electrons and photons over∼ 80% of the total solid
angle with an energy resolution ofσE/E = 22%/

√
E (E in GeV). Surrounding the BSC is a solenoidal

magnet that provides a 0.4 Tesla magnetic field over the tracking volume of the detector. Outside of the
solenoidal coil is an iron flux return that is instrumented with three double layers of counters that identify
muons of momentum greater than 0.5 GeV/c. The BESII parameters are summarized in Table 2.2, and a
summary of the BES data sets is given in Table 2.3.

End view of the BES detector

Main
Drift Chamber

Barr
el S

hower Counter

Vertex
Chamber

TOF Counters

Solenoid Coil

Magnet Yoke

Muon Counters

Fig. 2.1: End view of BES (BESII) detector.

†Author: F. Harris
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Detector Major parameter BESII
VC σxy(µm) 100

σxy(µm) 190-220
MDC ∆p/p (%) 1.7

√
1 + p2

σdE/dx (%) 8.4
TOF σT (ps) 200

Latten (m) 3.5 - 5.5
BSC ∆E/

√
E (%) 22%

σz(cm) 2.3
µ counter σz(cm) 5.5

DAQ dead time (ms) 8

Table 2.2: Summary of BESII detector parameters.

Detector Physics ECM (GeV) Sample
J/ψ 3.097 7.8 × 106

BESI mτ 3.55 scan 5 pb−1

Ds,D 4.03 22.3 pb−1

ψ(2S) 3.686 3.8 × 106

R-scan 2-5 scan 6 + 85 points
BESII ψ(2S)-scan ∼ 3.686 24 points

J/ψ 3.097 58 × 106

ψ(3770) para. ψ(3770) scan
ψ(2S) 3.686 14×106

ψ(3770) ∼3.770 ∼ 27 pb−1

continuum 3.65 6.4 pb−1

Table 2.3: Summary of BES data sets.

2.2 The CLEO detector†

2.21 The CLEO III and CLEO-c detectors

In the twenty-five year history of the CLEO Collaboration there had been a succession of detector up-
grades that led from CLEO I to CLEO I.5 to CLEO II [3] to CLEO II.V. In preparation for its last running
at theΥ(4S)1 there was a large scale modification, primarily aimed at bringing the hadron identification
capabilities up to the same high level as the tracking and electromagnetic calorimetry. This configura-
tion, described below, was called CLEO III. All of thebb resonance data (Υ(1S),Υ(2S),Υ(3S)) and the
Υ(5S) running of 2002-3 were taken with this CLEO III configuration. A conference proceeding on the
commissioning and initial performance evaluation of CLEO III has been published [4].

The transition to running in thecc region called for rethinking the optimization of various com-
ponents, particularly tracking, in that the magnetic field would be lowered from 1.5T to 1.0T to accom-
modate CESR having to handle the solenoid compensation of such “soft” beams. A thorough study was
completed and available as a Laboratory preprint [5], oftenreferred to as the “CLEO-c Yellow Book”.
The modifications are described below and the cut-away view of the detector is shown in Fig. 2.2

†Author: R. Galik
1The last suchBB running was in June 2001.
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Fig. 2.2: CLEO-c.

2.22 CLEO III

As noted above the thrust of the upgrade to CLEO III was to greatly enhance hadronic particle identifica-
tion without sacrificing the excellent charged particle tracking and electromagnetic calorimetry of CLEO
II [3]. CLEO chose to accomplish this with aring-imaging Cherenkov (RICH) detector which has
an active region of 81% of4π, matching that of the barrel calorimeter. Details of the construction and
performance have been published [6]; a summary follows.

The RICH construction has LiF radiators of thickness 1cm followed by a nitrogen-filled expansion
volume of 16 cm. The Cherenkov photons then pass through a CaF2 window into the photo-sensitive
gas, for which a mixture of triethylamine (TEA) and methane (CH4) is used. Readout is done on the
250,000 cathode pads that sense the avalanche of electrons liberated in the TEA-CH4 and accelerated to
anode wires. To minimize effects of total internal reflection the LiF radiators in the central region,i.e.,
nearest the interaction region (IR), have a sawtooth pattern cut on their outer surface.

From Bhabha scattering calibrations, the single photon angular resolution ranges from 13 (nearest
the IR) to 19 mrad (furtherest from the IR). The number ofdetectedphotons averages 12 in the central,
sawtooth region and 11 in the outer, flat radiator regions. This leads to a Cherenkov angle determina-
tion of resolution better than 5 mrad, except at the very outer edges along the beam direction, in good
agreement with simulations of the device.

As always, the performance is a trade-off between fake-rate(mis-ID) and efficiency. Charged
kaons and pions in the decay of aD meson in the chainD∗→Dπ→(Kπ)π can be identified using
kinematics. Such a sample shows that belowp = 2GeV/c even 90% efficiency for kaon identification
has less than a 2% fake-rate for pions. Atp = 2.6GeV/c, the kinematic limit forB decay, 80% efficiency
still has only a fake-rate of 8%. These identification capabilities are enhanced by using dE/dx in the drift
chamber (described next). The ultimate efficiency/fake performance is very specific to the decay channel
of interest.

The RICH takes up some 15 cm in radius more than the previous scintillator system from CLEO
II. This meant a newdrift chamber was to be built that would have the same momentum resolution
as that of CLEO II but with reduced radius, spanning 12-82 cm from the beam line. Again, a detailed
document has been published [7], of which a summary follows.

Accomplishing this meant minimizing mass (use of a helium based gas, namely 60%He-40%C3H8;
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thin inner support cylinder, 0.12% radiation lengths; aluminum field wires with gold-plating), carefully
monitoring hole and wire positions, and paying close attention to field wire geometry. The inner-most
16 layers are axial while the outer 31 layers are stereo with sequential superlayers (of four layers each)
alternating in the sign of the stereo angle. Both the axial and stereo sections participate in the CLEO III
trigger. The end plates consist of a highly tapered assemblyfor the axial layers (allowing full tracking
coverage over 93% of the solid angle) and a slightly conical outer section that minimizes end plate mass
(greatly improving the energy resolution of the end cap CsI electromagnetic calorimeter). The outer
cylinder is instrumented with cathode strips for additional z measurements.

Spatial resolution within the cells is parametrized by two Gaussians with the narrower constrained
to have 80% of the fitted area. Averaged over the full cell thisnarrow component is 88µm with the
middle of the cell being as good as 65µm. Some figures of merit from 5 GeV/c Bhabha tracks are a
momentum resolution of 55 MeV/c , a z resolution of 1.2 mm from the cathodes and of 1.5 mm from
the stereo anodes, and dE/dx resolution of 5.0%, which meansK/π separation to 700 MeV/c of hadron
momentum. All measures of performance are beyond the designspecifications.

To provide extremely accurate track position measurementsin both the azimuthal andz coordi-
nates, CLEO had installed a three layer, double sidedsilicon vertex detector [8] which was the dis-
tinguishing feature of CLEO II.V. For CLEO III this was upgraded to a four layer device [9] with the
smallest radius being 2.5 cm. While thez readout sides performed well throughout the lifetime of CLEO
III the r−φ side quickly showed declining efficiency, in unusual patterns, that has never been explained.
This led us to rethink this innermost tracker with the adventof CESR-c (see below).

The other hardware components of CLEO III were the same as forCLEO II. The∼8000 CsI
crystals of theelectromagnetic calorimeterstill perform very well; the endcap regions were re-stacked
to allow for better focusing quadrupoles and greatly benefited from the reduced material in the drift
chamber endplate. Themuon systemwas unchanged as was thesuperconducting solenoidwith the
exception of some reshaping of the endcap pole pieces. The magnetic field for all theΥ region running
was 1.5T. Thetrigger and data acquisition systems were totally revamped for CLEO III, allowing
CLEO to be extremely efficient and redundant for even low multiplicity events and have minimal dead
time up to read out rates of 1 kHz.

2.23 CLEO-c

Very few changes were needed in preparing for the transitionto CLEO-c data collection in thecc region.
Both the average multiplicity and average momenta of charged tracks are lower, so particle identification
via the RICH and dE/dx becomes even better than at CLEO III energies. The lowered magnetic field
strength of 1.0T means recalibration of the drift chamber, but actually improves the ability to trigger on
and find low momentum tracks. The muon chambers become less useful for identifying leptons from
the interaction region in that such muons range out in the iron; however, the chambers are still a useful
veto of cosmic rays. The CsI calorimeter routinely identifies showers down to 70 MeV, so it needed
no modification, other than changing the thresholds in its trigger hardware to accommodate lowered
energies of Bhabha scattering events.

The premature aging of the CLEO III silicon meant that we had to either replace it or substitute
a small wire chamber. The CLEO-c program does not have the stringent vertexing requirements of
CLEO III (theD mesons are at rest in CLEO-c!). Further, track reconstruction is optimized by having
fewer scattering surfaces. After detailed studies of mass reconstruction and other figures of merit, it was
decided to build a six-layer stereo chamber with similar design as the main drift chamber. In this case
theouterskin is very thin (∼ 0.1% of a radiation length), so that this small chamber and the larger one
look as much as possible like a single volume of gas. The stereo wires (strung at 10-15 degrees) are
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needed to getz information for low-momentum tracks that do not reach beyond the axial layers of the
main chamber.

This new wire chamber has been installed, calibrated, commissioned and fully integrated into
CLEO hardware and software; it is highly efficient and has a very low noise occupancy. The first CLEO-
c data uses this new device in its track fitting algorithms, although work continues in areas such as
calibration and alignment to optimize its contributions totracking.

2.3 KEDR†

The KEDR detector described in detail elsewhere [67] is shown in Fig. 2.3.

1
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Fig. 2.3: Layout of the KEDR detector: 1 - beam pipe, 2 - vertexdetector, 3 - drift chamber, 4 - TOF scintillation counters,5

- LKr barrel calorimeter, 6 - superconducting coil, 7 - muon tubes, 8 - magnet yoke, 9 - CsI endcap calorimeter, 10 - Aerogel

Cherenkov counters

It consists of the vertex detector, the drift chamber, the time-of-flight system of scintillation coun-
ters, the particle identification system based on the aerogel Cherenkov counters, the calorimeter (the
liquid krypton in the barrel part and the CsI crystals in the end caps) and the muon tube system inside
and outside of the magnet yoke. In this experiment the magnetic field was off and the liquid krypton
calorimeter as well as aerogel counters were out of operation.

The detection efficiency, determined by the visible peak height and the table value of the leptonic
width, is about 0.25 for theJ/ψ (∼ 20 · 103 events) and about 0.28 for theψ′ (∼ 6 · 103 events).

Luminosity was measured by events of Bhabha scattering detected in the end-cap CsI calorimeter.

†Author: S. Eidelman
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3. B-factories

3.1 BaBar†

BaBar is a general-purpose detector, located at the only interaction point of the electron and positron
beams of the PEP-II asymmetric collider at the Stanford Linear Accelerator Center. Although its design
has been optimized for the study of time-dependentCP asymmetries in the decay of neutralB mesons,
it is well suited for the study of a broad range of physics channels of interest, taking profit from the large
samples of data made available by the high luminosity.
The PEP-IIB-factory operates at an energy of 10.58 GeV, equal to the massof theΥ(4S) meson; the
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Fig. 2.4: BaBar detector longitudinal section.

colliding electron and positron beams have an energy of 9 and3.1 GeV, respectively, corresponding to a
Lorentz boost of the center of mass ofβ = 0.55. The maximum instantaneous luminosity now exceeds
9×1033 cm−2s−1, well above the design value of3×1033 cm−2s−1. The peak cross section for formation
of theΥ(4S) (which then decays exclusively toB+B− orB0B

0
) is about 1 nb; at the same energy, the

total cross section fore+e− → qq (q = u, d, s, c) is about 3 nb: in particular,σ(e+e− → cc̄) ≈ 1.3 nb.
Of particular interest for the study of charmonium states are also events where the effectivee+e− energy
is lowered by the initial emission of a photon (Initial State Radiation, or ISR), andγγ fusion processes,
where the two photons are radiated by the colliding beams: both of them occur at substantial rates in the
energy range of the charmonium spectrum.

†Author: E. Robutti
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A longitudinal section and an end view of the BaBar detector are shown in Fig. 2.4 and Fig. 2.5. respec-
tively. The structure is that typical of full-coverage detectors at collider machines, except for a slight
asymmetry inz, with a larger acceptance in the positive direction of the electron beam (“forward”),
which reflects the asymmetry in the beam energies.
The inner part of the apparatus is surrounded by a superconducting solenoid providing the 1.5-T mag-
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netic field used for the measurement of particle charges and momenta. It includes the tracking, particle
identification and electromagnetic calorimetry systems.

The tracking system is composed of aSilicon Vertex Tracker(SVT) and aDrift CHamber(DCH).
The SVT is a five-layer, double-sided silicon strip detector, which is used for precision measurements
of the primary and secondary decay vertices, as well as a stand-alone tracking device for particles with
low transverse momentum (50 − 120 MeV/c). The DCH is a 40-layer cylindrical drift chamber with
a helium-isobutane mixture as the sensitive gas, and is the primary device used for the measurement of
particle momenta; it is also used for the reconstruction of secondary vertices outside the outer radius
of the SVT. Both detectors provide redundantdE/dx samplings for particle identification of charged
hadrons with momenta below∼ 700 MeV/c.
The tracking reconstruction efficiency exceeds 95% for tracks with transverse momentum above200
MeV/c. The resolution for the track impact parameters is about 25 and 40µm in the transverse plane
and along the detector axis, respectively. The momentum resolution is well described by the linear rela-
tion: σpt/pt ≃ 0.45% + 0.13% · pt(GeV/c). ThedE/dx resolution at1 GeV/c is about 7.5%.
Separation of pions and kaons at momenta above500 MeV/c is provided by the DIRC (Detector of In-
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System θ1 No. ADC TDC No. Segmentation Performance
(θ2) Channels (bits) (ns) Layers

SVT 20.1◦ 150K 4 - 5 50-100µm r − φ σd0 = 55 µm
(-29.8◦) 100-200 µm z σz0 = 65 µm

DCH 17.2◦ 7,104 8 2 40 6-8 mm σφ = 1 mrad
(-27.4◦) drift distance σtanλ = 0.001

σpT /pT = 0.47%
σ(dE/dx) = 7.5%

DIRC 25.5◦ 10,752 - 0.5 35× 17 mm2 σθC = 2.5mrad
(-38.6◦) (r∆φ× ∆r) per track

144 bars
EMC(C) 27.1◦ 2 × 5760 17-18 - 47× 47 mm2 σE/E = 3.0%

(-39.2◦) 5760 cystals σφ = 3.9 mrad
EMC(F) 15.8◦ 2 × 820 820 crystals σθ = 3.9 mrad

(27.1◦)
IFR(C) 47◦ 22K+2K 1 0.5 19+2 20-38 mm 90%µ± eff.

(-57◦) 6-8%π± mis-id
IFR(F) 20◦ 14.5K 18 28-38 mm (loose selection,

(47◦) 1.5–3.0 GeV/c2)
IFR(B) -57◦ 14.5K 18 28-38 mm

(-26◦)

Table 2.4: Overview of the coverage, segmentation, and performance of the BaBar detector systems. The notation (C), (F), and

(B) refers to the central barrel, forward and backward components of the system, respectively. The detector coverage inthe

laboratory frame is specified in terms of the polar anglesθ1 (forward) andθ2 (backward). Performance numbers are quoted for

1 GeV/c2 particles, except where noted.

ternally Reflected Cherenkov light). This is a novel kind of ring-imaging Cherenkov detector, in which
Cherenkov light is produced in bars of fused silica and transported by total internal reflection, preserv-
ing the angle of emission, to a water tank viewed by an array ofphotomultipliers tubes. The pion-kaon
separation obtained after association of signals to the tracks ranges from about10σ at1 GeV/c to about
3σ at4 GeV/c.
TheElectroMagnetic Calorimeter(EMC) is a finely segmented array of CsI(Tl) crystals with projective
geometry. Its energy resolution is well described by the relationσE/E ≃ 2.3% · E(GeV)−1/4 ⊕ 1.9%;
the angular resolution ranges from about 12 mrad at low energies to about 3 mrad at high energies; the
width of the reconstructedπ0 mass peak is about7 MeV/c2.
Outside the superconducting coil is the detector for muons and neutral hadrons, calledInstrumented Flux
Return(IFR): the iron return yoke of the magnet is segmented into layers of increasing thickness from
the inside to the outside, interspersed with Resistive Plate Chambers as the active elements. Muons are
identified by criteria exploiting the deepest penetration of their tracks into the iron: a typical efficiency
for a selector was about 90% in the momentum range1.5 < p < 3 GeV/c with a pion fake rate for pions
of about 6-8%. The RPC have suffered a loss of efficiency sincethe beginning of operation, causing a
small degradation in the performance of muon selectors. In the barrel section of the IFR, they will be
substituted by Limited Streamer Tubes, starting from Summer 2004.
Table 3.1 summarizes parameters and performances of the different subsystems composing the BaBar
detector.

The trigger system includes a first hardware level, L1, collecting information from the DCH, EMC
and IFR, and a software level, L3, selecting events for different classes of processes of physics interest.
Output rates are currently around 3 kHz for L1 and 120 Hz for L3. The combined efficiency exceeds
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99.9% forBB events, and is about 99%, 96% and 92% forcc̄, uds andττ events.

3.2 Belle†

The purpose of the Belle experiment is to study time-dependent CP asymmetries in the decay ofB-
mesons, such asB0→J/ψK0

S , π+π−, andφK0
S . The experiment is therefore designed to provide

boostedB0B0 pairs, allowing decay-time differences to be measured as differences inB-meson de-
cay position; vertex resolution of order50µm, to measure those decay positions; and high-acceptance
tracking and electromagnetic calorimetry, to measure the decay products. Efficient electron and muon
identification are required to reconstruct theJ/ψ, and kaon/pion separation is required to distinguish
kaons (e.g. for B-meson flavor tagging) and pions (e.g. for separation ofB0→π+π− from K+π− de-
cays). Detection ofK0

L mesons is also desirable, to allow measurement ofB0→J/ψK0
L andφK0

L modes
as a complement toJ/ψK0

S andφK0
S .

Fig. 2.6: Layout of the KEKB interaction region.

Belle is therefore suited to a wide range of other physics analyses, particularly in thee+e−→cc̄
continuum, and in the production and decay of charmonium states. The experiment has an active pro-
gramme of study in both of these fields.

The detector is located at the interaction point of the KEKBe+e− collider [10] at K.E.K. in
Tsukuba, Japan. KEKB consists of an injection linear accelerator and two storage rings 3 km in cir-
cumference, with asymmetric energies: 8 GeV for electrons and 3.5 GeV for positrons. Thee+e−

center-of-mass system has an energy at theΥ(4S) resonance and a Lorentz boost ofβγ = 0.425. The
interaction region is shown in Fig. 2.6: the lower-energy positron beam is aligned with the axis of the
Belle detector, and the higher-energy electron beam crosses it at an angle of 22 mrad. This arrangement
allows a dense fill pattern without parasitic collisions, and also eliminates the need for separation bend
magnets. KEKB’s luminosity is the world’s highest, exceeding the1034 cm−2s−1 design value: with the

†Author: B. Yabsley
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introduction of continuous beam injection, a record luminosity of 13.9 × 1033 cm−2s−1 was achieved in
June 2004; further improvements are foreseen with the introduction of crab cavities.

The Belle detector [11], shown in side view in Fig. 2.7, is built into a 1.5 Tesla superconducting
solenoid magnet of 1.7 metre radius. (Compensating solenoids and final-focus quadrupole magnets can
also be seen on the beamline, inside the main solenoid volume.) The design is that of a classic barrel
spectrometer, but with an asymmetry along the beam axis to provide roughly uniform acceptance in the
e+e− center-of-mass.

Precision tracking and vertex measurements are provided bya central drift chamber (CDC) and
a silicon vertex detector (SVD). The CDC is a small-cell cylindrical drift chamber with 50 layers of
anode wires including 18 layers of stereo wires. A low-Z gas mixture (He (50%) andC2H6 (50%)) is
used to minimize multiple Coulomb scattering, ensuring good momentum resolution for low momentum
particles. The tracking acceptance is17◦ < θ < 150◦, where the laboratory polar angleθ is measured
with respect to the (negative of the) positron beam axis. TheSVD consists of double-sided silicon strip
detectors arranged in a barrel, covering 86% of the solid angle. Three layers at radii of 3.0, 4.5 and 6.0
cm surround the beam-pipe, a double-wall beryllium cylinder of 2.3 cm radius and 1 mm thickness. The
strip pitches are42µm in the thez (beam-axis) coordinate and25µm for the azimuthal coordinaterφ; in
each view, a pair of neighbouring strips is ganged together for readout. The impact parameter resolution
for reconstructed tracks is measured as a function of the track momentump (measured inGeV/c) to be
σxy = [19 ⊕ 50/(pβ sin3/2 θ)]µm andσz = [36 ⊕ 42/(pβ sin5/2 θ)]µm. The momentum resolution of
the combined tracking system isσpt/pt = (0.30/β ⊕ 0.19pt)%, wherept is the transverse momentum
in GeV/c.

The subdetectors used in kaon/pion separation are shown in Fig. 2.8: the CDC, a barrel arrange-
ment of time-of-flight counters (TOF), and an array of aerogel Cherenkov counters (ACC). The CDC
measures energy loss for charged particles with a resolution of σ(dE/dx) = 6.9% for minimum-ionizing
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Fig. 2.8: Half-section of the inner region of the Belle detector, showing the layout of the subdetectors used in kaon/pion

separation.

pions. The TOF consists of 128 plastic scintillators viewedon both ends by fine-mesh photo-multipliers
that operate stably in the 1.5 T magnetic field. Their time resolution is 95 ps (rms) for minimum-
ionizing particles, providing three standard deviation (3σ) K±/π± separation below 1.0 GeV/c, and 2σ
up to 1.5 GeV/c. The ACC consists of 1188 aerogel blocks with refractive indices between 1.01 and 1.03
(shown in the figure) depending on the polar angle. Fine-meshphoto-multipliers detect the Cherenkov
light: the effective number of photoelectrons is∼ 6 for β = 1 particles. Information from the three
subdetectors is combined into likelihoodsLK , Lπ etc.for various particle identification hypotheses, and
likelihood ratios such asRK/π = LK/(LK + Lπ) are used as discriminators. A typical selection with
RK/π > 0.6 retains about 90% of the charged kaons with a charged pion misidentification rate of about
6%.

Photons and other neutrals are reconstructed in a CsI(Tl) calorimeter consisting of 8736 crystal
blocks in a projective geometry, 16.1 radiation lengths deep, covering the same angular region as the
CDC. The energy resolution is 1.8% for photons above 3 GeV. Electron identification is based on a
combination ofdE/dx measurements in the CDC, the response of the ACC, the position and shape of
the electromagnetic shower, and the ratio of the cluster energy to the particle momentum. The electron
identification efficiency is determined from two-photone+e− → e+e−e+e− processes to be more than
90% forp > 1.0GeV/c. The hadron misidentification probability, determined using tagged pions from
inclusiveK0

S → π+π− decays, is below0.5%.

Outside the solenoid, the flux return is instrumented to provide aK0
L and muon detector (KLM).

The active volume consists of 14 layers of iron absorber (4.7cm thick) alternating with resistive plate
counters (RPCs), covering polar angles20◦ < θ < 155◦. The overall muon identification efficiency,
determined by using a two-photon processe+e− → e+e−µ+µ− and simulated muons embedded in
BB candidate events, is greater than 90% for tracks withp > 1GeV/c detected in the CDC. The
corresponding pion misidentification probability, determined usingK0

S → π+π− decays, is less than
2%.

The Belle trigger and event selection are essentially open for hadronic events, with over 99%
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efficiency forBB and somewhat less fore+e−→cc̄ and light-quark continuum processes. Analysis
of such events is performed using a common hadronic event skim; special provision is made to re-
tain events with aJ/ψ or ψ(2S) candidate but otherwise low multiplicity. Tau-pair and two-photon
(e+e−→e+e−γγ→e+e−X) events are studied using dedicated triggers and data skims.

154 fb−1 of data were taken in the configuration described above. An upgrade in summer 2003
replaced the SVD and the innermost drift-chamber layers with a four-layer silicon detector covering the
same range in polar angle as the CDC. The beam-pipe radius wasreduced to 1.5 cm and the inner SVD
layer to 2.0 cm, placing the first reconstructed hit of each track closer to the interaction point. Position
resolution is similar to that of the original SVD, with strippitches of75µm (z) and50µm (rφ); every
strip is read out. A further124 fb−1 has been collected in this configuration through the middle of June
2004. Possible future upgrades to the particle identification system, and further upgrades to the vertexing,
are currently under study.

4. p̄p charm factories†

4.1 E835

The E835 experiment was located in the Fermilab Antiproton Accumulator, where a stochastically cooled
(∆p/p ∼ 10−4) beam intersects an internal jet target of molecular hydrogen. Thep̄ beam was injected
in the Accumulator with an energy of 8.9 GeV and decelerated to the 3.7-6.4 GeV energy range, to
form the charmonium states. Stochastic cooling allowed to reduce RMS spreads on

√
s to less than 250

keV. The E835 experiment was the continuation of the E760 experiment, that took data in years 1990-
91, at a typical instantaneous luminosityL ∼ 0.5 · 1031. The E760/E835 detector, described in detail
in [12], was a non-magnetic cylindrical spectrometer with full azimuthal coverage and polar angle ac-
ceptance from 2 to 70 degrees in the lab frame. It consisted ofa lead-glass EM calorimeter divided into
a barrel and a forward section. The inner part of the barrel was instrumented with a multicell threshold
Čerenkov counter, triggering hodoscopes and charged tracking chambers. The plastic scintillator ho-
doscopes and thěCerenkov were used for triggering: pulse heights from thesedevices allow to identify
electrons/positrons and to distinguish them singly from electron-positron pairs due toγ conversions and
to π0 Dalitz decays.

The E835 detector was a major upgrade of the E760 detector:

• The variable target density allowed to keep a constant instantaneous luminosity (L ∼ 2 · 1031)
throughout each stack.

• In order to withstand the∼3 MHz interaction rate, all detector channels were instrumented with
multi-hit TDCs.

• The inner tracking detector, a proportional multiwire drift chamber, was replaced by an increased
number of straw tubes and scintillating fibers, which were used for measuring the polar angleθ
and providing trigger information based on this coordinate.

The calorimeter had an energy resolutionσE/E = 0.014 + 0.06/
√
E(GeV) and an angular

resolution (r.m.s.) of 11 mrad inφ and 6 mrad inθ. The angular resolution of the inner tracking system
was 11 mrad inφ, whereas inθ it varies from 3 mrad at small angles to 11 mrad at large angles, dominated
by size of the interaction region, and by multiple scattering at lower momenta.

Table 4.1 summarizes the data taken by the two experiments, subdivided in energy regions. Thehc
search region extends from 3523 to 3529 MeV/c2, i.e. 6 MeV/c2 around the center of gravity of P states
(located at 3525.3). Theηc(2S) was searched between 3575 and 3660 MeV/c2. Experiment E835 took
data in 1996-7 (phase I) and 2000 (phase II). During the long shutdown between the two runs, substantial
changes in the Antiproton Source allowed to smoothly scan theχc0 region but prevented to take new data
down toJ/ψ andηc energies.

†Author: R. Mussa
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Fig. 2.9: The E835 detector in year 2000.

5. Experiments at LEP†

At four of the eight straight sections of the LEPe+e−-collider at CERN [13] four collaborations have
installed their detectors: ALEPH [14], DELPHI [15], L3 [16], and OPAL [17]. The design of the detec-
tors is guided by the physics of interest. The detectors consist of several subdetectors each dedicated to
special aspects of the final state under investigation.

The main physics goal at LEP is the test of the Standard Model.The mass and width of theZ
boson are being measured to a high precision. The couplings of the leptons and quarks toγ/Z are in-
vestigated. Special emphasis is put on the study ofτ -decays. Theτ -polarization gives a good insight
into the couplings. The high production probability of the heavy flavours, charm and bottom, allows
for investigations of effects, such as branching ratios, hadron masses, time dependent mixing etc. Indi-
rect information on the top mass is extracted and the influence from the Higgs mass is studied. Direct
Higgs-search is one of the most important topics in the new physics area. Supersymmetric particles, if
they exist in the accessible range, should not be able to escape detection. The strong interaction, with
confinement and asymptotic freedom still not understood, isto be investigated. The perturbative part
(e.g,αs-determination) and the non-perturbative part, fragmentation and particle production, guided the
design of the detectors as well.

In addition, the general features of the detectors have to keep the systematic uncertainties for their
measurements very small to profit from the excellent energy calibration of LEP and to efficiently use the
high event statistics.

All LEP detectors have therefore in common, a good hermiticity as well as a good efficiency. The
total (hadronic) energy has to be measured as completely as possible. The total absorption guarantees
that all particles except neutrinos are seen. Muons also deposit only a small fraction of their energy, but
are detected in special muon chambers and by their characteristic signature in the hadron calorimeter.
Care for efficient detection and identification of leptons istaken. In general particle identification is
provided. Good two-track resolution is possible inside jets of hadrons; energy loss measurements on

†Authors: A. Böhrer, M. Kienzle
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State Decay Channels E760 E835-I E835-II
ηc γγ 2.76 17.7 -
J/ψ e+e− 0.63 1.69 -
χc0 J/ψγ, γγ, 2π0, 2η - 2.57 32.8
χc1 J/ψγ 1.03 7.26 6.3
hc(1P ) search J/ψπ0, ηcγ 15.9 46.9 50.5
χc2 J/ψγ, γγ 1.16 12.4 1.1
ηc(2S) search γγ 6.36 35.0 -
ψ ′ e+e−, χcJγ, J/ψπ0,

J/ψπ+π−, J/ψπ0π0, J/ψη 1.47 11.8 15.0
above J/ψ+X - 2.6 7.5

Table 2.5: Integrated luminositiesLdt (in pb−1) taken by E760, E835-I, E835-II

more than hundred samplings, high granularity of the calorimeters are needed. High precision tracking
and vertexing of secondary vertices guaranties good detection and momentum resolution for charged
particles, even in the case when they do not come from the primary interaction point.

The trigger system ensures that all events of interest are seen with low background. The triggers
of the four LEP detectors have a high redundancy. For example, hadronic events are found when the en-
ergy exceeds a few GeV in the electromagnetic calorimeter (total energy trigger), or two tracks are seen
together with energy deposition in the hadron calorimeter,which exceeds the energy expected for a min-
imum ionizing particle (µ-trigger). The efficiency for hadronic events is≥ 99.99% with an uncertainty
of 0.01%.

These requirements lead to four LEP detector designs with a similar general outline, while the
detectors differ in their details (see Table 2.6, [18]). Thedetectors show a cylindrical symmetry around
the beam pipe. In the forward direction, calorimeters are installed for the measurement of the luminosity
with high precision. The main body has closest to the beam pipe a vertex detector mounted, with pre-
cision measurements of the hits from tracks crossing; a general tracking system, which may consist of
separate tracking devices; an electromagnetic calorimeter for measuring electrons and photons; a coil of
a magnet in order to bend charged particles for the momentum measurement in the tracking devices; a
hadron calorimeter for hadronic showers absorbing strong interacting particle, but passed by muons; the
latter are detected in the muon chambers, surrounding the experiments.

In the following all four detectors will be described. The ALEPH detector will be presented
in some detail. For the other three detectors, special aspects relevant for the subject of this paper are
discussed.

5.1 ALEPH detector

The ALEPH detector (Figure 2.10) [14] shows the typical cylindrical symmetry around the beam pipe.
The interaction point of the electron and positron beams is at the centre of the detector. The tracking
chambers and the electromagnetic calorimeter are immersedin a solenoidal magnetic field of1.5T
produced by the superconducting coil (with a length of6.4m and a diameter of5.3m). Outside the coil
the hadron calorimeter is used as return yoke.

The beam pipe inside ALEPH, with a length of5.5m extends between the two ‘low-β’ quadrupo-
les, which focuses the electron and positron beams onto the interaction point. The tube is made of1.5
mm thick aluminium, with an inner diameter of106mm. The central part (760mm length), however, is
made of beryllium,1.1mm thick.

Closest to the interaction point, the silicon vertex detector (VDET) is installed. It consists of
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ALEPH DELPHI L3 OPAL
B-field 1.5T 1.2T 0.5T 0.435T
Si VTX 2 layers 3 layers 2 layers 2 layers

Rφz Rφz Rφz Rφz
r=0.1m 12µ, 12µ 9µ, 7.6µ 5µ, 13µ

inner tr. 8pts,150µ,5cm 24pts,100µ TEC+z.chb 159pts
r=0.3m drift ch. jet ch.Rφ 135µ,6cm
main tr. TPC, 1atm TPC, 1atm 37 pts, 30 to 70µ JET 4 atm
detector
dE/dx 4.6% 5.5% BGO e-m cal 3.5%

4% at 200 MeV
r=1.1m RICH,1cmC6F14 HCAL 60 U plates

gas C5F12 55%/
√
E

r=1.8 ECAL 21.5X0 OD 5pts,150µ filter 1λ,5pts z chb 6x300µ
18%/

√
E,3sp HPC 18X0 support pipe coil 1.7X0

r=2.2 coil 1.6X0 33%/
√
E,9sp muon chb lead glass 20X0

coil 2X0 3sets 5%/
√
E

r=2.9 HCAL 1.2mFe HCAL 1.2mFe lever arm2.7m HCAL 1mFe
muon chb muon chb muon chb
2 layers 2 layers 4 layers

r=5.7 lever arm 0.5m lever arm .3/.6m coil lever arm .7m

Lumi. calorimeter calorimeter wire ch. calorimeter
forward tungsten/silicon lead/scint. BGO+prop. tube ch.

24-58mrad 29-185mrad 25-70mrad 58-120mrad

Table 2.6: Characteristics of the four LEP experiments [14]- [18].

Fig. 2.10: ALEPH detector [14].
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two concentric rings with average radius6.5 cm and11.3 cm. The inner layers has 9 silicon wafers in
azimuth, the outer layer has 15 wafers; both layers are four wafers (5.12 × 5.12 × 0.03 cm3) long in
z-direction. The arrangement in azimuth is such that the wafers overlap by5%. This allows an internal
relative alignment with tracks passing through adjacent wafers. The point resolution in ther − φ and
r − z view is12µm. The hit association of VDET hits to tracks extrapolated from the TPC is found by
Monte Carlo to be98% for tracks in hadronic events with two vertex hits in the acceptance of the vertex
detector:|cos θ| < 0.85.

Around the vertex detector the inner tracking chamber (ITC)is built with the same polar geomet-
rical acceptance as the vertex detector. This conventionalcylindrical drift chamber is filled with80%
argon and20% carbon dioxide with ethanol. The chamber provides eight measurements inr − φ in
a radial range between16 cm and26 cm, with the wires stretched inz-direction and arranged in eight
concentric layers of hexagonal drift cells. Inr − φ the position of hits is measured to150µm; in z the
position is obtained by the measurements of the difference of the arrival time of the pulses at both ends
of the2m long wires. The precision reached is5 cm. However, only ther − φ measurements are used
for the tracking; the information ofz can be used for track association with the tracks reconstructed in
the TPC. An important aspect of the ITC is that it is the only tracker used for the trigger.

The time projection chamber (TPC) serves as the main tracking chamber in ALEPH. In a volume
extending in radius from0.3m to 1.8m, with a length of4.4m up to 21 space points are measured. The
ionization charge is recorded in proportional wire chambers at both ends of the drift volume, reading out
cathode pads arranged in 21 concentric circles; up to 338dE/dx samples are used for particle identifi-
cation. Thez coordinate of the hits in the TPC is calculated from the drifttime of the electrons collected.
For this, the magnet field, electric field both pointing in horizontal direction (and their distortions), and
the drift velocity must be known perfectly. These quantities are determined from a measured magnetic
field map, by laser calibration and study of reconstructed tracks and their vertices. The resolution is
found inr − φ as173µm and inz as740µm.

In hadronic events,98.6% of the tracks are reconstructed, when they cross at least four out of 21
pad rows,|cos θ| < 0.966. The momentum resolution has been determined with di-muon events. The
transverse momentum resolutionσ(1/pt) is 1.2× 10−3 (pt in GeV/c) for the TPC alone; including ITC
an VDET the resolution isσ(pt)/pt = 0.0006 · pt ⊕ 0.005 (pt in GeV/c); ⊕ implies that the two errors
are added in quadrature.

The TPC is surrounded by the electromagnetic calorimeter (ECAL), which consists of a barrel
part and two endcaps, in order to measure electromagnetic energy in an angular range|cos θ| < 0.98.
With its fine segmentation in projective towers of approximately 3 cm by 3 cm, i.e. 0.9◦ by 0.9◦, the
angular resolution isσθ,φ = 2.5/

√
E + 0.25 (E in GeV; σθ,φ in mrad). The towers are read out in three

segments in depth called storeys of 4, 9, and 9 radiation lengths. This lead-proportional tube chamber
has an energy resolution for electromagnetic showers ofσE/E = 0.18/

√
E + 0.009 (E in GeV).

The outer shell used as return yoke, is the hadron calorimeter (HCAL). It is made from iron plates
of 5 cm thickness, interleaved with 22 layers of plastic streamer tubes and one layer of tubes in front.
The towers are arranged in projective direction to the primary vertex with a solid angle of3.7◦ by 3.7◦,
corresponding to4 × 4 of the electromagnetic calorimeter towers. Both the cathode pads defining the
towers (pads of different tubes forming one tower are connected galvanically within one storey) and
wires in the1 cm wide tubes are read out. The latter are used for muon identification and as a trigger.
The energy resolution can be parameterizedσE/E = 0.85/

√
E (E in GeV). In addition, two double

layers of streamer tubes are installed around the hadron calorimeter outside the magnetic field and serve
as muon detectors.
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Fig. 2.11: DELPHI detector [15].

5.2 DELPHI detector

The layout of the DELPHI detector [15] is shown in Fig.2.11. The subdetectors are arranged in a cylinder
symmetrical arrangement with only the hadron calorimeter and the muon chambers being outside the
superconducting coil. The vertex detector closest to the beam pipe is made of silicon wafers. It provides
measurements in three layers with information in bothz- andr − φ-direction. The single hit resolution
is found to be9µm and7.6µm. The vertex detector is surrounded by the inner detector (ID) of a jet-
chamber geometry with five multi wire proportional chambers(MWPC) layers. The main tracking device
is a Time Projection Chamber (TPC) measuring up to 16 space points per track. Together with the outer
detector (OD) with 5 layers of drift tubes the four tracking chambers provide a momentum resolution of
σ(p)/p = 0.0006 · p (p in GeV/c).

A specialty of the DELPHI detector is the Ring Imaging Cherenkov detector (RICH) enclosed by
the outer detector. The particle identification in the RICH complements the identification withdE/dx in
the TPC. The DELPHI collaboration has chosen to use a gas and aliquid RICH (C5F12 and C6F14), hav-
ing two different refractive indices. While thedE/dx measurement is most powerful in the momentum
range below1GeV/c, the liquid radiator allows for particle identification from 0.7GeV/c to 8GeV/c
and the gaseous radiator from2.5GeV/c to 25GeV/c, with angular resolution between1.2mrad and
5.2mrad.

The high density projection chamber (HPC) consists of layers of TPCs, which are separated by
lead wires. These wires separate the drift cells and providethe drift field, but also serve as converter
material for the electromagnetically interacting particles. The energy deposits on the pads are monitored
with π0’s, where one decay photon converted in the materialin front of the HPC and the momentum is
precisely measured: with theπ0 mass as a constraint, the energy resolution is measured toσ(E)/E =
0.33/

√
E ⊕ 0.043 (E in GeV).

Outside the magnet coil a layer of scintillators is installed, mainly for trigger purposes. The hadron
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calorimeter (HCAL) made from iron interleaved with limitedstreamer tubes, serves as return yoke and
muon filter, as well. Muon identification is supported by additional muon chambers. The resolution of
the HCAL isσ(E)/E = 1.12/

√
E ⊕ 0.21 (E in GeV).

5.3 L3 detector

Fig. 2.12: L3 detector [16].

The subdetectors in the detector of the L3 collaboration (Fig.2.12) [16] are mounted inside a
support tube with a diameter of4.45m with the exception of the muon detection system. The muon
chambers are only surrounded by a very large low field air magnet (0.5T). The coil has an inner diameter
of 11.9m. The size of the magnet allows a long lever arm for the muon momentum measurement. This
requires a high precision alignment and monitoring of thesechambers.

The tracking system consists of a silicon vertex detector and a central track detector. The latter is
a Time Expansion Chamber (TEC) providing 37 points on standard wires for ther− φ measurement; in
addition 14 wires resolving left-right ambiguities. Thez coordinate is measured on 11 wires by charge
division. The surrounding two cylindrical proportional chambers are designed to provide a goodz-
measurement. With a total lever arm of0.32m the momentum resolution isσ(pt)/p

2
t = 0.0206±0.0006

(pt in GeV/c).

Muons ine+e− → µ+µ− are measured with the high precision ofσ(p)/p ≈ 2.5%, with the long
lever arm to the muon chambers. Apart from the muon detection, special emphasis was put on a high
precision measurement for electromagnetic showers. They are measured in a crystal calorimeter read
out by photomultipliers. The crystals of bismuth germaniumoxide (BGO) have a shape of a truncated
pyramid,24 cm long and of2× 2 cm2 at the inner and3× 3 cm2 at the outer end. The energy resolution
varies from5% at100MeV to 1.4% at high energy.

A layer of scintillation counters is used for time-of-flightmeasurement. Besides its trigger task,
it efficiently rejects cosmic shower events. A uranium calorimeter with proportional wire chambers
measures hadronic showers and absorbs most particles except muons. Around this calorimeter a muon
filter is mounted, made of brass plates interleaved with five layers of proportional tubes.

5.4 OPAL detector

The OPAL detector (Fig.2.13) [17] comprises a tracking system inside a solenoidal magnet of0.435T,
which consists of a vertex detector a jet-chamber and az-chamber. The new vertex detector of OPAL
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Fig. 2.13: OPAL detector [17].

with two concentric layers of silicon wafers is placed at radii of 6.1 cm and 7.5 cm. The single hit
resolution inr − φ is 5µm, in z 13µm. The main tracking with the jet-chamber provides up to 159
space points (σrφ = 135µm, σz = 6cm) per track. It allows good particle identification with the energy
ionization lossdE/dx. Thez-direction of tracks is substantially improved with information from the
z-chambers, which are made of modules of drift chambers with 6staggered anodes strung inφ-direction.
The momentum resolution is measured toσp/p2 = 0.0022GeV−1 .

A time-of-flight system, consisting of scintillation counters, allows particle identification in the
momentum range from0.6GeV/c to 2.5GeV/c. It is used for triggering and for cosmic shower rejec-
tion.

Electromagnetic showers are measured with an assembly of lead glass blocks, with10 × 10 cm2

and37 cm in depth, read out with photomultipliers. The energy resolution is aboutσ(E)/E = 0.05/
√
E

(E in GeV), when combined with a presampler mounted in front of the calorimeter. Hadrons are mea-
sured with nine chambers, limited streamer tubes, interleaved with eight layers of iron plates, where
the hadrons may shower. Muons are detected in addition in four layers of drift chambers, the muon
chambers.
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6. Experiments at hadron colliders

6.1 CDF in Run II †

The CDF Run II detector [19], in operation since 2001, is an azimuthally and forward-backward sym-
metric apparatus designed to studypp̄ collisions at the Tevatron. It is a general purpose solenoidal
detector which combines precision charged particle tracking with fast projective calorimetry and fine
grained muon detection. The detector is shown in a solid cutaway view in figure X. Tracking systems
are contained in a superconducting solenoid, 1.5 m in radiusand 4.8 m in length, which generates a 1.4
T magnetic field parallel to the beam axis. Calorimetry and muon systems are all outside the solenoid.
The main features of the detector systems are summarized below.

The tracking system consists of a silicon microstrip system[20] and of an open-cell wire drift
chamber [21] that surrounds the silicon. The silicon microstrip detector consists of seven layers (eight
layers for1.0 < |η| < 2.0) in a barrel geometry that extends from a radius ofr = 1.5 cm from the beam
line to r = 28 cm. The layer closest to the beam pipe is a radiation-hard, single sided detector called
Layer 00 which employs LHC designs for sensors supporting high-bias voltages. This enables signal-
to-noise performance even after extreme radiation doses. The remaining seven layers are radiation-hard,
double sided detectors. The first five layers after Layer 00 comprise the SVXII system and the two outer
layers comprise the ISL system. This entire system allows track reconstruction in three dimensions. The
impact parameter resolution of the combination of SVXII andISL is 40µm including a 30µm contri-
bution from the beamline. Thez0 resolution of the SVXII and ISL is 70µm. The 3.1 m long cylindrical
drift chamber (COT) covers the radial range from 40 to 137 cm and provides 96 measurement layers,
organized into alternating axial and±2◦ stereo superlayers. The COT provides coverage for|η| ≤1.
The hit position resolution is approximately 140µm and the momentum resolutionσ(pT )/p2

T =0.0015
(GeV/c)−1. The COT provides in additiondE/dx information for the tracks.

A Time-of-Flight (TOF) detector [22], based on plastic scintillators and fine-mesh photomultipli-
ers is installed in a few centimeters clearance just outsidethe COT. The TOF resolution is≈ 100 ps and
it provides at least two standard deviation separation betweenK± andπ± for momentap < 1.6 GeV/c.

Segmented electromagnetic and hadronic sampling calorimeters surround the tracking system and
measure the energy flow of interacting particles in the pseudo-rapidity range|η| < 3.64. The central
calorimeters (and the endwall hadronic calorimeter) coverthe pseudorapidity range|η| < 1.1(1.3). The
central electromagnetic calorimeter [23] (CEM) uses lead sheets interspersed with polystyrene scintilla-
tor as the active medium and employs phototube readout. Its energy resolution is13.5%/

√
ET⊕2%. The

central hadronic calorimeter [24] (CHA) uses steel absorber interspersed with acrylic scintillator as the
active medium. Its energy resolution is75%/

√
ET⊕3%. The plug calorimeters cover the pseudorapidity

region 1.1< |η| < 3.64. They are sampling scintillator calorimeters which are read out with plastic fibers
and phototubes. The energy resolution of the plug electromagnetic calorimeter [25] is16%/

√
E ⊕ 1%.

The energy resolution of the plug hadronic calorimeter is74%/
√
E ⊕ 4%.

The muon system resides beyond the calorimetry. Four layersof planar drift chambers (CMU)
detect muons withpT > 1.4 GeV/c which penetrate the five absorption lengths of calorimeter steel. An
additional four layers of planar drift chambers (CMP) instrument 0.6 m of steel outside the magnet return
yoke and detect muons withpT > 2.0 GeV/c. The CMU and CMP chambers each provide coverage in
the pseudo-rapidity range|η| < 0.6. The Intermediate MUon detectors (IMU) are covering the region
1.0< |η| <1.5.

The beam luminosity is determined by using gas Cherenkov counters located in the3.7 < |η| <
4.7 region which measure the average number of inelasticpp̄ collisions per bunch crossing [26].

The trigger and data acquisition systems are designed to accommodate the high rates and large
data volume of Run II. Based on preliminary information fromtracking, calorimetry, and muon systems,
the output of the first level of the trigger is used to limit therate for accepted events to≈ 18 kHz at

†Author: V. Papadimitriou
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the luminosity range of 3-7 1031 cm−2s−1. At the next trigger stage, with more refined information
and additional tracking information from the silicon detector, the rate is reduced further to≈ 300 Hz.
The third and final level of the trigger, with access to the complete event information, uses software
algorithms and a computing farm, and reduces the output rateto≈ 75 Hz, which is written to permanent
storage.

The CDF Run I and Run 0 detector, which operated in the time period 1987-1996, is described
elsewhere [27]. Major differences for Run II include: the replacement of the central tracking system; the
replacement of a gas sampling calorimeter in the plug-forward region with a scintillating tile calorimeter;
preshower detectors; extension of the muon coverage, a TOF detector and upgrades of trigger, readout
electronics, and data acquisition systems.

6.2 DO detector in Run II †

The DO Run II detector, in operation since 2001, is made of thefollowing main elements. The central
tracking system consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both lo-
cated within a 2 T superconducting solenoidal magnet [28]. The SMT has≈ 800, 000 individual strips,
with typical pitch of50−80 µm, and a design optimized for tracking and vertexing capability at |η| < 3.
The system has a six-barrel longitudinal structure, each with a set of four layers arranged axially around
the beam pipe, and interspersed with 16 radial disks. The CFThas eight thin coaxial barrels, each sup-
porting two doublets of overlapping scintillating fibers of0.835 mm diameter, one doublet being parallel
to the collision axis, and the other alternating by±3◦ relative to the axis. Light signals are transferred
via clear light fibers to solid-state photon counters (VLPC)that have≈ 80% quantum efficiency.

Central and forward preshower detectors located just outside of the superconducting coil (in front
of the calorimetry) are constructed of several layers of extruded triangular scintillator strips that are
read out using wavelength-shifting fibers and VLPCs. The next layer of detection involves three liquid-
argon/uranium calorimeters: a central section (CC) covering |η| up to≈ 1, and two end calorimeters
(EC) extending coverage to|η| ≈ 4, all housed in separate cryostats [29]. In addition to the preshower
detectors, scintillators between the CC and EC cryostats provide sampling of developing showers at
1.1 < |η| < 1.4.

The muon system resides beyond the calorimetry, and consists of a layer of tracking detectors
and scintillation trigger counters before 1.8 T toroids, followed by two more similar layers after the
toroids. Tracking at|η| < 1 relies on 10 cm wide drift tubes [29], while 1 cm mini drift tubes are used at
1 < |η| < 2.

Luminosity is measured using plastic scintillator arrays located in front of the EC cryostats, cov-
ering2.7 < |η| < 4.4. A forward-proton detector, situated in the Tevatron tunnel on either side of the
interaction region, consists of a total of 18 Roman pots usedfor measuring high-momentum charged-
particle trajectories close to the incident beam directions.

The trigger and data acquisition systems are designed to accommodate the large luminosity of Run
II. Based on preliminary information from tracking, calorimetry, and muon systems, the output of the
first level of the trigger is used to limit the rate for accepted events to≈ 1.5 kHz. At the next trigger
stage, with more refined information, the rate is reduced further to≈ 800 Hz. The third and final level
of the trigger, with access to the complete event information, uses software algorithms and a computing
farm, and reduces the output rate to≈ 50 Hz, which is written to permanent storage.

The DO Run I detector is described elsewhere [29]. Major differences for Run II include: the
replacement of the central tracking system, optimized for the absence of a central magnetic field, by a
magnetic tracking system; preshower detectors; and upgrades of trigger, readout electronics, and data
acquisition systems.

†Author: Arnd Meyer
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7. Experiments at HERA†

The electron positron storage ring HERA (Fig. 2.14) at the DESY laboratory in Hamburg collides 27.5
GeV electrons or positrons with 920 GeV protons2. The storage ring has a circumference of6.4 km and
consists of two separate accelerators with a maximum of 180 colliding bunches each, providing a bunch
crossing rate of 10 MHz. Four experiments are situated at HERA. The two collider experiments H1 and
ZEUS have been in operation since 1992. In 1995 the HERMES experiment started data taking using
the polarized electron beam on a fixed polarized gas target [30]. The HERA-B proton proton fixed target
experiment was operated between 1998 and 2003. HERA-B makesuse of the proton beam halo using a
wire target and is described in subsection 7.3.

Fig. 2.14: The HERA collider with the four experiments H1, ZEUS, HERMES and HERA–B on the left and its pre-accelerators

on the right.

The H1 and ZEUS detectors are typical multi-purpose collider experiments. A schematic view of
the ZEUS detector is shown in figure 2.15. The physics programs comprise the full spectrum of QCD
studies, measurements of the proton structure functions and exclusive hadronic final states, as well as
electroweak physics and searches for new physics phenomena[31]. With anep center-of-mass energy
of 320 GeV the HERA collider experiments H1 and ZEUS are closeto the present energy frontier for
accelerator based experiments. Only the Tevatron experiments CDF and D0 (described in section 6.)
have access to higher center-of-mass energies. Events in deep inelasticep scattering have been measured
down to values ofx as low as∼ 10−6 and up to values ofQ2 of 30, 000 GeV2. In QCD, measure-
ments of exclusive final states comprise jet physics, heavy flavour production, processes in hard and soft
diffraction and hadron spectroscopy.

In the years between 1992 and 2000 the collider experiments H1 and ZEUS collected an integrated
luminosity of 100 pb−1 each. The bulk data were taken in the years 1996 through 2000.In the years
2001/2 a major luminosity upgrade was put in place. The interaction points were equipped with new
focusing magnets which allow for substantially increased specific luminosities. Since 2003/4 the HERA
collider is running and an integrated luminosity of 700 pb−1 is expected to be produced for each of the
two experiments [32].

The designs of the H1 and ZEUS detectors were chosen to be somewhat complementary, with
emphasis on the reconstruction of the scattered electron inthe case of H1 and on the precise calori-
metric measurement of the hadronic final states in the case ofZEUS. Both experiments are capable of

†Author: Andreas B. Meyer
2Until 1998 the proton energy was 820 GeV.
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Fig. 2.15: Schematic view of the ZEUS Detector.

the triggering and reconstruction of charmonium and bottomonium events down to very low transverse
momentapt,ψ ∼ 0. A candidate charmonium event is displayed in figure 2.16. Inthe following the ex-
periments are described in detail, emphasizing those components that are most relevant for the triggering
and reconstruction of quarkonium events with two decay leptons in the final state.

7.1 H1

The design of the 2800 ton H1 detector [33], schematically shown in Fig. 2.16, emphasizes charged
particle tracking in the central region as well as high calorimetric resolution for electromagnetic energy
depositions.

The primary components of the H1 tracking system are two coaxial cylindrical jet–type drift cham-
bers (CJC) covering the polar angle region between 15◦ and 165◦. The two chambers consist of 30 (60)
drift cells respectively with 24 (32) sense wires strung parallel to the beam axis. The sense wires are read
out at both ends, and thez-coordinate is measured by charge division with a resolution of σz = 22mm.
The spatial resolution of the CJC in therϕ plane isσrϕ = 170µm. The momentum resolution in
the coordinate transverse to the 1.2 Tesla solenoidal field of σ(pT )/pT = 0.01 pT [GeV] ⊕ 0.015. The
magnetic field is produced by a 5–m–long superconducting solenoid of 5.8 m in diameter which encloses
the calorimeter. Two further inner drift chambers and two multiwire proportional chambers (MWPC),
serve to measure the longitudinal track coordinates and to provide trigger information. The Forward
Tracking Detectors cover a polar angular range between5◦ and30◦. The system consists of three super-
modules composed of three planar drift chambers, a multiwire proportional chamber, a transition radiator
and a radial drift chamber. The MWPCs serve for trigger purposes and complement the polar angular
coverage of the central proportional chambers.

The H1 main calorimeter employs a fine-grain liquid argon (LAr) sandwich structure in the bar-
rel and forward (proton-beam) region (with angular range from 4◦ to 155◦ in polar angle). In the
backward region (with angular range from 155◦ to 177.5◦) a lead/scintillating–fiber calorimeter [34]
provides an excellent energy resolution ofσ(E)/E = 0.07/

√
E[GeV] ⊕ 0.01, and a time resolution

better than 1 ns. The electromagnetic section of the liquid argon calorimeter uses lead plates as ab-
sorber material. In the hadronic section (which provide a depth of 4 to 6 nuclear interaction lengths)
steel plates are used. Both sections are segmented transversely in cells of4 × 4 cm2 in cross section
and are further segmented in longitudinal shower direction. In total there are 31,000 electromagnetic and
14,000 hadronic readout channels. The electromagnetic LArcalorimeter achieves an energy resolution of
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Fig. 2.16: Display of a charmonium event candidate in the H1 Detector.

σ(E)/E = 0.12/
√
E[GeV] ⊕ 0.01. The high degree of segmentation allows for a distinction between

hadronic and electromagnetic energy depositions in the offline reconstruction, resulting in a hadronic
energy resolution ofσ(E)/E = 0.55/

√
E[GeV] ⊕ 0.01.

Muons are identified as minimum ionizing particles in both the calorimeters and in the magnetic
field iron return yoke surrounding the magnetic coil. The iron system is instrumented with 16 layers
of limited–streamer tubes of 1 cm2 cell size. Altogether the muon system consists of 100k channels.
Up to five out of 16 layers are used for triggering. In order to provide a two-dimensional measurement
five of the 16 layers are equipped in addition with strip electrodes glued perpendicular to the sense wire
direction.

The H1 trigger and readout system consists of four levels of hardware and software filtering. The
triggering of charmonium event candidates relies on track pattern recognition in the central jet chambers
and timing information in the MWPC. For the detection of the scattered electron calorimeter triggers are
used. For the muon decay channel coincidences of hits in the same sector of the instrumented iron (in
different layers) are required at the first trigger level.

7.2 ZEUS

The ZEUS detector [35, 36] makes use of a 700–ton compensating uranium sampling calorimeter, with
equal sampling fractions for electromagnetic and hadronicshower components. The calorimeter is made
up of layers of 2.6 mm SCSN–38 scintillator and 3.3 mm stainless–steel–clad depleted-uranium plates.
One layer corresponds to 1.0 radiation length (X0) and0.04 interaction lengths. This choice of layer
thicknesses results in a sampling fraction of4% for electromagnetic and hadronic shower components,
and hence compensation, and7% for minimum–ionizing particles. The compensation resultsin a very
good hadronic energy resolution ofσ(E)/E = 0.35/

√
E[GeV] ⊕ 0.02. The resolution for electro-

magnetic showers isσ(E)/E = 0.18/
√
E[GeV] ⊕ 0.01.

The ZEUS solenoidal coil of diameter 1.9 m and length 2.6 m provides a 1.43 T magnetic field
for the charged–particle tracking volume. The tracking system consists of a central wire chamber cov-
ering the polar angular region from 15◦ to 164◦ , a forward planar tracking detector from 8◦ to 28◦ and
a second planar tracking chamber in the backward direction,covering the region from 158◦ to 170◦.
The momentum resolution attained isσ(pT )/pT = 0.005 pT ⊕ 0.015 and a track is extrapolated to the
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calorimeter face with a transverse resolution of about 3 mm.Ionization measurements from the central
tracking chamber also serve to identify electron–positronpairs fromJ/ψ decays.

The muon system is constructed of limited streamer tubes inside and outside of the magnetic
return yoke, covering the region in polar angle from 10◦ to 171◦. Hits in the inner chambers provide
muon triggers forJ/ψ decays.

The ZEUS trigger algorithm is primarily calorimeter–based, exploiting the excellent time resolu-
tion of the calorimeter, while that of H1 emphasizes tracking algorithms for reconstruction of the inter-
action vertex. The shaping, sampling, and pipelining algorithm of the readout developed for the ZEUS
calorimeter and used in modified form for the silicon and presampler systems permits the reconstruction
of shower times with respect to the bunch crossings with a resolution of better than 1 ns, providing es-
sential rejection against upstream beam–gas interactions, as well as allowing 5µs for the calculations
of the calorimeter trigger processor. For the triggering ofthe charmonium production channels a muon
track candidate in the central drift chamber with one or morehits in the muon chambers can be validated
by energy in the calorimeter above a threshold of 460 MeV.

7.3 HERA-B

The fixed target experiment HERA-B is located at the HERA storage ring at DESY (see section 7.), The
data taking took place in the years between 2000 and 2003. At HERA-B, wire targets are inserted into
the halo of the 920 GeV HERA proton beam to spawn inelasticpA collisions in which charmonium and
other heavy flavour states are produced. ThepN (N = p, n) center-of-mass energy is

√
s = 41.6 GeV.

A side view of the HERA-B spectrometer is shown in figure 2.17.A detailed description of the apparatus
is given in Ref. [37–39].

The wire target [40] consists of two wire stations, each containing four target wires of different
materials. A servo system automatically steers the target wires during the data taking in order to maintain
a constant interaction rate. The spectrometer has a geometrical coverage from 15 mrad to 220 mrad in
the horizontal plane and from 15 mrad to 160 mrad in the vertical plane. The instrumentation emphasises
vertexing, tracking and particle identification. The silicon vertex detector system [41] is realized by a
system of 20 Roman pots containing seven planar stations (four stereo views) of double-sided silicon
micro-strip detectors which are operated in a vacuum vesselat 10 to 15 mm distance from the proton
beam. An additional station is mounted immediately behind the 3 mm thick Aluminium window of the
vacuum vessel. The tracker is divided into a fine grained inner tracker using micro-strip gas chambers
with gas electron multipliers and a large area outer trackerconsisting of honeycomb drift cells with wire
pitches between 5 mm near and 10 mm [42–44]. Particle identification is performed by a Ring Imaging
Cherenkov hodoscope [45, 46], an electromagnetic calorimeter [47] and a muon detector [48, 49]. The
calorimeter is divided into three radial parts with decreasing granularities. The muon system consists
of four tracking stations. It is built from gas-pixel chambers in the radially innermost region and from
proportional tube chambers, some with segmented cathodes (pads), everywhere else.

The detector components used for charmonium analyses include the tracking and vertex detectors,
the calorimeter and the muon system. A complex trigger and read-out chain [50] allows for a reduction
of an initial interaction rate of several MHz to a final outputrate of order 100 Hz. A dedicatedJ/ψ-
trigger is based on the selection ofµ+µ− and e+e− pairs and subsequent reconstruction of invariant
masses.
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Fig. 2.17: Side view of the HERA-B Spectrometer.

8. Appendices

8.1 Resonant depolarization for absolute mass measurements†

Electrons and positrons in storage rings can become polarized due to emission of synchrotron radiation
according to the Sokolov-Ternov effect [54]. The spins of the polarized electrons precess around the
vertical guiding magnetic field with the precession frequency Ω, which in the plane orbit approximation
is directly related to the particle energyE and the beam revolution frequencyω:

Ω/ω = 1 + γ · µ′/µ0 = 1 + ν , (2.1)

whereγ = E/me,me is the electron mass,µ′ andµ0 are the anomalous and normal parts of the electron
magnetic moment. Theν is a spin tune, which represents the spin precession frequency in the coordinate
basis related to the particle velocity vector.

The precession frequency can be determined using theresonant depolarization. To this end one
needs a polarized beam in the storage ring which is affected by the external electromagnetic field with
the frequencyΩD given by the relation

Ω ± ΩD = ω · n (2.2)

with any integern (for VEPP-4M in theJ/ψ(1S) regionn = 3).

The precession frequency is measured at the moment of the polarization destruction detected by
thepolarimeter, while thedepolarizerfrequency is being scanned. The process of forced depolarization
is relatively slow compared to the period of the synchrotronoscillations of the particle energy. This
allows to determine the average spin tune〈ν〉 and corresponding average energy of the particles〈E〉
with higher accuracy than the beam energy spreadσE.

Formula (2.1) gives the value ofγ averaged over the beam revolution time. Thus, for a symmetric
machine, it corresponds to the energy in the interaction point.

The method described has been developed in Novosibirsk and first applied to theφ meson mass
measurement at the VEPP-2M storage ring [55]. Later it was successfully used to measure masses of
theψ- [51] andΥ-meson family [56–58], see also Ref. [59], in which the values of the masses were
rescaled to take into account the change of the electron massvalue. The relative mass accuracy achieved

†Author: S. Eidelman
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in these experiments was1 · 10−5 for theΥ-family and3 · 10−5 for theψ-family. The resonant depolar-
ization experiments on bottomonium masses were also performed with the CUSB detector at CESR [60]
(Υ(1S)) and with the ARGUS detector at DORIS [61] (Υ(2S)). The accuracy of theJ/ψ(1S) meson
mass measurement was improved in the Fermilabpp̄-experiment E760 [62] to1.2 ·10−5 using theψ(2S)
mass value from Ref. [51]. The resonant depolarization method was also successfully applied to the high
precision measurement of the Z-boson mass at LEP [63]. The comprehensive review of this technique
and its application to particle mass measurements can be found in [64].

8.2 e+e- scanning, radiative corrections†

8.21 Introduction

The measurement of the mass and total width of1−− resonances bye+e− colliding experiments is done
by scanning the resonance curve and fitting the data with the theoretical cross section as a function of
these parameters. Thee+e− partial width is also determined from this fitting, i.e.Γee is measured as the
coupling of the resonance to the incominge+e−, instead of decaying process; while most other decay
modes are measured as branching ratios by dividing the number of the observed events decaying into this
mode by the total number of resonance events. Such fitting requires precise calculation of initial state
radiative corrections. This is done by the structure function approach [69–71]. It yields the accuracy of
0.1%. In this scheme, the radiatively corrected cross section isexpressed as

σ(s) =

∫ 1−sm/s

0
dx σ̃(s(1 − x))F (x, s), (2.3)

where
√
s is the C.M. energy of the colliding beam,

√
sm is the cut-off of the invariant mass in the event

selection, and

σ̃(s) =
σB(s)

|1 − Π(s)|2 . (2.4)

with σB(s) the Born order cross section andΠ(s) the vacuum polarization. In Eq. (2.3)

F (x, s) = βxβ−1δV+S + δH , (2.5)

with

β =
2α

π

(
ln

s

m2
e

− 1

)
, (2.6)

δV+S = 1 +
3

4
β +

α

π

(
π2

3
− 1

2

)
+ β2

(
9

32
− π2

12

)
, (2.7)

δH = −β
(
1 − x

2

)

+
1

8
β2

[
4(2 − x) ln

1

x
− 1 + 3(1 − x)2

x
ln(1 − x) − 6 + x

]
. (2.8)

Here the conversion of bremsstrahlung photons to reale+e− pairs is included in the cross section which
is the usual experimental situation. Thus there is cancellation between the contributions of virtual and
reale+e− pairs in the leading term [71].

Since this note discusses resonances, likeψ′ andψ′′. so σB(s) is expressed by Breit-Wigner
formula. For narrow resonances, likeJ/ψ andψ′, it is

σB(s) =
12πΓ0

eeΓf
(s−M2)2 + Γ2M2

, (2.9)

†Author: P. Wang
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whereM andΓ are the mass and total width of the resonance;Γ0
ee andΓf are the partial widths to the

e+e− mode and to the final state respectively. Usually to measureM , Γ andΓee, f is inclusive hadrons.
HereΓ0

ee describes the coupling strength of the resonance toe+e− through a virtual photon. For example,
in potential model,Γ0

ee is related to the wave function at the originψ(0) in the way

Γ0
ee =

4α2Q2
q |ψ(0)|2
M2

(2.10)

whereQq is the charge carried by the quark in the quarkonium andα is the QED fine structure constant.
Since the decay of a quarkonium1−− state toe+e− pair is through a virtual photon, there is always
vacuum polarization associated with this process. So the experimentally measurede+e− partial width,
denoted explicitly asΓexpee , is related toΓ0

ee by the expression

Γexpee =
Γ0
ee

|1 − Π(M2)|2 . (2.11)

Particle Data Group adopts the convention of Ref [73] thatΓee meansΓexpee . The radiatively corrected
resonance cross section is

σres(s) =

∫ 1

0
dx F (x, s)

12πΓexpee Γf
(s −M2)2 + Γ2M2

. (2.12)

For resonances, as long as
√
s−√

sm ≫ Γ, the integral of Eq. (2.12) is insensitive to
√
sm, because the

Breit-Wigner formula behaves like aδ function. One can put the upper limit of integral to1.

8.22 Analytical expression

For the practical purpose of fitting, the expression of radiative corrected resonance cross section in
Eq. (2.12) is integrated analytically [74]. To get the best accuracy, one rewritesF (x, s) in Eq. (2.5)
in terms of a series expansion:

F (x, s) = βxβ−1

[
1 +

3

4
β +

α

π

(
π2

3
− 1

2

)
+ β2

(
9

32
− π2

12

)]

+xβ
(
−β − β2

4

)
+ xβ+1

(
β

2
− 3

8
β2

)
+O(xβ+2β2)

= βxβ−1δV +S + δH ,

(2.13)

with

δH = xβ
(
−β − β2

4

)
+ xβ+1

(
β

2
− 3

8
β2

)
. (2.14)

Notice that here the omitted terms start fromxβ+2β2, while the three terms which are kept all have
β term in their coefficients. Eq. (2.13) differs from Eq. (2.5)in the δH term. Their equivalence can be
verified if one writesxβ = 1 + β lnx, xβ+1 = x+ βx ln x andln(1 − x) = −x− x2/2 + . . ..

With F (x, s) in the form of Eq.( 2.13), the radiatively corrected resonance cross section of Eq. (2.12)

70



can be expressed as

σres(s) =
12πΓeeΓf

s2
{δV +S [aβ−2Φ(cos θ, β)
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+
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(2.15)

with

Φ(cos θ, ν) ≡ πν sin[(1 − ν)θ]

sin θ sinπν
; (2.16)

a2 =

(
1 − M2

s

)2

+
M2Γ2

s2
; (2.17)

cos θ =
1

a

(
M2

s
− 1

)
. (2.18)

8.23 Narrow resonances

Below the open charm or bottom threshold, the resonances arenarrow with widths from tens to hundreds
KeV, while the beam energy resolution ofe+e− colliders is of the order of MeV. If the resonance width is
comparable or smaller than the beam energy resolution, the observed resonance cross section is the cross
section by Eq. (2.15) folded with the beam energy resolutionfunctionG(W,W ′). Also in the observed
cross section, there is always a continuum part from direct virtual photon annihilation which is usually
treated as1/s dependence. So the experimentally observed cross section is

σobs(W ) =
R

s
+

∫ ∞

0
G(W,W ′)σres(W

′)dW ′. (2.19)

In the above,R is a fitting parameter andG(W,W ′) is usually taken as a Gaussian function:

G(W,W ′) =
1√
2π∆

exp

[
−(W −W ′)2

2∆2

]
, (2.20)

with ∆ the standard deviation of the Gaussian distribution.

In the fitting of the experimental data with the theoretical curve,M , Γ, Γee,R and∆ are obtained.

8.24 µ+µ− final state

Usually theµ+µ− curve is also fitted, to extractΓµµ. The fitting of inclusive hadron can be combined
with theµ+µ− curve to obtainM , Γ, Γee, Γµµ, R and∆. Here unlike for an inclusive hadronic final
state, the continuumµ+µ− cross section is calculated by QED [79], and the interference between virtual
photon and the resonance must be included. The cross sectionof e+e− → µ+µ− at Born order is

σB(s) =
4πα2

3s
[1 + 2ReB(s) + |B(s)|2] (2.21)
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where

B(s) =
3sΓee/Mα

(s −M2) + iMΓ
. (2.22)

With radiative correction, it can be expressed as
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where

C1 = [8πα

√
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s
= −2a cos θ (2.24)

R3 = a2(4 cos2 θ − 1)

xf = 1 − sm
s
.

Φ(cos θ, ν), a andθ are defined previously in Eq. (2.16),(2.17) and (2.18). Hereunlike the resonance
term, the continuum term depends on the invariant mass cut

√
sm in theµ+µ− event selection. AlsoΓµµ

is defined similar toΓee, in the way

Γµµ ≡ Γexpµµ =
Γ0
µµ

|1 − Π(M2
res)|2

. (2.25)

Forµ pair final state, unlike the inclusive hadrons, the vacuum polarization cannot be absorbed into the
definition ofΓee in all terms, so it must be calculated explicitly. The leptonic part ofΠ(s) is well known.
(For example, in Ref [77], although there the definition ofΠ(s) has a minus sign relative to the more
common convention used here.) The hadronic part was first calculated in Ref [78], and a more recent
treatment is found in Ref [80].

For narrow resonances, theµ pair cross section also need to be folded with the beam energy
resolution function.
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8.25 Very narrow resonances

For the narrow resonances withΓ ≪ ∆, (e.g.Γ is an order of magnitude smaller than∆), then Eq. (2.19)
is insensitive toΓ, the fitting becomes impractical. In such case, the area method [72,75] can be used to
extract

(Area)0 =
6π2ΓeeΓf
M2Γ

, (2.26)

together withM , R and∆ from the fitting. Here the final statef is inclusive hadrons. This method
requires additional information on the leptonic branchingratioB(l+l−), which is obtained from counting
theµ pair events on top of the resonance. With the assumption thatB(e+e−) = B(µ+µ−) andΓhad =
Γ(1 − 2B(l+l−))(If the resonance is above theτ production threshold,Γhad = Γ(1 − 3B(l+l−)). A
phase space correction is needed forψ(2S), for it is close to theτ threshold.),Γ andΓee can be solved
from (Area)0 andB(l+l−).

Both of the original papers on the area method in Ref. [72] and[75] mistreated radiative correction.
This was pointed out later on by Ref [73]. For the convenienceof the readers, here the complete formulae
of area method are presented.

The experimentally observed cross section is

σobs(W ) =
R

s
+ (Area)0δ

V +SGr(W −M), (2.27)

whereδV+S is defined in Eq. (2.7), and the radiatively corrected Gaussian function

Gr(w) =

(
2∆

W

)β 1

∆
F (

w

∆
, β). (2.28)

The functionF (z, β) is approximated [75] as

F (z, β) ≈ Γ(1 + β)√
2π

e−z
2/2


0.31 − 0.73z√

1 +
(

z
1+1.37β

)2
+ z2




−β/2

+θ(z)βzβ
(

z2.18

1 + z3.18

)

×





1 +
(1 − β)(2 − β)/2[(

z − 46
z2+21

)2
+ 2.44 + 1.5β

]




, (2.29)

whereΓ(1 + β) is the Gamma function andθ(z) is the step function. Notice that to derive Eq. (2.27),
δH term in Eq. (2.5) is neglected, and the Briet-Wigner is approximated as aδ function compared with
∆. These limit the accuracy of the results.

For large positive or negativez, there are asymptotic expansions ofF (z, β) [75], which are useful
to calculate the resonance cross sections away from the peak, e.g. radiative tails.

8.26 Resonance near threshold

ψ(3770) andΥ(4S) are near the threshold ofDD̄ or BB̄ production. They decay predominately into
DD̄ or BB̄. The line shape is cut off at the threshold. In the radiative correction expressed by the
integral of Eq. (2.3), the cut off

√
sm = 2mP , withmP the mass of the pseudoscalar meson (D0 orB±)
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produced at the threshold. (If the resonance is well above the threshold, i.e.
√
s−2mP ≫ Γ, the integral

is not sensitive to the upper limit.) The line shape of the resonances is

σres(s) =
R

s
+

∫ 1−4M2
P /s

0
dx F (x, s)

12πΓexpee Γf
(s −M2)2 + Γ2M2

. (2.30)

In the above, the first term is the continuum cross section dueto direct virtual photon annihilation. This
term could be greater than the resonance itself. For example, for ψ(3770), the continuum cross section
is 13nb; while the radiatively corrected resonance cross section is about 8nb.

8.27 The energy dependent width

Above the open charm or bottom threshold, the resonances arewide, usually over 10MeV. For such
wide resonances, the energy dependence of its width need to be considered. Such dependence cannot be
derived from first principle, and the formula is model dependent. For example, in the MARK-3 scan of
ψ(3770), it is in the form :

Γ(E) ∝ p3
D0

1 + (rpD0)2
+

p3
D±

1 + (rpD±)2
(2.31)

and the width listed by PDG is defined as

Γψ′′ = Γ(E = Mψ′′) (2.32)

In the above,pD0 andpD± are the momentum ofD0 andD± produced.r is a free parameter. Usually
the fitting is not sensitive tor. So in Eq. (2.30),

Γ(E) =

Γψ′′

(
p3
D0

1+(rpD0)2
+

p3
D±

1+(rpD±)2

)

(p0)3
D0

1+(rp0
D0)2

+
(p0)3

D±
1+(rp0

D±)2

(2.33)

where

pD0 =
1

2

√
E2 − 4m2

D0; (2.34)

pD± =
1

2

√
E2 − 4m2

D± ; (2.35)

p0
D0 =

1

2

√
M2 − 4m2

D0 ; (2.36)

and

p0
D± =

1

2

√
M2 − 4m2

D± (2.37)

The width ofΥ(4S) and the states above are expressed similarly.

The Breit-Wigner with the energy dependent width cannot be integrated analytically withF (x, s).
In the fitting, the cross section is numerically integrated.On the other hand, for these wide resonances,
usually the finite beam energy spread can be neglected.

8.28 The shift and scale down of the maximum height

With the radiative correction, the maximum height of the resonance is shifted from the mass of the
resonanceM to [76]

M + ∆
√
smax (2.38)
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where

∆
√
smax ≈ βπ

8
Γ (2.39)

and the maximum height of the resonant peak is reduced by a factor [76]

ρ ≈
(

Γ

M

)β
δV +S; (2.40)

whereβ andδV+S are defined in Eq. (2.6) and (2.7). For the narrow resonances,the shift of the maximum
height due to radiative correction is small, due to the narrow widths. On the other hand, the finite beam
resolution also shifts the maximum height of the observed resonance shape. It is roughly at the order
of one-tenth of∆. This needs to be taken into account in the precision measurements of the branching
ratios.

8.3 p̄p scanning techniques and limits†

8.31 Introduction

The p̄p formation technique, where the antiproton beam annihilates with a hydrogen target, has been
thoroughly exploited to scan all known charmonium states, overcoming the limitations of thee+e−,
which can actually form only vector states. A successful program was carried out at CERN’s ISR by
R704 [82, 83] and at the Fermilab Antiproton Source by E760 [84–86] and E835 [87–90]. All detectors
used so far were non-magnetic. Experiment PANDA at the future GSI facility also includes a program
of charmonium studies [91] and will be the first provided witha magnetic field.

Many aspects of antiproton beam conditioning for charmonium studies are discussed in Ref. [92].
The antiproton beam energy is scanned across the resonance in steps appropriate for the width of the
resonance under study. The observed cross section is given by σobs(W =

√
s) = σcont +

∫∞
0 G(W,W ′)

σBW (W ′) dW ′. The mass, width and peak cross sectionσBW (MR) are determined by the number of
observed events, after deconvoluting the beam energy spectrumG(W,W ′) and subtracting the continuum
cross sectionσcont from the observed cross sectionσobs(W =

√
s) = σcont +

∫∞
0 G(W,W ′) σBW (W ′)

dW ′. They are not directly influenced by the detector resolution.

For instance, Figure 2.18 shows a 16-point scan of theψ ′ resonance. The bottom plot shows
the normalized beam energy distributions as the beam was decelerated. The top plot indicates the mea-
sured cross sections (red circles) compared with the best predictions (green triangles) from a maximum-
likelihood fit to the convolution of the beam distributions (bottom plot) with a Breit-Wigner resonance
curve (solid line).

An important role is played by the beam energy distribution.This function can be measured from
the Schottky revolution frequency spectrum, the bunching radiofrequency, the orbit length of particles
in the rf bucket and the slip factor of the machine [86, 93]. The only quantity that needs external input
is the orbit length. It needs to be calibrated with the scan ofa narrow resonance whose mass is well
known. Typically, theψ ′ is chosen, because the absolute value of its mass is measuredwith extreme
accuracy (25 keV) by the resonant depolarization method ine+e− [94, 95], described in Section (8.1).
Using theψ ′ for calibration, the other masses are determined with an uncertainty≤ 200 keV. The main
contribution to the uncertainty comes from the orbit length: its value is obtained by comparison of the
reference orbit with the beam-position monitor readings during the scan of the resonance under study.

8.32 Signal extraction in hadronic annihilations

The rate of charmonium formation formed depends on the coupling between the initial state and the reso-
nance. Ine+e− annihilation, the couplings ofe+e− to bothJ/ψ andΥ(1S) are of the order of10−2. The

†Author: G. Stancari
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Fig. 2.18: (color) Resonance scan at theψ(2S).

branching fractions̄pp→cc̄ are of the order of10−4–10−3 for charmonium, but probably much smaller
for bottomonium:≈ 10−7 is the theoretical prediction [96], and< 5 × 10−4 is the experimental upper
limit for p̄p→Υ(1S) [97]. The relatively low intensity of antiproton beams is partially compensated by
the availability of jet targets; typical luminosities were2 × 1031 cm−2s−1 for E835; at GSI, an increase
of a factor 10 is expected.

Formation cross sections for charmonium states inpp̄ annihilations range between 10 and 103 nb,
but only a small fraction can be detected. In antiproton-proton annihilations, the limiting factor is the
large total cross section (70 mb). This implies that a clean charmonium signal (pb–nb) can be extracted
only by identifying its inclusive or exclusive electromagnetic decays to a high-invariant-masse+e− or
γγ pair, such as̄pp→χc→J/ψ +X→e+e− +X.

Hadronic channels such asπ0π0 andηη have recently been investigated. Using data taken in 2000,
E835 has provided the first evidence [98] of a charmonium signal exploiting the interference between
resonance and continuum at theχc0 energy.

8.33 Limits on energy and width resolution

A small beam energy spread is desirable because it reduces the uncertainty on the mass by sharpening
the resonance peak. However, efforts to make the beam much narrower than the resonance are obvi-
ously not necessary. For antiproton beams, the minimum attainable momentum spread is determined by
longitudinal stability (Keil-Schnell criterion [99]) rather than stochastic cooling power. Typically, with
a beam currentI = 50 mA, one can achieve a momentum spreadσp/p = 10−4, which translates to
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σ√s = 0.2 MeV in the center-of-momentum frame. As the beam intensity increases, the minimum

attainable momentum spread increases as
√
I. In e+e− machines there is no need for stochastic cooling,

but the energy spread is dominated by initial state radiation: σ√s = 1 MeV at theJ/ψ, σ√s = 4 MeV
at theΥ(1S).

8.4 Luminosity of photon photon scattering†

The cross section for aγγ process is related to the cross section at thee+e− level, which is measured in
the laboratory, by the formula

dσ(e+e− → e+e−X) = σ(γ1γ2 → X)
d2n1

dz1dP
2
1

d2n2

dz2dP
2
2

dz1dz2dP
2
1 dP

2
2 (2.41)

wherezi is the scaled photon energy in the laboratory frame andP 2
i is the photon mass. This is the

equivalent photon approximation (EPA) [100] where the longitudinal polarization component as well as
the mass of the incoming photons are neglected inσ(γγ → X). TheP 2

i integration can be carried out
to give the photon ”density” in thee± (the photon flux)

fγ/e(z, Pmin, Pmax) =

∫ P 2
max

P 2
min

d2n

dzdP 2
dP 2 = (2.42)

=
α

2π

[
1 + (1 − z)2

z
ln
P 2
max

P 2
min

− 2m2
ez

(
1

P 2
min

− 1

P 2
max

)]
. (2.43)

For untagged experiments (the scatterede± are undetected )Pmin is the kinematic limit:

P 2
min =

m2
ez

2

1 − z
(2.44)

andPmax ≃ Ebeam.

For resonance production, Eq.(2.41) simplifies since one ofthezi integrations can be performed
with the constraintz1z2 = τ = M2/se+e− whereM is the resonance mass. It is then customary to
define luminosity functions:

dL
dM

=
2τ

M

∫
dz1dz2fγ/e(z1)fγ/e(z2)δ(z1z2 − τ) (2.45)

so that

dσ(e+e− → e+e−X) =

∫
M

dL
dM

σ(γγ → X). (2.46)

This luminosity curve makes it easy to determine the counting rate for resonance production knowing
the width of the resonance in theγγ channel.

The most accurate Monte Carlo computation of two-photon production ine+e− collisions is the
program GALUGA [101] widely used to extract the luminosity function and the photon structure func-
tion in various kinematical regions.

8.5 Interference with continuum in e+e- experiments†

8.51 Introduction

It is well known that thee+e− experiments have lots of advantages in the study of the charmonium
physics: large cross section, small background, and well-determined initial state (both four-momentum

†Author: M. Kienzle
†Authors: C.Z. Yuan, P. Wang, X. H. Mo
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and quantum numbers). However, there is an inevitable amplitude - the continuum amplitude

e+e− → γ∗ → hadrons

accompanied with the production of the resonances. This amplitude does not go through the resonance,
but in general it can produce the same final hadronic states ascharmonia do. This amplitude has been
overlooked in many previous studies.

8.52 Experimentally observed cross section

We know thatJ/ψ andψ(3686) (shortened asψ′) decay into light hadrons through three-gluon and one-
photon annihilation of which the amplitudes are denoted bya3g andaγ respectively. This is also true for
ψ(3770) (shortened asψ′′) in its OZI suppressed decay into light hadrons. In general,for the resonance
R (R = J/ψ, ψ′ or ψ′′), the cross section at the Born order is expressed as

σB(s) =
4πsα2

3
|a3g + aγ |2 , (2.47)

where
√
s is the C.M. energy,α is the fine structure constant. If theJ/ψ, ψ′ or ψ′′ is produced ine+e−

collision, the process
e+e− → γ∗ → hadrons (2.48)

could produce the same final hadronic states as charmonium decays do [102]. We denote its amplitude
by ac, then the cross section becomes

σ′B(s) =
4πsα2

3
|a3g + aγ + ac|2 . (2.49)

So what truly contribute to the experimentally measured cross section are three classes of Feynman
diagrams,i.e. the three-gluon decays, the one-photon decays, and the one-photon continuum process, as
illustrated in Fig. 2.19. To analyze the experimental results, we must take into account three amplitudes
and two relative phases.

g g g

e+

e−

c
c
_ hadron

γ*(c c
_
)

e+

e−

c
c
_ hadron

e+

e−

hadron

γ*(e+e−)

Fig. 2.19: The Feynman diagrams ofe+e− → light hadrons at charmonium resonance. From left to right are of three-gluon

annihilation, of one-photon annihilation and of one-photon continuum.

For an exclusive mode,ac can be expressed by

ac(s) =
F(s)

s
eiφ

′
, (2.50)

whereφ′ is the phase relative toa3g; F(s) depends on the individual mode, and for simplicity, the phase
space factor is incorporated into|F(s)|2. The one-photon annihilation amplitude can be written as

aγ(s) =
3ΓeeF(s)/(α

√
s)

s−m2
R + imRΓt

eiφ , (2.51)

wheremR andΓt are the mass and the total width ofR, Γee is the partial width toe+e−, φ is the phase
relative toa3g. The strong decay amplitudea3g is defined byC ≡ |a3g/aγ |, which is the relative strength
to aγ , so

a3g(s) = C · 3ΓeeF(s)/(α
√
s)

s−m2
R + imRΓt

. (2.52)
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√
s mJ/ψ mψ′ mψ′′

|a3g(m
2
R)|2 ∝ 70%σ

J/ψ
B 19%σψ

′

B ∼ 1%σψ
′′

B

|aγ(m2
R)|2 ∝ 13%σ

J/ψ
B 1.6%σψ

′

B 2.5 × 10−5σψ
′′

B

|ac(m2
R)|2 ∝ 20 nb 14 nb 14 nb

Table 2.7: Estimated amplitudes atJ/ψ, ψ′ andψ′′ peaks.

For resonances,C can be taken as a constant.

In principle,a3g, aγ andac depend on individual exclusive mode both in absolute valuesand in
relative strength. In this note, for illustrative purpose,following assumptions are used for an exclusive
hadronic mode:F(s) is replaced by

√
R(s), whereR(s) is the ratio of the inclusive hadronic cross

section to theµ+µ− cross section measured at nearby energy [103]; in Eq. (2.52),

C =

√
B(R → ggg → hadrons)

B(R → γ∗ → hadrons)
. (2.53)

HereB(R → γ∗ → hadrons) = Bµ+µ−R(s), whereBµ+µ− is theµ+µ− branching ratio; while
B(R → ggg → hadrons) is calculated as following: we first estimate the branching ratio ofB(R →
γgg) + B(R → ggg) by subtracting the lepton pairs,γ∗ → hadrons, and the modes with charmonium
production from the total branching ratio (100%). Then using pQCD result [104]B(R → γgg)/B(R →
ggg) ≈ 6% we obtainB(R → ggg → hadrons). Table 2.7 lists all the estimations used as inputs in the
calculations, whereσRB is the total resonance cross section of Born order ats = m2

R obtained from

σR0 (s) =
12πΓeeΓt

(s−m2
R)2 +m2

RΓ2
t

. (2.54)

The cross section bye+e− collision incorporating radiative correction on the Born order is ex-
pressed by [105]

σr.c.(s) =

xm∫

0

dxF (x, s)
σ0(s(1 − x))

|1 − Π(s(1 − x))|2 , (2.55)

whereσ0 is σB or σ′B by Eq. (2.47) or (2.49),F (x, s) has been calculated in Ref. [105] andΠ(s) is the
vacuum polarization factor [106]; the upper limit of the integrationxm = 1 − sm/s where

√
sm is the

experimentally required minimum invariant mass of the finalstatef after losing energy to multi-photon
emission. In this note, we assume that

√
sm equals to90% of the resonance mass,i.e. xm = 0.2.

For narrow resonances likeJ/ψ andψ′, one should consider the energy spread function ofe+e−

colliders:

G(
√
s,
√
s′) =

1√
2π∆

e−
(
√
s−

√
s′)2

2∆2 , (2.56)

where∆ describes the C.M. energy spread of the accelerator,
√
s and

√
s′ are the nominal and actual C.

M. energy respectively. Then the experimentally measured cross section

σexp(s) =

∞∫

0

σr.c.(s
′)G(

√
s,
√
s′)d

√
s′ . (2.57)

The radiative correction reduces the maximum cross sections of J/ψ, ψ′ andψ′′ by 52%, 49%
and29% respectively. The energy spread further reduces the cross sections ofJ/ψ andψ′ by an order of
magnitude. The radiative correction and energy spread alsoshift the maximum height of the resonance
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peak to above the resonance mass. Takeψ′ as an example, from Eq. (2.54),σψ
′

B = 7887 nb atψ′

mass; substituteσ0(s) in Eq. (2.55) byσR0 (s) in Eq. (2.54),σr.c. reaches the maximum of4046 nb at√
s = mψ′ + 9 keV; with the energy spread∆ = 1.3 MeV at BES/BEPC, combining Eqs. (2.54−2.57),

σexp reaches the maximum of640 nb at
√
s = mψ′ + 0.14 MeV. Similarly, atJ/ψ, with BES/BEPC

energy spread∆ = 1.0 MeV, the maximum ofσexp is 2988 nb. At CESRc [5], the maximum ofσexp at
J/ψ is 1270 nb (∆= 2.5 MeV), and atψ′, it is 250 nb (∆= 3.6 MeV). In this note, we calculateσexp at
the energies which yield the maximum inclusive hadronic cross sections.

To measure an exclusive mode ine+e− experiment, the contribution of the continuum part should
be subtracted from the experimentally measuredσ′exp to get the physical quantityσexp, whereσexp
andσ′exp indicate the experimental cross sections calculated from Eqs.(2.55−2.57) with the substitution
of σB andσ′B from Eqs. (2.47) and (2.49) respectively forσ0 in Eq. (2.55). Up to now, most of the
measurements did not include this contribution andσ′exp = σexp is assumed at least atJ/ψ andψ′. As
a consequence, the theoretical analyses are based on pure contribution from the resonance; on the other
hand, the experiments actually measure quantities with thecontribution of the continuum amplitude
included.

We display the effect from the continuum amplitude and corresponding phase forJ/ψ, ψ′ andψ′′

respectively. To do this, we calculate the ratio

k(s) ≡
σ′exp(s) − σexp(s)

σ′exp(s)
(2.58)

as a function ofφ andφ′, as shown in Fig. 2.20a forψ′ at
√
s = mψ′+0.14 MeV for ∆ = 1.3 MeV. It can

be seen that for certain values of the two phases,k deviates from 0, or equivalently the ratioσ′exp/σexp
deviates from 1, which demonstrates that the continuum amplitude is non-negligible. By assuming there
is no extra phase betweenaγ andac (i.e. setφ = φ′), we also work out thek values for different ratios
of |a3g| to |aγ |, as shown in Fig. 2.20b: line 3 corresponds to the numbers listed in Table 2.7, line 1 is for
pure electromagnetic decay channels, and others are chosento cover the other possibilities of the ratio
|a3g| to |aγ |.
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Fig. 2.20: Left:k as a function ofφ andφ′ for ψ′, with input from Table 2.7. Right:k as a function ofφ (φ = φ′) for different

ratios of|a3g| to |aγ |: line 1 to 5 fora3g = 0, |a3g | = |aγ |, |a3g | = 3.4|aγ |, |a3g | = 5|aγ | and|a3g | = 10|aγ |, respectively.

8.53 Dependence on experimental conditions

Here we emphasize the dependence of the observed cross section in e+e− collision on the experimental
conditions. The most crucial ones are the accelerator energy spread and the beam energy setting for the
narrow resonances likeJ/ψ andψ′.

Fig. 2.21 depicts the expected cross sections of inclusive hadrons andµ+µ− pairs atψ′ in an
experimental setting under BEPC/BES condition. Two arrowsin the figure denote the different positions
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of the maximum heights of the cross sections. The height is reduced and the position of the peak is
shifted due to the radiative correction and the energy spread of the collider. However, the energy smear
hardly affects the continuum part of the cross section. Theµ+µ− channel is further affected by the
interference between resonance and continuum amplitude. As a consequence, the relative contribution
of the resonance and the continuum varies as the energy changes. In actual experiments, data are naturally
taken at the energy which yields the maximum inclusive hadronic cross section. This energy does not
coincide with the maximum cross section of each exclusive mode. So it is important to know the beam
spread and beam energy precisely, which are needed in the delicate task to subtract the contribution from
ac.
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Fig. 2.21: Cross sections in the vicinity ofψ′ for inclusive hadrons (a) andµ+µ− (b) final states. The solid line with arrow

indicates the peak position and the dashed line with arrow the position of the other peak. In (b), dashed line for QED continuum

(σC), dotted line for resonance (σR), dash dotted line for interference(σI ), and solid line for total cross section(σTot).

It is worth noting that in principle ifac is not considered correctly, different experiments will give
different results for the same quantity, like the exclusivebranching ratio of the resonance, due to the
dependence on beam energy spread and beam energy setting. The results will also be different for dif-
ferent kinds of experiments, such as production ofJ/ψ andψ′ in pp̄ annihilation, or inB meson decays.
This is especially important since the beam spreads of different accelerators are much different [107] and
charmonium results are expected fromB-factories.

8.54 Implications to charmonium physics

With the non-resonance virtual photon amplitude taking into account in the analysis of the data from
e+e− experiments, some important conclusions in the charmoniumphysics could be changed. In this
section, we discuss theψ′, ψ′′ andJ/ψ decays.

In the pure electromagnetic decays ofψ′, like π+π− orωπ0, depending on the energy resolution of
thee+e− collider, a large fraction (e.g. about 60% for∆ = 1.3 MeV) of the observed cross section is due
to non-resonance continuum contribution. With the subtraction of this contribution, the electromagnetic
form factors (e.g.π+π− andωπ0) are changed substantially [108].

It has been known from experimental data that in two-bodyJ/ψ decays, the relative phase between
the strong amplitudea3g and electromagnetic (EM) amplitudeaγ is orthogonal for the decay modes
1+0− (90◦) [109], 1−0− ((106 ± 10)◦) [107, 110, 111],0−0− ((89.6 ± 9.9)◦) [107, 111, 112],1−1−

((138 ± 37)◦) [107] andNN ((89 ± 15)◦) [111, 113]. It was argued that this large phase follows
from the orthogonality of three-gluon and one-photon virtual processes [114]. But at first glance, the
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ψ′ → 1−0− data does not seem to support the extension of such orthogonality to ψ′ decays. Here
very small branching fractions are reported forρπ andK∗+K− modes (atO(10−5) ) while much larger
branching fraction forK∗0K0 mode (atO(10−4)) [115,116]. Since the amplitudes of these three decay
modes are expressed as [117]

Aρπ = a3g + aγ ,
AK∗+K− = a3g + ǫ+ aγ ,
A
K∗0K0 = a3g + ǫ− 2aγ ,

(2.59)

with ǫ a SU(3) breaking parameter, it suggests cancellation betweena3g andaγ in Aρπ andAK∗+K− .
This means the phase betweena3g andaγ is around180◦. But since the available data are frome+e−

experiments, the amplitudeac must be included. To explain the data, Eq. (2.59) should be replaced by:

Aρπ = a3g + aγ + ac,
AK∗+K− = a3g + ǫ+ aγ + ac,
A
K∗0K0 = a3g + ǫ− 2(aγ + ac),

(2.60)

Instead of cancellation betweena3g and aγ in Aρπ andAK∗+K− , the observed cross sections could
be due to the destructive interference betweena3g andac for these two modes. On the other hand, the
interference between these two amplitudes is constructiveforK∗0K0. Such interference pattern happens
if the phase betweena3g andaγ is −90◦, because on top of the resonance, the phase betweenaγ andac
is −90◦. This means that the orthogonality betweena3g andaγ observed inJ/ψ decays holds true in
ψ′ → 1−0− decays, and it has a negative sign [118]. Similarly, with theamplitudeac included, from
the measuredψ′ → π+π−, K+K− andK0

SK
0
L [119], we know that inψ′ → 0−0− decays, the phase

betweena3g andaγ is either(−82 ± 29)◦ or (121 ± 27)◦ [120].

In the OZI suppressedψ′′ decays, MARK-III set an upper limit ofρπ production cross section
by e+e− collision at this resonance to be less than 6.3 pb [121]. On the other hand, CLEO measured
e+e− → ρπ cross section at 3.67 GeV to be(8.3+1.7

−1.4 ± 1.2) pb. Scaled down to 3.770 GeV according
to 1/s2, we expect the non-resonance cross section ofe+e− → γ∗ → ρπ to be(7.5 ± 1.8) pb, which
is already greater than the upper limit at theψ′′ peak. We reach the conclusions [122]: (i) there must
be destructive interference between theψ′′ resonance and the non-resonance virtual photon amplitudes,
i.e. the phase between the strong and EM amplitude is around−90◦; (ii) the B(ψ′′ → ρπ) is roughly
at (6 ∼ 7) × 10−4. This branching fraction coincides with the prediction by2S − 1D mixing scenario
which was proposed by Rosner to explain the smallρπ branching fraction inψ′ decays [123]. (In the
original work of Ref. [123], this branching fraction is4.1 × 10−4. But with the new measurement of
J/ψ → ρπ by BES [124], it becomes larger.) So with the amplitudeac being taken into account, we
find that this scenario is supported by experimental data. One important prediction of this scenario is
that theψ′′ could have a large charmless decay branching fraction (morethan 10%) [125]. In the search
of the exclusive charmless decays, the interference effectis important, although there are some modes
which do not couple with virtual photon, likeK0

SK
0
L which is purely fromψ′′ decays and is clean in

such search [126].

In this way, the correct treatment of the amplitudeac enables us to reach two important conclusions
in charmonium physics: (i) the orthogonality betweena3g andaγ can be extended fromJ/ψ decays toψ′

and OZI suppressedψ′′ decays and the sign of the phase must be negative; (ii)B(ψ′′ → ρπ) is consistent
with the2S − 1D mixing scenario which is proposed to solve theρπ puzzle inJ/ψ andψ′ decays.

As for J/ψ, the interference between the amplitudeac and the resonance is at the order of a few
percent at most. It is smaller than the statistical and systematic uncertainties of current measurements.
Nevertheless, for future high precision experiments such as CLEO-c [5] and BES-III [127], when the
accuracy reaches a few per mille or even smaller level, it should be taken into account.
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8.55 Summary and perspective

In summary, the continuum amplitudeac, by itself or through interference with the resonance, could
contribute significantly to the observed cross sections ine+e− experiments on charmonium physics. Its
treatment depends sensitively on the experimental details, which has not been fully addressed in both
e+e− experiments and theoretical analyses. In principle, any experimental measurement should subtract
the contribution of the continuum amplitude to get the physical quantity related to the resonance. Unfor-
tunately, up to now, most of the experiments just neglect this contribution and the measured quantities
are assumed to be purely from resonance decays for almost allthe channels studied, or just subtract the
continuum contribution incoherently without consideringthe interference effect, at least atJ/ψ andψ′.
This potentially leaves a huge gap between theory and experiments: the quantities which the experiments
provide are not exactly what the theory wants to understand.

The effect of the continuum amplitude in the physics analyses are extensively examined in a series
of papers published recently [108, 118, 120, 122, 128, 129]:it modifies the measurements of theπ+π−

andωπ0 form factors atψ′ significantly; it changes the fitting of the relative phase between the strong
and electromagnetic decay amplitudes ofψ′, it sheds light on the understanding of the “ρπ puzzle”, and
it decreases the observedρπ cross section near theψ′′ resonance peak to a much smaller level than the
expectation from either pure continuum contribution or estimation of theψ′′ non-DD decays. The recent
largeJ/ψ andψ′ samples [130] make these studies important due to the improved statistical precision.

The effect of this continuum amplitude will become more significant in the coming high luminosity
experiments, such as CLEOc [5] and BESIII [127], in this energy region. To achieve high precision to
match the high statistics, the cross section of each mode in the vicinity of the resonance should be
measured. This implies an energy scan near the resonance peak at a few energy points with considerably
large statistics to allow a reasonable subtraction of the continuum contribution via a fit to the line shape
of the resonance.

The above argument also applies to the bottomonium states inthe study of their exclusive hadronic
decays, where the maximum cross sections of the resonances are even smaller than those of the charmo-
nium states.
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Chapter 3

SPECTROSCOPY

Conveners:G. Bali, N. Brambilla, R. Mussa, J. Soto

Authors: G. Bali, D. Besson, A. Böhrer, N. Brambilla, P. Cooper, C. Davies, E. Eichten, S. Eidelman,
R. Faustov, T. Ferguson, R. Galik, S. Godfrey, A. Kronfeld, P. Mackenzie, C. Morningstar, R. Mussa,
V. Papadimitriou, A. Pineda, S. Ricciardi, J. -M. Richard, E. Robutti, J. Simone, T. Skwarnicki, J. Soto,
G. Stancari, Yu. Sumino, J. Tseng, B. Yabsley, Z. Zhao

1. Theory introduction 1

Most theorists agree that QCD alone should describe the spectroscopy of heavy quarkonium. Never-
theless, there are important difficulties to do so in practise. One can roughly distinguish between two
approaches: the phenomenological and the theoretical one.

The phenomenological approach attempts to model what are believed to be the features of QCD
relevant to heavy quarkonium with the aim to produce concrete results which can be directly confirmed or
falsified by experiment and may guide experimental searches. The theoretical approach tries to describe
heavy quarkonium with QCD based calculations and/or approximations.

The basic tools of the phenomenological approach are potential models, both non-relativistic and
relativistic. The use of non-relativistic potential models is justified by the fact that the bottom and, to a
lesser extent, the charm masses are large in comparison toΛQCD, the typical hadronic scale. Hence a
quantum mechanical description of the system based on two heavy quarks interacting through a suitable
potential appears reasonable. The potential is usually chosen in a way that at short distances coincides
with the weak coupling QCD one-gluon exchange Coulomb potential and in the long range it incorpo-
rates confinement, for instance, by including a linearly rising potential. Since relativistic effects appear
to be sizable for some states, mostly in charmonium, models incorporating some relativistic kinematics
are also being used. Different models of quark confinement may result in different classes of relativistic
corrections. For states close to and beyond the two heavy-light meson threshold, the potential models
have to be complemented with these extra degrees of freedom in order to account for possible mixing
effects. Hybrid states which are expected from QCD should also be incorporated by hand. The phe-
nomenological approaches will be described in Sec. 3.

The theoretical approach aims at obtaining the spectrum of heavy quarkonium from QCD. This
is in principle more complicated than obtaining masses of light mesonic states since an additional large
scalem, the mass of the heavy quark, enters the calculation. If we assume thatm is much larger than
any other scale in the system, in particularΛQCD, the heavy quark and antiquark are expected to move
slowly about each other at a relative velocityv ≪ 1. The system becomes non-relativistic and hence
splittings between states with the same quantum numbers areexpected to be of size∼ mv2 whereas

1Author: J. Soto
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hyperfine splittings are of order∼ mv4, if one proceeds by analogy to QED bound states (wherev ∼ α).
If v2 ∼ 0.1, as expected in ground state bottomonium, a direct (lattice) QCD calculation requires a
precision significantly better than 10 % to detect spin-averaged masses and of more than1 % to resolve
fine structure splittings. Moreover, all these scales have to be resolved on one and the same lattice,
necessitating many lattice points. This is to be compared with light quarkonium where the splittings
are a leading order effect. Consequently, calculating the heavy quarkonium spectrum from lattice QCD
requires a tremendous computational effort, which in some cases can be somewhat ameliorated with the
introduction of anisotropic lattices, as discussed in Sec.2.1.

Alternatively, it may be advisable to exploit the fact thatm is large andv small before attempting
the computation. This is most efficiently done using non relativistic effective field theories. The effective
theory which takes into account thatm is much larger than the remaining scales in the system is NRQCD
[1–3]. Sincem ≫ ΛQCD, NRQCD can be made equivalent to QCD at any desired order in1/m and
αs(m) ≪ 1 by enforcing suitable matrix elements to be equal at that order in both theories. One may then
attempt a lattice calculation from NRQCD. What one gains nowis that the spin independent splittings
are a leading order effect rather than av2 one and the hyperfine splittings av2 correction (rather thanv4).
See Sec. 2.21 for a detailed discussion of these calculations.

NRQCD, however, does not fully exploit the fact thatv is small. In particular, gluons of energy
∼ mv, the typical relative three-momentum of the heavy quarks, are still explicit degrees of freedom
in NRQCD whereas they can never be produced at energies∼ mv2. For lower lying states the scale
mv corresponds both to the typical momentum transferk (inverse size of the system) and to the typical
relative three-momentump. It is then convenient to introduce a further effective theory where degrees
of freedom of energy∼ k are integrated out. This EFT is called pNRQCD [4, 5], see Sec.2.3. The
degrees of freedom of pNRQCD depend on the interplay of the scalesk, E ∼ mv2 andΛQCD. The
weak and strong coupling regimes are discussed respectively in Secs. 2.31 and 2.32. A related EFT for
the weak coupling regime, called vNRQCD [6], will be discussed in Chapter 6 (Standard Model). Sum
rules are also discussed in the same chapter in relation to the calculation of the lowest energy levels in
the spectrum.

The distribution of the theory contributions is as follows.We begin with the theoretical approach
and use the EFT philosophy as an organizing principle. We shall arrange the contributions according
to the number of hypothesis that are done in order to obtain them from QCD. Hence, we shall start by
contributions which rely on QCD only. Next we will discuss contributions which may be embraced by
NRQCD, and finally contributions which may be embraced by pNRQCD. We would like to emphasize
that, if the relevant hypothesis are fulfilled, (i) NRQCD andpNRQCD are equivalent to QCD, and (ii)
each of these EFTs allows to factorize a relevant scale, which further simplifies calculations. All the
states can in principle be studied from QCD, the main tool being lattice techniques. In practise, however,
a number of limitations exists, which are described in Sec. 2.1. Except for very high excitations (partic-
ularly in charmonium) for which relativistic effects become important, these states can also be studied
from NRQCD, the main tool being again lattice techniques, see Sec. 2.2. States below and not too close
to open flavor threshold can also be studied using pNRQCD. A few of these, including theΥ(1S) and
ηb(1S), can be studied by means of analytical weak coupling techniques (Sec. 2.31). The remaining
ones can be studied using pNRQCD in the strong coupling regime (Sec. 2.32), which needs as an input
nonperturbative potentials to be calculated on the lattice. We continue next with the phenomenological
approach, which mainly consist of a description of potential models (Sec. 3.1) and of approaches to
open flavor thresholds (Sec. 3.3). The former provide good phenomenological descriptions for the states
below open flavor threshold whereas the latter are importantfor a good description of excitations close
or above the open flavor threshold, in particular of the recently discoveredX(3872) charmonium state.
An effort has been made to link potential models to the theoretical approach. Double (and triple) heavy
baryons are also discussed both in the theoretical (Secs. 2.23,2.34) and phenomenological approach (Sec.
3.41).

90



2. Theoretical approach

2.1 Direct lattice QCD calculation2

2.11 Methods

(For an introduction to general QCD lattice methods cf. Chapter 1.) When simulating quarks with a mass
m on a lattice with lattice spacinga, one will inevitably encounterma [or (ma)2] corrections, which are
of order one, unlessm≪ a−1. The Fermilab group [7] have argued in favour of a re-interpretation of the
clover action, suggesting that physical results can be obtained even for masses as large asma ≈ 1, see
also Sec. 2.21 below. However, still one would either want toextrapolate such results to the continuum
limit or at least put them into the context of an effective field theory with two large scales, in this case
m anda−1. If interpreted as an EFT, higher order terms have to be addedand the matching coefficients
to QCD have to be determined to sufficiently high order in perturbation theory, to reduce and estimate
remaining systematic uncertainties.

In the quenched approximation, the conditionma≪ 1 can be realized for charm quarks; however,
at present bottom quarks are still somewhat at the borderline of what is possible. One approach to tackle
this problem is to introduce an anisotropy, with a temporal lattice spacingaτ smaller than the spatial
lattice spacingaσ = ξaτ , with parameterξ > 1. The spatial lattice extentLσaσ has to be large enough
to accommodate the quarkonium state (whose size is of orderr ≃ (mv)−1). With a sufficiently large
aσ this is possible, keeping the number of pointsLσ limited, while the temporal lattice spacing can be
chosen to be smaller than the quarkonium mass in question,aτ < M−1, at relative ease. This means
that anisotropic simulations are naively cheaper by a factor ξ3, compared to the isotropic analogue with
a lattice spacinga = aτ .

While at tree level the lattice spacing errors are indeed ofO[(maτ )
n], one loop corrections mean

that there will still beO[αs(maσ)
n] terms present: only to the extent to whichαsξ

n is small, the leading
order lattice effects can be regarded asO[(maτ )

n]. Furthermore, the anisotropy parameterξ has to be
determined consistently for the quark and gluon contributions to the QCD action. Within the quenched
approximation this problem factorizes: one can first “measure” the gauge anisotropy by determining the
decay of purely gluonic spatial and temporal correlation functions. Subsequently, one can adjust the
Fermionic anisotropy accordingly. This fine-tuning does not come for free, in particular if the number of
adjustable parameters is larger than two. Consequently, noconsistent nonperturbativeO(a) improvement
programme has been carried through so far, for non-trivial anisotropies. While there might be a net gain
from using anisotropy techniques in the quenched approximation, the parameter tuning becomes much
more delicate and costly once light sea quarks are included.In this case the numerical matching of the
anisotropy for light Fermions cannot be disentangled from the gluonic one anymore.

2.12 Results with relativistic heavy quarks

We will first review results on the quenched bottomonium spectrum, before discussing charmonia in the
quenched approximation, on anisotropic as well as on isotropic lattices and with sea quarks.

Only one bottomonium study with relativistic action has been performed so far [8], employing
lattices with anisotropiesξ = 4 andξ = 5, in the quenched approximation. In this case, the inverse
lattice spacing,a−1

τ was varied from 4.5 GeV up to about 10.5 GeV. The lattice extents were typically
of sizeLσaσ ≈ 1 fm, however, they were not kept constant when varyingaτ such that finite size effects
are hard to disentangle. The spatial lattice sizes are also dangerously close to the inverse confinement-
deconfinement phase transition temperature (cf. Chapter 7). After using the11P1 − 13S1 splitting
(identifying the11P1 mass with the spin averaged experimental13P states) to set the lattice spacing and
the13S1 to adjust theb quark mass, qualitative agreement with the spin-averaged experimental spectrum
is observed.

2Author: G. Bali
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JPC state CP-PACS Columbia QCD-TARO experiment glueballs
0−+ ηc 3013 (1) 3014 (4) 3010 (4) 2980(1) 2500(40)

η′c 3739(46) 3707(20) 3654(10) 3500(60)
1−− J/ψ 3085 (1) 3084 (4) 3087 (4) 3097

ψ(2S) 3777(40) 3780(43) 3686 3700(50)
1+− hc 3474(10) 3474(20) 3528(25) m(13P )=3525 2830(30)

h′c 4053(95) 3886(92) —
0++ χc0 3408 3413(10) 3474(15) 3415(1) 1720(30)

χ′
c0 4008(122) 4080(75) — 2540(120)

1++ χc1 3472 (9) 3462(15) 3524(16) 3511
χ′
c1 4067(105) 4010(70) —

2++ χc2 3503(24) 3488(11) 3556 2300(25)
χ′
c2 4030(180) —

2−+ 11D2 3763(22) — 2975(30)
— 3740(40)

2−− 13D2 3704(33) X(3872) ??? 3780(40)
3−− 13D3 3822(25) — 3960(90)
3+− 11F3 4224(74) — 3410(40)
3++ 13F3 4222(140) — 3540(40)
0+− H0 4714(260) — 4560(70)
1−+ H1 4366(64) —
2+− H2 4845(220) — 3980(50)

Table 3.1: Charmonium results in the quenched approximation [9–12], where the scale is such thatr−1
0 = 394 MeV. The

purely statistical errors do not reflect the uncertainty inr0, or due to quenching. All values are in units of MeV. Glueball

masses [13–15] are included for comparison. The last three lines refer to spin-exotic (non-quark model) quantum numbers.

For the13S1−11S1 splitting, where one might hope finite size effects to largely cancel, the authors
obtain the continuum extrapolated value of59 ± 20 MeV. To leading order in pQCD, this splitting is
expected to be proportional to the wave function density at the origin, multiplied byαs(µ). Adjusting
the lattice spacing from spin-averaged splittings amountsto matching the quenched lattice coupling to
the phenomenological one at a low energy scale≪ µ. In the quenched approximationαs(µ) approaches
zero faster asµ is increased and henceαs(µ) will be underestimated: the quoted fine structure splitting
represents a lower limit on the phenomenological one. Indeed, the analogous result for the charmonium
case underestimates the known experimental number by a factor 1.25 – 1.5, when setting the scale in a
similar way [9,10].

Both, the Columbia group [11, 12] as well as the CP-PACS Collaboration [9] have studied the
charmonium spectrum on anisotropic lattices. The same anisotropic clover quark action was used as for
the bottomonium study discussed above, where the leading order lattice artefacts are expected to be of
O(αsaτ ) andO(a2

τ ). The CP-PACS Collaboration studied the anisotropy,ξ = 3, on a set of four inverse
lattice spacingsa−1

σ , ranging from about 1 up to 2.8 GeV, on spatial volumes(1.6 fm)3. The Columbia
group simulated four lattice spacings ranging from about 0.8 up to 2 GeV at anisotropyξ = 2. They
were able to vary their volume from 1.5 up to 3.3 fm and found finite volume effects to be below their
statistical resolution.

We display the respective continuum-limit extrapolated results in Table 3.1. We also include
results from the QCD-TARO collaboration [10], withξ = 1. The quark mass is set such that the spin
averaged1S state corresponds to 3067.6 MeV. (Note that the present phenomenological value is slightly
higher than this.) For comparison we convert the Columbia results into units ofr−1

0 = 394 MeV. This
scale is implicitly defined through the static potential [16], dV (r)/dr|r=r0 = 1.65. It cannot directly be
obtained in experiment. However,r0/a is easily and very precisely calculable in lattice simulations. In
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Fig. 3.1: The quenched charmonium spectrum (CP-PACS [9], Columbia [11, 12]), glueballs [13–15] and spin-exoticcc̄-glue

hybrids [12], overlayed with the experimental spectrum.

the quenched approximation we have to assume a scale error onspin averaged splittings of at least 10 %,
on top of the errors displayed in the Table. We also include glueball masses [13–15] into the table. The
last three lines incorporate spin-exoticJPC assignments (cc̄g hybrid mesons).

The anisotropic results are also displayed in Fig. 3.1, borrowed from Ref. [17], where we plot the
newX(3872) state atJPC = 2−−, however, this assignment is somewhat arbitrary. As can be seen,
where overlap exists, the results from the three collaborations employing three different anisotropies are
consistent with each other. AllS- andP -wave fine structure splittings are underestimated, which is
expected in the quenched approximation. The Columbia group[12] reported that the state created by
theJ = 1 D-wave operator rapidly converged towards the mass of the vector S-wave ground state. The
same was observed in the case of the2++ F -wave with respect to theχc2 ground state: this indicates
that the charm quark mass is too light forL to be a good quantum number.

That the charm mass is not particularly heavy, in comparisonto typical scales of gluonic excita-
tions, can also be seen from the overlap between the glueballand charmonium spectra. Once sea quarks
are switched on, these glueballs will become unstable. However, the presence of a background of such
excitations might very well affect spectrum and decays in some channels. For instance the dominant
decay of a vector charmonium is into gluons, and it is quite conceivable that such a channel should also
couple to would-be glueballs.

When performing the Wick contractions of propagators of flavour singlet states like charmonia,
two contributions arise: a connected one, with quark and antiquark propagating alongside each other, and
a disconnected (OZI suppressed) one, with annihilation andcreation diagrams ofcc̄. In all charmonium
simulations that have been performed so far, with two notable exceptions [18, 19], the disconnected
diagram has been neglected. It is well known that OZI processes play a role within the light pseudoscalar
and scalar sectors. This has also been extensively studied on the lattice [20,21]. In the case of charmonia,
in particular forS andD waves, substantial corrections due to mixing with intermediate gluonic states
are a possibility, even within the quenched approximation.For states that are close to threshold, in
addition mixing with two-meson states will occur, once sea quarks are included.

Charmonia have also been studied on isotropic lattices, within the quenched approximation [10,
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18, 19, 22, 23], and with sea quarks [24]. The QCD-TARO collaboration [10] worked at tiny lattice
spacings, ranging from about 2 GeV down to 5 GeV. The results are consistent with those obtained by
the Columbia group [12] and by CP-PACS [9], but the use of anO(a) improved action allowed for a
very well controlled continuum limit extrapolation. The quenched value, within the OZI approximation
and usingr−1

0 = 394 MeV to set the scale, is 77(2)(6) MeV, with all remaining systematic errors quoted.
This value would increase by 15 % if the scale was set from the13P − 1S, still short of the experimental
117 MeV.

In an exploratory study, in which for the first time the diagram that contains disconnected quark
loops has been included, McNeile and Michael [18] find evidence that while the position of the ground
state vector state appears to be largely unaffected, the pseudoscalar mass is reduced by an amount of the
order of 20 MeV with respect to the non-flavour singlet reference value. One explanation might be the
background of glueballs, c.f. Fig. 3.1. A more recent study by QCD-TARO [19] confirms that the vector
state remains largely unaffected. They rule out an increaseof the pseudoscalar mass, however, a decrease
by an amount of up to 20 MeV would not contradict their data.

First studies [24] utilizing the AsqTad staggered light quark action and approximating2 + 1
flavours of sea quarks by taking roots of the Fermionic determinant have been performed. The light
quark mass was varied down to aboutms/6. TheO(αsa) clover action, in the Fermilab heavy quark
interpretation [7] was used. Extrapolating to physical seaquark mass, a hyperfine structure splitting of
97(2) MeV is obtained, see also Sec. 2.21 below. This is an increase of almost 40 %, over their quenched
reference value. At least the latter would have been somewhat smaller if normalized with respect tor0
rather than to theΥ′ −−Υ splitting. However, OZI diagrams have been neglected and neither is the lat-
tice spacing dependence resolved as yet. Clearly, a precision study of the charmonium spectrum requires
not only sea quarks but also flavour singlet diagrams to be included.

2.2 NRQCD

NRQCD takes advantage that the masses of the charm and bottomquarks are much larger thanΛQCD in
order to build an EFT which is equivalent to QCD at any desiredorder in1/m andαs(m). Starting from
NRQCD two approaches may be followed for spectrum computations: direct lattice calculations (Sec.
2.21) or further integration of the soft scale (the scale of the momentum transfer) to arrive at an EFT in
which only the ultrasoft degrees of freedom remain dynamical, pNRQCD (Sec. 2.3). An introduction to
NRQCD is given in Chapter 1, see also Refs. [25–27] for some introduction to the nonrelativistic EFT
formulation. An introduction to lattice methods (quenchedand unquenched) has been given in Chapter
1.

2.21 Lattice NRQCD calculations with light sea quarks3

The use of non-relativistic effective field theories permits the computer to handle only scales appropriate
to the physics of the non-relativistic bound states withouthaving to spend a lot of computer power on the
large scale associated with the heavy quark mass which is irrelevant to the bound state dynamics. This
makes the calculations more tractable so that many more hadron correlators can be calculated for better
statistical precision. We will focus our discussion on the most recent calculations obtained within this
approach, which include light sea quarks.

On the lattice, heavy quark effects and discretisation effects are intertwined. One can treat them
together by introducing an effective Lagrangian [28,45]

L = − ψ†
[
δm +D4 −

D2

2m
− clat4

8m3

(
D2
)2 − wlat

1 a2

6m

∑

i

D4
i −

clatD
8m2

(D · gE − gE ·D)

3Authors: C. Davies, A. Kronfeld, P. Mackenzie, J. Simone
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Fig. 3.2: Lattice QCD results divided by experiment for a range of ‘gold-plated’ quantities which cover the full range of

hadronic physics [29]. The unquenched calculations on the right show agreement with experiment across the board, whereas

the quenched approximation on the left yields systematic errors ofO(10%).

− clatS
8m2

iσ · (D × gE + gE ×D) − clatF
2m
σ · gB

]
ψ + · · · , (3.1)

similar to the standard (continuum) NRQCD Lagrangian, but note that the derivative operators are ‘im-
proved’ on the lattice to remove leading errors arising fromthe lattice spacing. See also the Introduction
3.23 Heavy Quark Actions in Chapter 1. We have omitted the term ψ†mψ.

Compared to the NRQCD description of continuum QCD, an unimportant difference is the Eu-
clidean metric (D4 instead of−iD0). Also, unlike in dimensional regularization, in lattice regularization
the mass shiftδm will in general be non-zero. However, this cancels from massdifferences and decay
amplitudes. Moreover, it can be determined nonperturbatively from theΥ dispersion relation. Obvi-
ously, terms accompanied bywi are lattice specific. The essential difference is that the matching scale is
provided by the lattice spacing: the short-distance coefficientsclati , wlat

i andδm depend onam and on
the details of the chosen discretisation. The matching ofclati andwlat

i is carried out to some accuracy in
αs. From Eq. (3.1) one sees that the most important matching condition is to identify the kinetic massm
with the heavy quark mass in the lattice scheme, and then tunethe higher-dimension interactions.

One area of lattice QCD which has remained problematic is thehandling of light quarks on the
lattice. This is now being addressed successfully and is critical to obtaining precision results of use
to experiment. In particular the problem is how to include the dynamical (sea)u/d/s quark pairs that
appear as a result of energy fluctuations in the vacuum. We canoften safely ignorec/b/t quarks in
the vacuum because they are so heavy, but we know that light quark pairs have significant effects, for
example in screening the running of the gauge coupling and ingenerating Zweig-allowed decay modes
for unstable mesons.

Many calculations in the past have used the “quenched approximation,” attempting to compensate
sea quark effects byad hocshifts in the bare coupling and (valence) quark masses. The results then suffer
from errors as large as 10–30%. The error of the quenched approximation is not really quantifiable and
this is reflected by a lack of internal consistency when different kinds of hadrons are used to fix the bare
parameters. This ambiguity plagues the lattice QCD literature.

The MILC Collaboration recently have produced ensembles ofgluon field configurations which
include 2 degenerate light sea quarks (u, d) and a heavier one (s) [30]. They rely on fast supercomputers
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and a new discretisation of the quark action: the improved staggered formalism [31]. At quark masses
small enough for reliable chiral extrapolations, staggered Fermions appear much faster than any other
formulation of lattice Fermions. However, each flavour of staggered quarks is included in the sea by
taking the fourth root of the staggered determinant and there are still theoretical issues to be resolved
about this. Taking theu andd masses the same makes the lattice calculation much faster and leads
to negligible errors in isospin-averaged quantities. The seas quark mass is chosen to be approximately
correct based on earlier studies (in fact the subsequent analysis shows that it was slightly high and further
ensembles are now being made with a lower value). The seau andd quarks take a range of masses down
as low as a sixth of the (real)ms. Ensembles are available at two different values of the lattice spacing,
0.12 fm and 0.09 fm, and the spatial lattice volume is(2.5 fm)3, reasonably large. Analysis of hadronic
quantities on these ensembles has been done by the MILC and HPQCD collaborations [29].

There are 5 bare parameters of QCD relevant to this analysis:αs, mu/d, ms, mc andmb. Chang-
ing the bareαs changes the lattice spacing. It is important to fix these parameters with the masses of
“gold-plated” hadrons, i.e. hadrons which are well below their strong decay thresholds. Such hadrons
are well-defined experimentally and theoretically and should be accurately calculable in lattice QCD.
Using them to fix parameters will then not introduce unnecessary additional systematic errors into lattice
results for other quantities. This has not always been done in past lattice calculations, particularly in the
quenched approximation. It becomes an important issue whenlattice QCD is to be used as a precision
calculational tool. We use the radial excitation energy in theΥ system (i.e., the mass splitting between
theΥ′ and theΥ) to fix the lattice spacing. This is a good quantity to use because it is very insensitive
to all quark masses, including theb quark mass (experimental values for this splitting are verysimilar
for charmonium and bottomonium) and so it can be determined without a complicated iterative tuning
process.mπ, mK , mDs andmΥ are used to fix the quark masses. Thus, quarkonium turns out tobe a
central part in this study.

Once the Lagrangian parameters are set, we can focus on the calculation of other gold-plated
masses and decay constants. If QCD is correct and lattice QCDis to work it must reproduce the experi-
mental results for these quantities precisely. Figure 3.2 shows that this indeed works for the unquenched
calculations withu, d ands quarks in the vacuum. A range of gold-plated hadrons are chosen which
range from decay constants for light hadrons through heavy-light masses to heavy quarkonium. This
tests QCD in different regimes in which the sources of systematic error are very different and stresses
the point that QCD predicts a huge range of physics with a small set of parameters.

Refs. [24,32–34] give more details on the quantities shown in Figure 3.2. Here we concentrate on
the spectrum of bottomonium and charmonium states, using, respectively, lattice NRQCD [35] and the
Fermilab method for heavy quarks [7]. We include a brief discussion of theBc mass, including the status
of an ongoing unquenched calculation using the MILC ensembles.

Υ results with NRQCD

Figure 3.3(a) shows the radial and orbital splittings [33] in thebb̄ (Υ) system for the quenched
approximation (nf = 0) and with the dynamical MILC configurations with 3 flavoursof sea quarks. We
use the standard lattice NRQCD effective theory for the valenceb quarks [35], which takes advantage of
the non-relativistic nature of the bound states. The lattice NRQCD action used here is accurate through
v4 wherev is the velocity of theb quark in its bound state. It also includes corrections to remove
discretisation errors atO(p2a2v2) ∼ O(v4), but does not includeO(αsv

4) corrections to the coefficients
ci andwi in Eq. (3.1), which are subleading. This means that spin-independent splittings, such as radial
and orbital excitations, are simulated through next-to-leading-order in the velocity expansion and should
be accurate to around 1%. Thus, these splittings provide a very accurate test not only of lattice QCD,
but also of the effective-field theory framework. At present, the fine structure in the spectrum is only
correct through leading-order [which isO(v4) in this case] and more work must be done to bring this
to the same level and allow tests against, for example, the splittings between the differentχb states [33].
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lattice spacing and theb-quark mass [33]. (a) Comparison of the quenched approximation (open circles) and QCD withu, d

ands sea quarks (filled) circles. Note that the 1S and 2S levels areused to fix theb quark mass and lattice spacing respectively

so are not predictions. (b) Dependence of the splittings as afunction of the of the bare seau/d quark mass.

This is in progress. Systematic uncertainties due to such truncations have for instance been estimated in
Ref. [36], based on lattice potentials.

The Υ system is a good one for looking at the effects of sea quarks because we expect it to be
relatively insensitive to sea quark masses. The momentum transfer inside anΥ is larger than any of the
u, d or s masses and so we expect the radial and orbital splittings to simply count the number of sea
quarks once they are reasonably light. Figure 3.3(b) shows this to be true—the splittings are independent
of the seau/d quark mass in the region we are working in. Chiral extrapolation in theu/d quark mass
is immaterial in this case. Therefore, the left-most lattice points in Figure 3.3(b) are the ones used in
Figures 3.2 and 3.3(a).

ψ results with the Fermilab method

Figure 3.4 shows the spectrum of charmonium states below theDD threshold [24]. In this plot
the lattice spacing was fixed from theΥ′-Υ splitting (as above), and thec quark mass was tuned to
get theDs mass correct. Therefore, these results are obtained directly from QCD without adjusting
any free parameters. For Figure 3.4(a), the zero of energy has been moved to the spin-averaged mass
m̄ψ = 1

4mηc + 3
4mJ/ψ.

These results are obtained using the Fermilab method [7] forthe charmed quark. In this method
one starts with Wilson Fermions, but the discretisation effects are controlled and understood using non-
relativistic field theories, as in Eq. (3.1). The non-relativistic interpretation also has implications for how
the action is improved. In the notation of Eq. (3.1) the chromomagnetic interaction is adjusted so that
clatF is correct at tree level. However, at higher order, there areO[(mca)

2] ∼ 10% andO(αs) errors and
some sign of these is seen in the mismatch with experiment of the hyperfine splitting in Figure 3.4(a). In
the past such discrepancies were masked by quenching errors, whereas now they can be resolved. Note
that OZI violating contributions [18, 19] are also neglected currently. They are expected to be small but
a decrease of up to 20 MeV inmηc is not ruled out.

The Fermilab action can be systematically improved, and thetheoretical work needed is in progress.
The most important new features are a one-loop calculation of the chromomagnetic coupling [37], and a
systematic enumeration of all operators needed for improvement throughv6 [38].
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(a) (b)
Fig. 3.4: Radial and orbital splittings in the charmonium system from lattice QCD with 3 light sea quarks, fixing the lattice

spacing from theΥ′-Υ splitting (as above), and thec quark mass from theDs mass [24]. (a) Spectrum; (b) dependence on the

sea quark mass.

Bc ground state

In 1998 the lowest-lying bound state ofb̄c quarkonium was observed in semi-leptonic decays [39],
yielding a mass ofmBc = 6.4±0.4 GeV. A more precise measurement with hadronic decays is expected
to come soon from Run II of the Tevatron, cf. Sec. 3.9. For lattice QCD, theBc is a ‘gold-plated’ hadron
and we have the opportunity to predict its mass ahead of experiment. Here we report on a preliminary
lattice calculation, building on the progress detailed above. In previous quenched calculations accurate
result could not be provided, due to the inconsistency of this approach described above.

The method used in the present study was developed in a quenched calculation [40], and follows
almost immediately from Eq. (3.1). As long as one may use the effective Lagrangian to describe the
charmed and bottom quarks on the lattice, the meson mass satisfies [28],

M1Bc = mb̄ +mc +BBc , (3.2)

whereBBc is the binding energy of theBc meson. The accuracy of the binding energy depends on how
well the coefficientsclati have been adjusted. The scheme- and scale-dependent quark masses cancel
from the relation [40],

M1Bc − 1
2

[
M1ψ +M1Υ

]
= BBc − 1

2 [Bψ +BΥ] . (3.3)

Note that within potential models flavour independence implies that this combination is small and posi-
tive [41,42]. One can now predict theBc mass by adding back the experimental1

2 [Mψ +MΥ]. A variant
of this technique is to use theDs andBs masses instead of (half the) quarkonium masses.

An unquenched lattice calculation has recently been carried out [43, 44], using the MILC ensem-
bles discussed above. Analyses at two light sea quark massesand two values of the lattice spacing show
a consistent picture, as expected. Using the quarkonium baseline, Allisonet al. find [43]

MBc = 6304 ± 4 ± 11+18
− 0 MeV, (3.4)

where the uncertainties are, respectively, from statistics (after chiral extrapolation), tuning of the heavy-
quark masses, and heavy-quark discretization effects. Thelast is estimated from the mismatch of opera-
tors of orderv4 in the effective Lagrangian and are dominated by the relativistic correction(D2)2. The
estimate is guided by potential models (and is the only change from earlier conference reports [44]). The
overall errors are so small because the lattice calculationhas been set up to focus on the binding-energy
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difference, and raw uncertainties of several percent have been leveraged to the sub-percent level for the
mass itself.

This result can be checked with the heavy-light baseline,MBc = MDs +MBs + [BBc − (BDs +
BBs)], with somewhat larger uncertainties. Allisonet al. find [43]

MBc = 6243 ± 30 ± 11+37
− 0 MeV. (3.5)

The systematic uncertainties are larger with the heavy-light baseline because there is less cancellation
between theBc quarkonium and the heavy-lightDs andBs.

The dominant uncertainties can be reduced by choosing more highly-improved actions in lattice
gauge theory, or by reducing the lattice spacing, as discussed in Ref. [43].

2.22 Heavy hybrids on the lattice4

QCD suggests the existence of mesonic states in which the valence quark-antiquark pair is bound by an
excitedgluon field. A natural starting point in the quest to understand such states is the heavy quark
sector. The vastly different characteristics of the slow massive heavy quarks and the fast massless glu-
ons suggest that such systems may be amenable to a Born-Oppenheimer treatment, similar to diatomic
molecules. The slowly moving heavy quarks correspond to thenuclei in diatomic molecules, whereas
the fast gluon and light-quark fields correspond to the electrons. At leading order, the gluons and light
quarks provide adiabatic potentialsVQQ̄(r), wherer is the quark-antiquark separation, and the behavior
of the heavy quarks is described by solving the Schrödingerequation separately for eachVQQ̄(r). The
Born-Oppenheimer approximation provides a clear and unambiguous picture of conventional and hybrid
mesons: conventional mesons arise from the lowest-lying adiabatic potential, whereas hybrid mesons
arise from the excited-state potentials.

The first step in a Born-Oppenheimer treatment of heavy quarkmesons is determining the gluonic
termsVQQ̄(r). Since familiar Feynman diagram techniques fail and the Schwinger-Dyson equations
are intractable, the path integrals needed to determineVQQ̄(r) are estimated using Markov-chain Monte
Carlo methods (Lattice QCD simulations). The spectrum of gluonic excitations in the presence of a
static quark-antiquark pair has been accurately determined in lattice simulations [46,47] which make use
of anisotropic lattices, improved actions, and large sets of operators with correlation matrix techniques.
These gluonicVQQ̄(r) levels may be classified by the magnitudeΛ of the projection of the total angular
momentumJg of the gluon field onto the molecular axis, and byη = ±1, the symmetry under charge
conjugation combined with spatial inversion about the midpoint between the quark and the antiquark.
States withΛ = 0, 1, 2, . . . are denoted byΣ,Π,∆, . . ., respectively. States which are even (odd) under
the above-mentionedCP operation are denoted by the subscriptsg (u). An additional± superscript for
theΣ states refers to even or odd symmetry under a reflection in a plane containing the molecular axis.

In the leading Born-Oppenheimer approximation, one replaces the covariant LaplacianD2 by an
ordinary Laplacian∇2. The error that one makes is equivalent to1/MQ and1/M2

Q corrections [48]
to VQQ̄ that go beyond the LBO and are suppressed by a factorv2, using perturbative NRQCD power
counting rules. The spin interactions of the heavy quarks are also neglected, and one solves the radial
Schrödinger equation:

− 1

2µ

d2u(r)

dr2
+

{
〈L2

QQ̄
〉

2µr2
+ VQQ̄(r)

}
u(r) = E u(r), (3.6)

whereu(r) is the radial wavefunction of the quark-antiquark pair andµ denotes the reduced mass. The
expectation value in the centrifugal term is given in the adiabatic approximation by

〈L2
QQ̄〉 = L(L+ 1) − 2Λ2 + 〈J2

g 〉, (3.7)
4Author: C. Morningstar
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Fig. 3.5: (Left) The spectrum of conventional and hybrid heavy-quark mesons in the leading Born-Oppenheimer approximation

and neglecting light quarks (from Ref. [46]). ConventionalS andP states are shown, as well as hybrids based on theΠu

andΣ−
u adiabatic surfaces. Solid lines indicate spin-averaged experimental measurements. (Right) Simulation results from

Ref. [46] for two conventional and four hybrid bottomonium level splittings (in terms ofr−1
0 = 450 MeV and with respect to

the1S state) against the lattice spacingas. Predictions from the leading Born-Oppenheimer calculation, shown as horizontal

lines, reproduce all of the simulation results to within 10 %, strongly supporting the validity of a Born-Oppenheimer picture

for such systems at leading order. Results from Ref. [49] using an NRQCD action with higher-order relativistic corrections are

shown as hollow boxes and hollow upright triangles.

where〈J2
g 〉 = 0 for theΣ+

g level and〈J2
g 〉 = 2 for theΠu andΣ−

u levels.

The leading-order Born-Oppenheimer spectrum of conventional b̄b and hybridb̄gb states (in the
absence of light quarks) obtained from the above procedure is shown in Fig. 3.5. Below theBB thresh-
old, the Born-Oppenheimer results agree well with the spin-averaged experimental measurements of
bottomonium states (any small discrepancies essentially disappear once light quark loops are included).
Above the threshold, agreement with experiment is lost, suggesting significant corrections either from
mixing and other higher-order effects or (more likely) fromlight sea quark effects.

The validity of the Born-Oppenheimer picture relies on the smallness of mixing between states
based on differentVQQ̄(r). In addition, relativistic (including spin) corrections and radiation of colour
neutral objects such as glueballs and mesons are neglected.In Ref. [46] the LBO level splittings have
been compared with those determined from meson simulationsusing a non-relativistic (NRQCD) heavy-
quark action. The NRQCD action included only a covariant temporal derivative and the leading covariant
kinetic energy operator; quark spin andD4 terms were neglected. Differences between the two results
originate from both differentO(1/MQ) terms [48] and from the automatic inclusion of mixing effects
between different adiabatic surfaces within the NRQCD simulations. Naively one might expect the
former effect to be ofO(v2) ≈ 10 %. The level splittings (in terms of the hadronic scaler0 and with
respect to the1S state) of the conventional2S and 1P states and four hybrid states were compared
(see Fig. 3.5) and indeed found to agree within10%, strongly supporting the validity of the leading
Born-Oppenheimer picture, at least in the absence of light sea quarks and spin-effects.

A very recent study [50] has demonstrated that theΥ ground state carries little admixture from
hybrids, supporting the LBO, at least in the sector that is governed by the ground state potential. Using
lowest-order lattice NRQCD to create heavy-quark propagators, a basis of unperturbedS-wave and|1H〉
hybrid states was formed. ThecFσ ·B/2MQ spin interaction was then applied at an intermediate time
slice to compute the mixings between such states due to this interaction in the quenched approximation.
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Diagonalizing the resulting two-state Hamiltonian then yielded the admixtures of hybrid configuration
in theΥ andηb. For a reasonable range ofcF values, the following results were obtained:〈1H|Υ〉 ≈
0.076−0.11 and〈1H|ηb〉 ≈ 0.13−0.19. Hence, hybrid mixings due to quark spin effects in bottomonium
are very small. Even in charmonium, the mixings were found not to be large:〈1H|J/Ψ〉 ≈ 0.18 − 0.25
and〈1H|ηc〉 ≈ 0.29 − 0.4. Investigations of the mixing of hybrid states with radiallyexcited standard
quarkonium states which are energetically closer and spatially more extended are certainly an exciting
avenue of future research.

In the absence of light quark loops, one obtains a very dense spectrum of mesonic states since the
VQQ̄(r) potentials increase indefinitely withr. However, the inclusion of light quark loops changes the
VQQ̄(r) potentials. First, there are slight corrections at smallr, and these corrections remove the small
discrepancies of the leading Born-Oppenheimer predictions with experiment below theBB threshold
seen in Fig. 3.5. For larger, the inclusion of light quark loops drastically changes thebehavior of the
VQQ̄(r) potentials: instead of increasing indefinitely, these potentials eventually level off at a separa-
tion above 1 fm when the static quark-antiquark pair, joinedby gluonic flux, can undergo fission into
(Qq̄)(Q̄q), whereq is a light quark andQ is a heavy quark. Clearly, such potentials cannot support
the populous set of states shown in Fig. 3.5; the formation ofbound states and resonances substantially
extending over 1 fm in diameter seems unlikely. A complete open-channel calculation taking the effects
of including the light quarks correctly into account has notyet been done, but unquenched lattice simu-
lations [51] show that theΣ+

g andΠu potentials change very little for separations below 1 fm when sea
quarks are included. This makes it conceivable that a handful of low-lying states whose wavefunctions
do not extend appreciably beyond 1 fm in diameter may exist aswell-defined resonances in nature.

In addition to such direct threshold effects there is the possibility of transitions between different
adiabatic surfaces, mediated by radiation of pions and other light mesons or pairs of light mesons. A first
lattice study of such effects has been performed by McNeile and Collaborators [52].

A recent quenched calculation [8] of bottomonium hybrids using a relativistic heavy-quark action
on anisotropic lattices confirms the predictions of the Born-Oppenheimer approximation, but admit-
tedly, the uncertainties in the simulation results are large. These calculations used a Symanzik-improved
anisotropic gauge action and an improved Fermion clover action. Quenched results on Charmonium
hybrids obtained by employing a relativistic quark actions[12] can be found in Fig. 3.1 and Table 3.1 in
Sec. 2.1. The dominant decay channel for the lightest (1−+) hybrid would be into aD and aD

∗∗
should

it be heavier than the respective threshold, and radiation of a light pseudoscalar or scalar state if lighter.

A determination of the spectrum properly taking into account effects from light quarks is still
needed. Taking the Born-Oppenheimer approximation beyondleading order is also a project for future
work. Monte Carlo computations of relevant matrix elementsinvolving the gauge field can not only
facilitate the evaluation of higher-order terms in the Born-Oppenheimer expansion, but also provide
valuable information on the production and decays of these novel states.

2.23 QQq baryons on the lattice5

While recent lattice results from several groups on three quark static potentials exist [53–57], no such
potentials have been calculated for the situation containing two static sources at distancer, accompanied
by a light quark, as yet. However, two groups have directly studied the situation forQ = c, within the
quenched approximation, one employing the so-called D234 improved Wilson type action [58] as well
as NRQCD [59] on anisotropic lattices and the UKQCD Collaboration employing the relativistic clover
charm quark action [60].

In the NRQCD study [59] two lattice spacings,a ≈ 0.15 fm, 0.22 fm and four light quark masses
have been realized andbbq, ccq as well asbqq andcqq baryons studied. No finite volume checks were per-
formed and radiative corrections to the NRQCD matching coefficients ignored. In the UKQCD study [60]

5Author: G. Bali
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only one lattice spacinga ≈ 0.08 fm and one volume,La ≈ 2 fm were realized. The light quark masses
scattered around the strange quark mass and both, singly anddoubly charmed baryons were studied. All
studies yield consistent results. The values quoted by UKQCD are [60],

Ξcc = 3549(13)(19)(92) MeV , Ωcc = 3663(12)(17)(95) MeV

Ξ∗
cc = 3641(18)(08)(95) MeV , Ω∗

cc = 3734(14)(08)(97) MeV. (3.8)

The first errors are statistical, the second encapsulate uncertainties in the chiral extrapolations and fit
ranges. The third error represents the un-controlled systematics: finitea effects, finite volume effects
and quenching, estimated by comparing the latticeΛc mass to the experimental result.

2.3 pNRQCD6

From the various dynamical scales that play a role in the heavy quarkonium systems, namelym, mv,
mv2 and ΛQCD, only the hard scalem has been factorized in NRQCD and becomes explicit in its
Lagrangian. Only the fact thatm ≫ mv,mv2,ΛQCD is exploited but no use is made of the scale
separation,mv ≫ mv2. A higher degree of simplification is achieved by building another effective
theory, where degrees of freedom of order∼ mv are integrated out as well, i.e. an EFT where only the
ultrasoft degrees of freedom (with energies∼ mv2) remain dynamical. In this way a big simplification is
obtained and analytic calculations of the spectrum become feasible, at least in some dynamical regimes,
at variance with NRQCD where the spectrum can only be obtained in a model independent way by
Lattice calculation. pNRQCD [4, 5] takes advantadge of the fact that for many non-relativistic systems
the scale associated to the size of the systemk ∼ mv is much larger than the binding energyE ∼ mv2.
Therefore it is possible to integrate out the scale of the momentum transferk in a way such that pNRQCD
is equivalent to NRQCD at any desired order inE/k, k/m andαs(µ). Two dynamical situations may
occur here: (1)k is much larger thanΛQCD, (2) k is of the order ofΛQCD. In the first case the matching
from NRQCD to pNRQCD may be performed in perturbation theory, expanding in terms ofαs. In the
second situation, the matching has to be nonperturbative, i.e. no expansion inαs is allowed. We will
refer to these two limits as the weak and strong coupling regimes. Recalling thatk ∼ r−1 ∼ mv, these
two situations correspond to systems with inverse typical radius smaller or bigger thanΛQCD, or systems
respectively dominated by the short range or long range (with respect to the confinement radius) physics.
We will consider these two situations in the following two subsections.

2.31 Weak coupling regime7

Whenk ≫ E >∼ ΛQCD, we are in the perturbative matching regime (v ∼ αs(mαs)). The scale
r ∼ 1/(mv) is integrated out and the pNRQCD Lagrangian consists of a singlet and an octet wave func-
tion field interacting with respective potentials and coupled to ultrasoft gluons. The effective degrees
of freedom are:QQ̄ states (decomposed into a singlet and an octet wave functionunder color transfor-
mations) with energy of order of the next relevant scale,ΛQCD,mv

2 and momentump of ordermv,
plus ultrasoft gluonsAµ(R, t) with energy and momentum of orderΛQCD,mv

2. All the gluon fields are
multipole expanded (i.e. expanded inr). The Lagrangian is then an expansion in the small quantities
p/m, 1/(rm) andO(ΛQCD,mv

2) × r.

The pNRQCD Lagrangian is given at the next to leading order (NLO) in the multipole expansion
by [5] (in the center of mass system) :

LpNRQCD = Tr

{
S†


i∂0 −

p2

m
− Vs(r) −

∑

n≥1

V
(n)
s

mn


S + O†


iD0 −

p2

m
− Vo(r) −

∑

n≥1

V
(n)
o

mn


O

}

6Authors: N. Brambilla, J. Soto
7Authors: N. Brambilla, J. Soto
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+gVA(r)Tr
{

O†r · E S + S†r · EO
}

+ g
VB(r)

2
Tr
{

O†r ·EO + O†Or ·E
}
− 1

4
F aµνF

µνa. (3.9)

The V (n)
s,o , VA, VB are potentials, which play the role of matching coefficientsand contain the non-

analytical dependence inr, to be calculated in the matching between NRQCD and pNRQCD. Poincaré
invariance imposes relations among these matching coefficients [61]. To leading order in the multipole
expansion, the singlet sector of the Lagrangian gives rise to equations of motion of the Schrödinger
type. The other terms in Eq. (3.9) contain (apart from the Yang-Mills Lagrangian) retardation (or non-
potential) effects that start at the NLO in the multipole expansion. At this order the non-potential effects
come from the singlet-octet and octet-octet interactions mediated by an ultrasoft chromoelectric field.

Recalling thatr ∼ 1/(mv) and that the operators count like the next relevant scale,O(mv2,
ΛQCD), to the power of the dimension, it follows that each term in the pNRQCD Lagrangian has a
definite power counting. As a consequence of this power counting the interaction of quarks with ultrasoft
gluons is suppressed in the Lagrangian by a factorv ( by gv if mv2 ≫ ΛQCD) with respect to the LO.

The various potentials in Eq. (3.9) have been calculated at different orders in the perturbative
matching.Vs is known to two loops [O(α3

s )] [62, 63] as well as the leading log of the three loop contri-

bution [64]. Vo is known to two loops (see York Schröder, private communications in Ref. [65]).V (1)
s

is known to two loops [67] andV (2)
s to one loop [68].VA andVB are known at tree level [5] (and are

independent ofr) and have no logs at one loop [70].

Note that the static limit of pNRQCD (m→ ∞) results in a nontrivial theory (unlike in pNRQED),
since both singlet and octet fields remain dynamical and interact through ultrasoft gluons. The static
energy of two infinitely heavy sourcesVQCD(r), which will be discussed below, can be obtained for
small r. In fact, the coefficient of the infrared logarithmic contribution toVQCD(r) first pointed out in
Ref. [71] was calculated using the static pNRQCD Lagrangian[64].

Given the Lagrangian in Eq. (3.9) it is possible to calculatethe quarkonium energy levels. Contri-
butions to the spectrum originate both in quantum mechanical perturbation theory and in the dynamics
of ultrasoft gluons. The latter contributions contain nonperturbative effects and this will be discussed in
the corresponding section below.

The static QCD potential8

For decades, the static QCD potentialVQCD(r), formally defined from an expectation value of the Wilson
loop, has been widely studied for the purpose of elucidatingthe nature of the interaction between heavy
quark and antiquark. The potential at short distances can becomputed by perturbative QCD, whereas
its long distance shape can be computed by lattice simulations. (See Secs. 2.32 and 2.33 for lattice
computations.)

Computations ofVQCD(r) in perturbative QCD have a long history. The 1-loop and 2-loop cor-
rections were computed in Refs. [72–74] and [62, 63, 75–78],respectively. The logarithmic correc-
tion at 3-loops originating from the ultrasoft scale was first pointed out in Ref. [71] and computed in
Refs. [64, 79]. A renormalization-group (RG) improvement of VQCD(r) at next-to-next-to-leading log
(NNLL) was performed in Ref. [70].9

Since the discovery [83–85] of the cancellation ofO(ΛQCD) renormalons betweenVQCD(r) and
twice the quark pole mass10, the convergence of the perturbative series improved drastically and much
more accurate perturbative predictions of the potential shape became available. This feature indicates the
validity of the renormalon dominance picture for the QCD potential and pole mass. According to this
picture, a perturbative uncertainty ofVQCD(r), after cancelling theO(ΛQCD) renormalon, is estimated
to beO(Λ3

QCDr
2) at r ≪ Λ−1

QCD [87].

8Author: Yu. Sumino
9There are estimates of higher-order corrections to the perturbative QCD potential in various methods [80–82].

10For similar work inside HQET see [86].
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An OPE ofVQCD(r) was developed within the pNRQCD framework [5]. In this framework,
residual renormalons, starting fromO(Λ3

QCDr
2), are absorbed into the matrix element of a non-local

operator (non-local gluon condensate). Then, in the multipole expansion atr ≪ Λ−1
QCD, the leading

nonperturbative contribution to the potential becomesO(Λ3
QCDr

2) [5].

Several studies [78,88–91] showed that perturbative predictions forVQCD(r) agree well with phe-
nomenological potentials (determined from heavy quarkonium spectroscopy) and lattice calculations of
VQCD(r), once theO(ΛQCD) renormalon is accounted for. Ref. [92] showed that also a Borel resumma-
tion of the perturbative series yields a potential shape in agreement with lattice results if theO(ΛQCD)
renormalon is properly treated. In fact the agreement holdswithin the expectedO(Λ3

QCDr
2) uncer-

tainty.11 These observations further support the validity of renormalon dominance and of the OPE for
VQCD(r).

Qualitatively, the perturbative QCD potential becomes steeper than the Coulomb potential asr
increases (once theO(ΛQCD) renormalon is cancelled). This feature can be understood, within pertur-
bative QCD, as an effect of therunningof the strong coupling constant [88,89,93].

Using a scale-fixing prescription based on the renormalon dominance picture, it was shown ana-
lytically [94] that the perturbative QCD potential approaches a “Coulomb+linear” form at large orders,
up to anO(Λ3

QCDr
2) uncertainty. The “Coulomb+linear” potential can be computed systematically as

more terms of perturbative series are included via RG; up to NNLL, it shows a convergence towards
lattice results.

Heavy quarkonium spectra12

In recent years, perturbative computations of the heavy quarkonium spectrum (an expansion inαs and
lnαs) have enjoyed a significant development. A full computationof the spectrum up toO(α4

sm) was
performed in Refs. [98, 99]. The spectra up to the same order for the system with unequal heavy quark
masses and with non-zero quark mass in internal loops were computed, respectively, in Refs. [95, 97]
and [77, 95]. Perturbative computations at higher orders were made possible by the advent of effective
field theories such as pNRQCD [4, 5] or vNRQCD [6] and by the threshold expansion technique [100].
TheO(α5

sm lnαs) term originating from the ultrasoft scale was computed in Refs. [64, 69, 79]. Ref.
[101, 102] resummed theα4

sm(αs lnαs)
n terms. The full Hamiltonian at the next-to-next-to-next-to-

leading order was computed in Ref. [68]. Except for the 3-loop non-logarithmic term of the perturbative
QCD potential,13 the energy levels of the1S states were computed up toO(α5

sm) from this Hamiltonian
[103]. The fine splittings have been calculated at NLO orderO(α5

sm) in [104].

In the meantime, the discovery of the renormalon cancellation in the quarkonium spectrum [83–85]
led to a drastic improvement of the convergence of the perturbative expansion of the energy levels.
(See Chapter 6 for precise determinations of the heavy quarkmasses, as important applications.) In
Refs. [93, 95] the whole structure of the bottomonium spectrum up toO(α4

sm) was predicted taking
into account the cancellation of theO(ΛQCD) renormalons, and a good agreement with the experimental
data was found for the gross structure of the spectrum. (Onlythe states below the threshold for strong
decays were considered.) The consistency of the perturbative predictions with the experimental data
seems to indicate that, for bottomonium, the momentum scaleof the system is larger thanΛQCD, i.e.
mv ≫ ΛQCD, up to some of then = 3 states. This is, however, in apparent conflict with the fact
that the leading nonperturbative effects scale as a power≥ 4 of the principal quantum number (see
Nonperturbative effectsbelow) and, hence, are expected to be very important for any excited state.

Subsequently, in Refs. [96, 106] a specific formalism based on perturbative QCD was developed:
using the static QCD potential computed in Ref. [78] and taking into account the cancellation of the

11This is true only in the range ofr where the respective perturbative predictions are stable.All perturbative predictions
become uncontrolled beyond certain distances, typically aroundr ∼ Λ−1

QCD.
12Author: Yu. Sumino
13Estimates of the 3-loop correction to the QCD potential havebeen given in various methods [80–82].
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State expt BSV01 [93] BSV02 [95] RS03 [96] BV00 [97]
bb̄ states

13S1 9460 9460 9460 9460
13P2 9913 9916(59) 10012(89) 9956
13P1 9893 9904(67) 10004(86) 9938
13P0 9860 9905(56) 9995(83) 9915
23S2 10023 9966(68) 10084(102) 10032
23P2 10269 10578(258) 10270
23P1 10255 10564(247) 10260
23P0 10232 10268 10548(239) 10246
33S1 10355 10327(208) 10645(298) 10315

cc̄ states
13S1 3097 3097
11S0 2980(2) 3056

bc̄ states
11S0 6400(400) 6324(22) 6307(17) 6326 (29)

Table 3.2: Predicted masses ofbb̄, cc̄ and bc̄ states in perturbative QCD-based, renormalon-subtractedcompu-
tations. BSV01 (and BV00) is the full perturbative computation up toO(α4

sm) without non-zero charm-mass
corrections; BSV02 is the full perturbative computation upto O(α4

sm) including non-zero charm-mass correc-
tions; RS03 is based on a specific scheme and specific reorganization of perturbative series, incorporates full
corrections up toO(α4

sm) in the individual levels and full corrections up toO(α5
sm) in the fine splittings, in-

cludes non-zero charm-mass corrections. Errors shown in brackets represent
√
δ2αs

+ δ2h.o. (BSV01,BV00) and
√
δ2αs

+ δ2h.o. + δ2mc
(BSV02), respectively, whereδαs

originates from the error ofαs(MZ), δh.o. is the error due
to higher-order corrections, andδmc

is the error in the finite charm mass corrections. The errors do not include non-
perturbative contributions estimates. Numbers without errors are those without explicit or reliable error estimates
in the corresponding works.
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Level splitting expt PT88 [105] BSV01 [93] BSV02 [95] RS03 [96] RS04 [106] KPPSS03[107] PPSS04[108]
bb̄ states

13P2 – 13P1 20 12 8 18(10)
13P1 – 13P0 33 −1 9 23(10)
23P2 – 23P1 13 16 11(10)
23P1 – 23P0 23 14 14(10)
13S1 – 11S0 44(11) 39(11)+9

−8

23S1 – 21S0 21(8)
33S1 – 31S0 12(9)

13Pcog – 11P1 −0.5 −0.4(0.2)
23Pcog – 21P1 −0.4 −0.2(0.1)

cc̄ states
13P2 – 13P1 46 43(24)
13P1 – 13P0 95 56(34)
13S1 – 11S0 118(1) 88(26) 104
23S1 – 21S0 32(10) 38(36)

13Pcog – 11P1 −0.9 −1.4 −0.8(0.8)

bc̄ states
13S1 – 11S0 65(24)+19

−16

Table 3.3: Predicted fine and hyperfine splittings (in MeV) ofbb̄ and cc̄ states in perturbative QCD-based,
renormalon-subtracted computations.3Pcog denotes the centre of gravity of the tripletP -wave states. PT88
extracts the matrix elements ofO(1/m2) operators from the experimental values for the fine splittings, instead
of computing them from perturbative QCD. BSV01 is the full perturbative computation up toO(α4

sm) without
non-zero charm-mass corrections. BSV02 is the full perturbative computation up toO(α4

sm) including non-zero
charm-mass corrections; RS03 and RS04 are based on specific schemes and specific reorganization of perturbative
series, incorporate full corrections up toO(α5

sm) in the splittings, and include non-zero charm-mass corrections.
KPPSS03 and PPSS04 are the full NNLL computation [up to orderα5

sm× (αs lnαs)
n)] without non-zero charm-

mass corrections. Errors are shown in brackets when explicit and reliable estimates are given in the respective
works. The errors do not include nonperturbative contributions estimates except in KPPSS03 and PPSS04 where
they were roughly estimated using the multipole expansion.
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O(ΛQCD) renormalons, the Schrödinger equation was solved numerically to determine the zeroth-order
quarkonium wave function; all the corrections up toO(α5

sm) for the fine and hyperfine splittings have
been included. Good agreements were found between the computed and the observed fine and hyper-
fine splittings of the bottomonium and charmonium spectra, in addition to the gross structure of the
bottomonium spectrum14.

In Table 3.2 particularly impressing is the result for the perturbative calculation of theBc mass,
that, with finite charm mass effects included, is equal to6307 ± 17GeV and is in complete agreement,
inside errors and with small errors, with lattice NRQCD unquenched result given in Eq. (4).

These analyses have shown that the perturbative predictions of the spectra agree with the corre-
sponding experimental data within the estimated perturbative uncertainties, and that the size of nonper-
turbative contributions is compatible with the size of perturbative uncertainties.

Although uncertainties of the perturbative predictions for the individual energy levels grow rapidly
for higher excited states, level spacings among them have smaller uncertainties, since the errors of the
individual levels are correlated. In particular, uncertainties of the fine and hyperfine splittings are sup-
pressed due to further cancellation of renormalons. These features enabled sensible comparisons of the
level structures including the excited states.

In predicting the spectrum, pNRQCD is a useful tool not only for fully perturbative computa-
tions but also for factorizing short-distance contributions into matching coefficients (perturbatively com-
putable) and nonperturbative contributions into matrix elements of operators [5, 48]. This will be dis-
cussed inNonperturbative effectsbelow.

The Renormalization group in heavy quarkonium spectroscopy 15

In recent years, there has been a growing interest to performrenormalization group analysis in heavy
quarkonium [6, 70, 101, 102, 107, 108, 110–117]. In many cases this interest has been driven by the
lack of convergence and strong scale dependence one finds in the fixed (NNLO) analysis performed for
sum rules andt-t̄ production near threshold (see Chapter 6). This problem hasturned out to be highly
non-trivial. We will focus here on computations related with spectroscopy.

The heavy quarkonium spectrum is known with NNLL accuracy [101, 102]. These expressions
have not yet been used for phenomenological analysis of single heavy quarkonium states either in bot-
tomonium and charmonium systems. It would be very interesting to see what their effects on the spectra
are.

The hyperfine splitting of the heavy quarkonium spectrum is known with LL [113,114] and NLL
accuracy for the bottomonium and charmonium spectrum [107]and also for theBc spectrum [108]. For
those observables a phenomenological analysis has been performed. The predictions can be found in
Table 3. The general trend is that the introduction of these effects improves the agreement with exper-
iment (when experimental data are available). In particular, the resummation of logarithms brings the
perturbative prediction of the hyperfine splitting of charmonium significantly closer to the experimental
figure if compared with a NLO computation. It is then possibleto give predictions for the hyperfine
splitting of the ground state of bottomonium, and in particular for theηb(1S) mass, as well as for the
hyperfine splitting of theBc ground state. In these computations a threshold mass was used (equivalent
to the pole mass at this order). In any case, it should also be mentioned that the use of theMS mass may
give a NLO value for the charmonium hyperfine splitting in agreement with experiment [109].

As a final remark, for the bottomonium, charmonium andBc spectrum, one should be careful,
since the ultrasoft scale may run up to very low scales. On theother hand the general dependence on the
renormalization scale appears to be the same no matter whether we talk of toponium, bottomonium or

14For technical reasons a linear extrapolation of the potential atr > 4.5 GeV−1 was introduced in Ref. [96]. This artefact
was eliminated in Ref. [106], in which it was also shown that effects caused by the linear extrapolation of the potential were
minor.

15Author: A. Pineda
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charmonium. This may point to the fact that the same physics holds for all of them.

Nonperturbative effects16

Given the Lagrangian in (3.9) it is possible to calculate thefull quarkonium energy levels at ordermα5
s

[68,69,79]. At this order the energyEn of the leveln receives contributions both from standard quantum
mechanics perturbation theory and from the singlet-octet interaction (retardation effect) through ultrasoft
gluons. The latter reads

δEn|us = −i g
2

3Nc

∫ ∞

0
dt 〈n|reit(E

(0)
n −ho)r|n〉 〈E(t)E(0)〉(µ). (3.10)

beingE(0)
n andho the binding energy and the octet Hamiltonian respectively,at leading order. When we

assume that the chromoelectric fields have a typical scale∼ ΛQCD, the expression (3.10) allows to dis-
cuss the nature of the leading nonperturbative contributions. Thus the integral in (3.10) is a convolution
of two objects: the exponential with a typical scalemv2 and the chromoelectric correlator with a typical
scaleΛQCD. Depending on the relative size of the two scales three different situations occur:

• if mv2 ≫ ΛQCD, the correlator reduces to the local gluon condensate and one recovers the result
of Refs. [119, 120], which is proportional to the sixth powerof the principal quantum number.
The NLO nonperturbative contribution has been evaluated inRef. [122]. Note, however, that
in this case the dominant contribution to the nonlocal chromoelectric correlator corresponds to
fluctuations of ordermv2, which can be calculated perturbatively [69,79].

• if mv2 ≪ ΛQCD, the exponential can be expanded and one obtains a quadraticshort range nonper-
turbative potential [5, 123]. This potential absorbs the residual renormalons contained in the fully
perturbative computations [5]. For a Coulombic system, itsexpectation value grows as the fourth
power of the principal quantum number.

• if mv2 ∼ ΛQCD, no expansion can be performed and the nonlocal condensate has to be kept. Its
expectation value grows as the fourth power of the principalquantum number [69].

Hence, both nonperturbative potentials and (non-potential) local condensates are obtained from pN-
RQCD in the weak coupling regime for different kinematical limits, see also [124].

2.32 Strong coupling regime17

Whenk >∼ ΛQCD ≫ E, the pNRQCD Lagrangian consist of a singlet wave function field interacting
with a potential and with pseudo-Goldstone bosons [5]. The dynamics of the singlet fieldS is described
by the following Lagrangian (here, we do not specialize to the center of mass system) [48,125]

LpNRQCD = Tr

{
S†
(
i∂0 −

p2
1

2m1
− p2

2

2m2
− V (x1,x2,p1,p2)

)
S

}
(3.11)

The dynamics of the pseudo-Goldstone boson is given by the Chiral Lagrangian [126]. The coupling of
pseudo-Goldston bosons with the singlet field has not been worked out yet. If we ignore this coupling,
we recover in (3.11) the structure of non-relativistic potential models [48, 125]. If we assume thatV is
analytical in1/m, the structure of the potential up to order1/m2 is

V (x1,x2,p1,p2) = V (0)(r) +
V (1,0)(r)

m1
+
V (0,1)(r)

m2
+
V (2,0)

m2
1

+
V (0,2)

m2
2

+
V (1,1)

m1m2
, (3.12)

V (2,0) =
1

2

{
p2

1, V
(2,0)
p2 (r)

}
+
V

(2,0)
L2 (r)

r2
L2

1 + V (2,0)
r (r) + V

(2,0)
LS (r)L1 · S1, (3.13)

16Authors: N. Brambilla, J. Soto
17Authors: N. Brambilla, J. Soto
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V (0,2) =
1

2

{
p2

2, V
(0,2)
p2 (r)

}
+
V

(0,2)
L2 (r)

r2
L2

2 + V (0,2)
r (r) − V

(0,2)
LS (r)L2 · S2, (3.14)

V (1,1) = −1

2

{
p1 · p2, V

(1,1)
p2 (r)

}
−
V

(1,1)
L2 (r)

2r2
(L1 · L2 + L2 · L1) + V (1,1)

r (r)

+V
(1,1)
L1S2

(r)L1 · S2 − V
(1,1)
L2S1

(r)L2 · S1 + V
(1,1)
S2 (r)S1 · S2 + V

(1,1)
S12

(r)S12(r̂), (3.15)

wherer = |r|, r = x1−x2, Lj ≡ r×pj andS12(r̂) ≡ 12r̂·S1 r̂·S2−4S1 ·S2. The requisite of Poincaré
invariance imposes well defined relations among the spin-dependent and velocity dependent potentials
above [127–129]. If one further assumes that the matching toNRQCD can be done in the1/m expansion,
the explicit form of the potentials can be obtained in terms of Wilson loop operators [48, 128–133]. We
display here some of them for illustration (for the form of all the potentials see [48]). For the static
potential we have

V (0)(r)= lim
T→∞

i

T
ln〈W 〉, (3.16)

for the potential at order1/m

V (1,0)
s (r) = lim

T→∞
− g2

4T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′|t− t′|〈〈E(t) · E(t′)〉〉c. (3.17)

At the order1/m2 we display a potential contributing to the spin-dependent (precisely the spin-
orbit) relativistic corrections

V
(2,0)
LS (r) =

c
(1)
F

2r2
ir · lim

T→∞
1

T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′′ (t− t′′) 〈〈gB(x1, t

′′) × gE(x1, t)〉〉

+
c
(1)
S

2r2
r · (∇rV

(0)), (3.18)

(3.19)

and a potential contributing to the spin-independent velocity dependent relativistic corrections

V
(2,0)
p2 (r) =

i

4
r̂ir̂j lim

T→∞
1

T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′′ (t− t′′)2 〈〈gEi(x1, t

′′) gEj(x1, t)〉〉c. (3.20)

The angular brackets〈. . .〉 stand for the average value over the Yang–Mills action,W for the rectangular
static Wilson loop of extensionr×T (the time runs from−T/2 to T/2, the space coordinate fromx1 to
x2):

W ≡ Pexp

{
−ig

∮

r×T
dzµAµ(z)

}
, dzµAµ ≡ dz0A0 − dz · A, (3.21)

and〈〈. . .〉〉 ≡ 〈. . .W 〉/〈W 〉; P is the path-ordering operator. Moreover, we define the connected Wilson
loop withO1(t1),O2(t2) andO3(t3) operator insertions by:

〈〈O1(t1)O2(t2)〉〉c = 〈〈O1(t1)O2(t2)〉〉 − 〈〈O1(t1)〉〉〈〈O2(t2)〉〉. (3.22)

The operatorsEi = F0i andBi = ǫijkF jk/2 (Fµν = ∂µAν−∂νAµ+ig[Aµ, Aν ]) are the chromoelectric
and chromomagnetic field respectively.

Notice that the final result for the potentials (static and relativistic corrections) appears factorized
in a part containing the high energy dynamics (and calculable in perturbation theory) which is inherited
from the NRQCD matching coefficients (thecj , dj , cf Chapter 1, Sec. on NRQCD in Chapter 1), and a
part containing the low energy dynamics given in terms of Wilson loops and chromo-electric and chromo-
magnetic insertions in the Wilson loop [48]. The inclusion of NRQCD matching coefficients solved the
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inconsistency between perturbative one-loop calculations and the Wilson loop approach which arose in
the past [132,134]. The low energy contributions can be calculated on the lattice [135,136] or estimated
in QCD vacuum models [134,137].

Almost all the potentials given in Eq.(3.15) were evaluatedon the lattice in Refs. [135, 136], but
this is not so for the potentials of order1/m, V (1,0), V (0,1). It would be very interesting to have such an
evaluation (the perturbative one exist at two loops [67]) since, phenomenologically, they have not been
considered up to now. In general, it would be very interesting to have updated and more precise lattice
calculations of all the potentials. We recall that these lattice calculations have also a definite impact on
the study of the properties of the QCD vacuum in presence of heavy sources. So far the lattice data
for the spin-dependent and spin-independent potentials are consistent with a flux-tube picture, while it
is only for the spin-dependent terms that the so called scalar confinement is consistent with the lattice
data [48,134,138].

It has recently been shown [139] that the assumption thatV is analytic in1/m is not correct. New
non-analytic terms arise due to the three-momentum scale

√
mΛQCD. These terms can be incorporated

into local potentials (δ3(r) and derivatives of it) and scale as half-integer powers of1/m. Moreover, it
is possible to factorize these effects in a model independent way and compute them within a systematic
expansion in some small parameters. In any case, the corrections to the spectrum coming from these
non-analytical terms are subleading with respect to the terms given in Eq. (3.12).

We emphasize that, in this regime, non-relativistic potential models, as the ones discussed in Sec.
3. are demonstrated to be EFTs of QCD, provided that the potentials used there are compatible with the
ones extracted from QCD (and the interaction with pseudo-Goldstone bosons neglected). It is a matter
of debate, however, which states in bottomonium and charmonium should be considered as belonging to
this regime. On one hand the mass should be sufficiently lowerthan the heavy-light meson pair threshold
to justify the omission of higher Fock state effects. On the other hand if the states are too low in mass
then the perturbative matching regime of Sec. 2.31 will apply and the problem can be further simplified.

Since the potentials are defined in an effective field theory framework they are not plagued by the
inconsistency typically emerging in higher order calculations in potential models. It is well known that at
second order in quantum mechanical perturbation theory thespin dependent terms result in a contribution
which is as large as the leading order one. This is due to the fact that the resulting expression becomes ill-
defined. Regulating it requires to introduce a cut-off (or dimensional regularization). A large cut-off gives
rise to a linear and to a logarithmic divergence. These divergences can be renormalized by redefining the
coupling constant of a delta potential [140]. This is a mere reflection of the fact that when one matches
QCD to NRQCD, one expands the energy and three momentum. Thisinduces infrared divergences in
the matching coefficients. For quarkonium this happens in the calculation of a matching coefficient of
a four Fermion operator at two loops. If one uses a consistentregularization scheme both for the QCD-
NRQCD matching calculation and the quantum mechanical calculation in pNRQCD, the divergences
exactly cancel and, at the end of the day, a totally consistent scale independent result is obtained (for a
QED example see Refs. [141, 142]). Notice that an EFT framework is crucial to understand this second
order calculation and to render the result meaningful.

2.33 The QCD static spectrum and mechanism of confinement18

The spectrum of gluons in the presence of a static quark-antiquark pair has been extensively studied with
high precision using lattice simulations. Such studies involve the calculation of large sets of Wilson loops
with a variety of different spatial paths. Projections ontostates of definite symmetries are done, and the
resulting energies are related to the static quark-antiquark potential and the static hybrids potentials. With
accurate results, such calculations provide an ideal testing ground for models of the QCD confinement
mechanism.

18Authors: N. Brambilla, C. Morningstar, A. Pineda
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The singlet static energy
The singlet static energy is the singlet static potentialV

(0)
s . In the plot 3.6, we report simulation results
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Fig. 3.6: The singlet static energy (quenched and unquenched data) from Ref. [51], see also [143]

both with and without light quark-antiquark pair creation.Such pair creation only slightly modifies the
energies for separations below 1 fm, but dramatically affects the results around 1.2 fm, at a distance
which is too large with respect to the typical heavy quarkonium radius to be relevant for heavy quarko-
nium spectroscopy. At finite temperature, the so-called string breaking occurs at a smaller distance (cf.
corresponding Section in Chapter 7, Media).

One can study possible nonperturbative effects in the static potential at short distances. As it has
already been mentioned in the ”static QCD potential” subsection, the proper treatment of the renormalon
effects has made possible the agreement of perturbation theory with lattice simulations (and potential
models) [78,88–92]. Here we would like to quantify this agreement assigning errors to this comparison.
In particular, we would like to discern whether a linear potential with the usual slope could be added to
perturbation theory. In order to do so we follow here the analysis of Ref. [90, 144], where the potential
is computed within perturbation theory in the Renormalon Subtracted scheme defined in Ref. [81]. The
comparison with lattice simulations [145] in Fig. 3.7 showsthat nonperturbative effects should be small
and compatible with zero, since perturbation theory is ableto explain lattice data within errors. The
systematic and statistical errors of the lattice points arevery small (smaller than the size of the points).
Therefore, the main sources of uncertainty of our (perturbative) evaluation come from the uncertainty in
the value ofΛMS (±0.48 r−1

0 ) obtained from the lattice [146] and from the uncertainty inhigher orders
in perturbation theory. We show our results in Fig. 3.7. The inner band reflects the uncertainty inΛMS

whereas the outer band is meant to estimate the uncertainty due to higher orders in perturbation theory.
We estimate the error due to perturbation theory by the difference between the NNLO and NNNLO
evaluation. The usual confining potential,δV = σr, goes with a slopeσ = 0.21GeV2. In lattice units
we take:σ = 1.35 r−2

0 . The introduction of a linear potential at short distances with such slope is not
consistent with lattice simulations. This is even so after the errors considered in Fig. 3.7 have been
included.

At larger distances,r ≫ ΛQCD, V (0)
s grows linearly, with the string tensionσ = 0.21GeV2. Such

a linear growth of the energy is often taken as evidence that the gluon field forms a flux tube whose
dynamics can be described by an effective string theory. However, it should be pointed out that a linearly
growing potential does not necessarily imply string formation; for example, the spherical bag model also
predicts a linearly rising potential for moderater. It has been shown [147] that the formation of a string-
like flux tube implies a characteristic and universal− π

12r correction to the ground-state energy, deriving
from the zero-point energy of the transverse string vibration. Recent high precision simulations [148]
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(cf. also [149]) show that the coefficient of the1/r correction differs from−π/12 by 12%. The authors
of Ref. [148] introduce anad hocend-effect term with a fit parameterb to the effective string action to
explain this significant difference. However, in a more recent paper [150], these authors show that an
open-closed string duality relation requiresb = 0. Furthermore, a simple resonance model was used in
Refs. [151,152] to show that the Casimir energy expected from a string description could be reproduced
in a model in which string formation was not a good description, concluding that no firm theoretical
foundation for discovering string formation from high precision ground state properties below the 1 fm
scale currently exists.

r0(VRS(r) − VRS(r′) + Elatt.(r
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Fig. 3.7: Plot ofr0(VRS(r) − VRS(r
′) + Elatt.(r

′)) versusr at three loops (estimate) plus the leading single ultrasoftlog

(dashed line) compared with the lattice simulations [145]Elatt.(r). For the scale ofαs(ν), we setν = 1/0.15399 r−1
0 .

νus = 2.5 r−1
0 andr′ = 0.15399 r0. The inner and outer band are meant to estimate the errors inΛMS and perturbative. For

further details see the main text.

Excitations of the static energy

The spectrum of gluons in the presence of a static quark-antiquark pair provides valuable clues
about the nonperturbative dynamics of QCD. Adopting the viewpoint that the nature of the confining
gluon field is best revealed in its excitation spectrum, in Ref. [47], recent advances in lattice simulation
technology, including anisotropic lattices, improved gauge actions, and large sets of creation opera-
tors,were employed to investigate the static energies of gluonic excitations between static quarks (hybrid
static energies).

In NRQCD (as in QCD) the gluonic excitations between static quarks have the same symmetries
of a diatomic molecule plus charge conjugation. In the centre-of-mass system these correspond to the
symmetry groupD∞h (substituting the parity generator by CP). The mass eigenstates are classified in
terms of the angular momentum along the quark-antiquark axes (|Lz | = 0, 1, 2, . . . which traditionally
are labelled asΣ,Π,∆, . . .), CP (even,g, or odd,u), and the reflection properties with respect to a plane
passing through the quark-antiquark axes (even,+, or odd,−). Only theΣ states are not degenerate with
respect to the reflection symmetry, see also Sec. 2.22. In Fig. 3.8 we display lattice results of the hybrid
static energiesVH obtained from Wilson loops with operators of the appropriate symmetry inserted at
the end points.

D∞h is a subgroup of the rotational symmetry groupO(3) times charge conjugation. In the short-
range limit,r ≪ ΛQCD, the hybrid energies approach so-called gluelump levels that can be classified
according to the usualO(3) JPC . The corresponding operators can be explicitly constructed using
pNRQCD in the static limit [5]. In the case of pure gluodynamics, the spectrum then consists of static
energies which depend onr . The energy units are provided by the only other scale in the problem,ΛQCD.
The gluelumps operators are of the typeTr{OH}, whereO = OaT a corresponds to a quark–antiquark
state in the adjoint representation (the octet) andH = HaT a is a gluonic operator. By matching the QCD
static hybrid operators into pNRQCD, we get the static energies (also called hybrids static potentials)VH
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improved action on a(102 ×30)×60 anisotropic lattice with couplingβ = 2.5 and bare aspect ratioξ = 5. At large distances,

all levels without exception are consistent with the expectations from an effective string theory description. A dramaticlevel

rearrangement is observed in the crossover region between0.5− 2.0 fm. The dashed line marks a lower bound for the onset of

mixing effects with glueball states.

of the gluelumps. At leading order in the multipole expansion, they read [5]

VH(r) = Vo(r) +
1

THg
, (3.23)

beingTHg the correlation time of the corresponding gluelump correlator 〈Ha(t)φ(t, 0)adj
ab H

b(0)〉non−pert.

≃ h e−it/T
H
g . The lattice data confirm that (in the region in which decay into glueball channels is not

yet possible) all theVH behave likeV (0)
o = αs

6r for r→0 cf. Fig. 3.8 and Ref. [65]. The constantTHg
depends on the gluelump operatorH, its inverse corresponds to the mass of the gluelumpH. Note that
THg are scheme and scale dependent. pNRQCD, in whichr is integrated out, predicts the short-range
degeneracies,

Σ+ ′
g ∼ Πg ; Σ−

g ∼ Π′
g ∼ ∆g ; Σ−

u ∼ Πu ; Σ+
u ∼ Π′

u ∼ ∆u . (3.24)

This is confirmed by the lattice data, cf. Fig. 3.8. Similar observations have also been previously made
in the lattice theory in Ref. [153]. It is interesting to notice that the hierarchy of the states, as displayed
in Fig.3.8, is reflected in the dimensionality of the operators of pNRQCD [5,65].

By using onlyE andB fields and keeping only the lowest-dimensional representation we may
identify the operatorH for the short-range hybrids calledΣ+ ′

g (andΠg) with r · E (and r × E) and
the operatorH for the short-range hybrids calledΣ−

u (and Πu) with r · B (and r × B). Hence, the
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corresponding static energies for smallr are

V
Σ+ ′
g ,Πg

(r) = Vo(r) +
1

TEg
, VΣ−

u ,Πu
(r) = Vo(r) +

1

TBg
.

The lattice results of Ref. [47] show that, in the short range,V
Σ+ ′
g ,Πg

(r)>VΣ−
u ,Πu

(r). This supports the

sum-rule prediction [154] that the pseudovector hybrid lies lower than the vector one, i.e.TEg < TBg
and the lattice evaluations of Refs. [65, 153]. In this way, in the short-distance limit, we can relate
the behavior of the energies for the gluonic excitations between static quarks with the large time be-
havior of gluonic correlators. We can extract results for gauge invariant two-point gluon field strength
correlators (which are also the relevant nonperturbative objects in the stochastic vacuum model [137])
〈0|F aµν(t)φ(t, 0)adj

ab F
b
µν(0)|0〉, φ being the adjoint string. One can parameterize these correlators in terms

of two scalar functions:〈0|Ea(t)φ(t, 0)adj
ab Eb(0)|0〉 and 〈0|Ba(t)φ(t, 0)adj

ab Bb(0)|0〉 with correlations
lengths: TE = 1/ΛE andTB = 1/ΛB , respectively. Note that while differences between gluelump
massesΛH are universal the absolute normalization is scheme- and scale-dependent [65].

The matching of pNRQCD to (nf = 0) QCD has been performed in the static limit toO(α3
s )

in the lattice scheme and the (scheme- and scale-dependent)gluelump massesΛH = 1/THg have been
determined both, in the continuum limit from short distanceenergy levels and at finite lattice spacing
from the gluelump spectrum [65]. Perfect agreement betweenthese two determinations was found. It
would be highly desirable to have lattice determinations ateven shorter distances to further increase the
precision of such determinations, however, such calculations are rather challenging due to the need to
properly treat lower-lying glueball scattering states.

The behaviour of the hybrid static energies for larger provides further valuable information on
the mechanism of confinement. The linearly rising ground-state energy isnot conclusive evidence of
string formation [138]. Computations of the gluon action density surrounding a static quark-antiquark
pair in SU(2) gauge theory also hint at flux tube formation [155]. Complementary information come
from the study of the static energies of the gluonic excitations between static quarks. A treatment of the
gluon field in terms of the collective degrees of freedom associated with the position of the long flux
might then be sufficient for reproducing the long-wavelength physics. If true, one then hopes that the
oscillating flux can be well described in terms of an effective string theory [66]. In such a case, the lowest-
lying excitations are expected to be the Goldstone modes associated with the spontaneously broken
transverse translational symmetry. These modes are a universal feature of any low-energy description of
the effective QCD string and have energy separations above the ground state given by multiples ofπ/R.
A well-defined pattern of degeneracies and level orderings among the different symmetry channels form
a very distinctive signature of the onset of the Goldstone modes for the effective QCD string.

The spectrum of more than a dozen levels shown in Fig. 3.8 provides strong evidence that the gluon
field can be well approximated by an effective string theory for large separationsR. For separations above
2 fm, the levels agreewithout exceptionwith the ordering and degeneracies expected from an effective
string theory. The gaps agree well withNπ/R, but a fine structure remains, offering the possibility
to obtain details of the effective QCD string action in future higher precision simulations. For small
R < 2 fm, the level orderings and degeneracies are not consistentwith the expectations from an effective
string description, and the gaps differ appreciably fromNπ/R with N = 1, 2, 3, . . .. Such deviations,
as large as50% or more, cannot be considered mere corrections, making the applicability of an effective
string description problematical. Between 0.5 to 2 fm, a dramatic level rearrangement occurs.

Non-universal details of the underlying string description for large separations, such as higher or-
der interactions and their couplings, are encoded in the finestructure of the spectrum at large separations.
It is hoped that near future simulations will have sufficientprecision to be able to differentiate between
such corrections. In the meantime, the excitation spectrumin other space-time dimensions and other
gauge theories, such asSU(2) andZ(2), are being explored [149,156].
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2.34 pNRQCD for QQQ and QQq baryons19

In the case of a bound state formed by three heavy quarks, still a hierarchy of physical scales similar to
the quarkonium case exists. Consequently, starting from a NRQCD description for each heavy quark, it is
possible to integrate out the scale of the momentum transfer≃ mv and write the pNRQCD Lagrangian
for heavy baryons [157, 158]. Similarly to before two different dynamical situations may occur: the
momentum transfer is much larger thanΛQCD, or it is of orderΛQCD. In the first case the matching is
perturbative and the Lagrangian is similar to Eq.(3.9) withmore degrees of freedom for the quark part:
two octets, one singlet and one decuplet (as it comes from thecolor decomposition of3×3×3) [157]. In
the second case the matching is nonperturbative and the Lagrangian is similar to Eq. (3.11) with only the
three quark singlet as degree of freedom. The (matching) potentials are nonperturbative objects and their
precise expression in terms of static Wilson loop and (chromo)electric and (chromo)magnetic insertions
in static Wilson loops can be calculated [157]. Experimental data for baryons composed by three quarks
are not existing at the moment, however lattice calculationof the three quark potential exist [53–55].

Baryons made by two heavy quarks and a light quarkQQq combine the slow motion of the heavy
quark with the fast motion of the light quark. Thus a treatment combining in two steps an effective
field theory for theQQ interaction and an effective field theory for theQQ degrees of freedom with
the light quark is the most appropriate one. The interest of these states is also related to the fact that
the SELEX experiment recently announced the discovery of four doubly charmed baryon states. This
will be discussed in more detail in Sec. 3.41. The non relativistic motion of the two heavy quarks is
similar to quarkonium while the light quark is moving relativistically around the slowly movingQQ.
Since theQQ is in a color antitriplet state, in the heavy quark limit the system is similar to āQq system.
However, the situation is much more interesting because if one constructs first the EFT for the two heavy
quarks more degrees of freedom enter and depending on the dynamical situation of the physical system,
these degrees of freedom may or may not have a role. In particular if we work under the condition that
the momentum transfer between the two heavy quarks is smaller thanΛQCD, then we can construct a
pNRQCD Lagrangian of the type (3.9) with a triplet and a sextet asQQ degrees of freedom [157]. Such
degrees of freedom, would also be relevant for the study of double charmonia production [159].

2.4 Thresholds effects (EFT)20

For states for whichk ∼ E ∼ ΛQCD, namely close or beyond threshold, one has to stay at the NRQCD
level. It is still an open question whether one can build a suitable EFT to study mixing and threshold
effects.

For a confining potential (e.g. harmonic oscillator), however, the typical momentum transferk
decreases with the principal quantum number whereas both the typical relative three-momentump and
the binding energies increase. For some principal quantum numbern, the binding energy will become
comparable to the momentum transfer and hencek ≥ E will not hold anymore. For these states pN-
RQCD is not a good effective theory anymore (it may still remain a successful model). This is expected
to happen for states close to or higher than the heavy-light meson pair threshold. There is no EFT beyond
NRQCD available for this regime at the moment. Notice also that for somen the typical three momen-
tum will become comparable tom and hence relativistic effects will not be small and NRQCD will not
be a good EFT anymore. This is expected to happen for states much higher than the heavy-light meson
pair threshold. Relativistic quark models like the ones discussed in Sec. 3. are probably unavoidable for
this situation although it is not known at the moment how to link them to QCD.

19Author: N. Brambilla
20Authors: N. Brambilla, J. Soto
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3. Phenomenological approach21

From the discovery of charmonium states [160–162], QCD motivated potential models have played
an important role in understanding quarkonium spectroscopy [163–166]. The initial models describ-
ing charmonium spectroscopy, using a QCD motivated Coulombplus linear confining potential with
colour magnetic spin dependent interactions, have held up quite well. This approach also provides a
useful framework for refining our understanding of QCD and guidance towards progress in quarkonium
physics. The discovery of theΥ family of meson [167] was quickly recognized as abb̄ bound state whose
spectroscopy was well described by the potential model picture used to describe the charmonium system.

In this section we give an overview of potential models of quarkonium spectroscopy [168]. Most
models [169–180] have common ingredients. Almost all such models are based on some variant of the
Coulomb plus linear potential confining potential expectedfrom QCD. Quark potential models typically
include one-gluon exchange and most models also include therunning constant of QCD,αs(Q

2). Finally,
relativistic effects are often included at some level [169–183]. At the minimum, all models we consider
include the spin-dependent effects that one would expect from one-gluon-exchange, analogous to the
Breit-Fermi interaction in QED, plus a relativistic spin-orbit Thomas precession term expected of an
object with spin (the quark or antiquark) moving in a centralpotential. Potential models have been
reasonably successful in describing most known mesons. Although cracks have recently appeared [187,
188] these point to the need for including physics effects that have hitherto been neglected such as
coupled channel effects [188].

In the next section we will give a brief introduction to quarkpotential models and attempt to
describe the differences between models. The subject is roughly thirty years old and a large literature on
the subject exists. It is impossible to cover all variants and we will almost totally neglect the considerable
work that brought us to where we are today. We apologise to allthose whose work we do not properly
cite and hope they understand. In the next sections we compare the predictions of some models with
experiment for thecc̄, bb̄ andcb̄ mesons and point out variations in predictions and how they arise from
the underlying model.

3.1 Potential models22

Quarkonium potential models typically take the form of a Schrödinger like equation:

[T + V ]Ψ = EΨ (3.25)

whereT represents the kinetic energy term andV the potential energy term. We lump into these
approaches the Bethe-Salpeter equation (e.g. Ref. [182, 184]) and quasi-potential approaches (e.g.
Ref. [173]).

Different approaches have been used for the kinetic energy term ranging from the non-relativistic
Schrödinger equation to relativistic kinetic energy [171,179,189]

T =
√
p2 +m2

Q +
√
p2 +m2

Q̄
(3.26)

in the spinless Salpeter equation.

3.11 The potential

The quark-antiquark potential is typically motivated by the properties expected from QCD [48,128–134]
and while there are differences, most recent potentials show strong similarities. It is worth pointing out
that in the early days of quarkonium spectroscopy this was not obvious and much effort was expended

21Author: S. Godfrey
22Author: S. Godfrey

116



in fitting different functional forms of the potential to theobserved quarkonium masses. In the end, the
shape of the potentials converged to a form that one might expect from the asymptotic limits of QCD
and which has been qualitatively verified by Lattice QCD calculations [135] of the expression of the
potentials obtained in the Wilson loop [128–134] and in the EFT [48] approach. This is a great success
of quarkonium phenomenology.

To derive the quarkonium potential we start with QCD where the gluons couple to quarks and to
each other. The quark-gluon interaction is similar to the electron-photon interaction in quantum electro-
dynamics with the Born term for theqq or qq̄ interaction at short distance being the familiar1/r form.
In contrast with QED the gluon self-coupling results in a slow decrease of the effective coupling strength
at short distance. In terms of the Fourier conjugate momentum the lowest order QCD corrections to
αs = g2

s/4π can be parametrized as

αs(Q
2) =

12π

(33 − 2nf ) ln(Q2/Λ2)
(3.27)

wherenf is the number of Fermion flavours with mass belowQ, andΛ ∼ ΛQCD is the characteristic
scale of QCD measured to be∼ 200 MeV. At short distances one-gluon-exchange leads to the Coulomb
like potential

V (r) = −4

3

αs(r)

r
(3.28)

for a qq̄ pair bound in a colour singlet where the factor of4/3 arises from the SU(3) colour factors. At
short distances one-gluon-exchange becomes weaker than a simple Coulomb interaction.

At momentum scales smaller thanΛQCD which corresponds to a distance of roughly 1 fm,αs

blows up and one-gluon-exchange is no longer a good representation of theqq̄ potential. The qualitative
picture is that the chromoelectric lines of force bunch together into aflux tubewhich leads to a distance-
independent force or a potential

V (r) = σr. (3.29)

This has been validated by Lattice QCD calculations. Phenomenologically, every recent model which
we will consider has foundσ ∼ 0.18 GeV2.

Numerous variations of the resulting Coulomb plus linear potential exist in the literature. Some of
the better known ones are the Cornell potential [170], Richardson’s potential [190], and the Buchmüller
Tye potential [191]. Overall, the spin-independent features of quarkonium spectroscopy are well de-
scribed by the potentials just described.

Let us also mention that heavy quark mass corrections to the (static) central (spin and velocity
independent) potential exist, although they have not yet been taken into account in potential models
applications so far. They correspond toV (1,0)

r , V (2,0)
r andV (1,1)

r in Sec. 2.32. Their expressions in
perturbation theory are known [48, 68]. Part ofV

(2,0)
r andV (1,1)

r was included in the phenomenological
application to the spectrum in Refs. [128,129,135,185].

3.12 Spin-dependent potentials

Spin dependent multiplet splittings are an important test of the details of quarkonium models. In partic-
ular, the nature of spin dependent potentials are decided bythe Lorentz nature of the confining poten-
tials [129, 131, 138, 186]. While there is general consensusthat the short distance one-gluon-exchange
piece is Lorentz vector and the linear confining piece is Lorentz scalar this is by no means universal
and other possibilities are vigorously advocated. Gromes described how to obtain the spin-dependent
potentials given the Lorentz structure of the interaction [129] and one can also use the prescription given
in Berestetskij, Lifschitz and Pitaevskij [192]. Simply put, one can obtain the form of the spin dependent
interaction by Fourier transforming the on-shellqq̄ scattering amplitude:

M = [ū(p′f )Γu(p
′
i)] V (Q2) [ū(pf )Γu(pi)] (3.30)
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where theΓ matrices give the Lorentz structure of the interaction andV (Q2) is the Fourier transform of
the spin-independent potential. For example, for a Lorentz-vector interactionΓ = γµ and for a Lorentz-
scalar interactionΓ = I. In principle other forms are possible with each giving riseto characteristic
spin-dependent interactions. These can be found by expanding the scattering amplitude to order(v/c)2

which corresponds to an expansion in inverse powers of quarkmasses. In the early years of quarkonium
phenomenology they were all tried and it was found that the Lorentz-vector one-gluon-exchange plus
Lorentz scalar linear confining potential gave the best agreement with experiment23. Note that the form
of the full QCD potential at order1/m2 [48, 128, 130–133] has now been obtained in the EFT (cf. Sec.
2.32), and while the spin-dependent nonperturbative potential may correspond to a scalar interaction
in the language used above, the velocity-dependent potentials do not fit such a picture. The effective
kernel is thus not a simple scalar, precisely the dependenceboth on the momentum and on the Lorentz
structure is more involved than a pure convolution (i.e. only depending on the momentum transfer) scalar
structure [48,134,138,186]. However, the spin dependencyis well approximated by a scalar interaction
for phenomenological applications. The QCD spin-dependent potentials are explicitly given in Sec. 2.32.
A complete calculation of the spin structure of the spectrumusing the full expression given in Sec. 2.32
does not yet exist.

To lowest order in(v/c)2 the Lorentz-vector one-gluon-exchange gives rise to termsfamiliar
from one-photon exchange in atomic physics. The colour contact interaction, which in the language
of Sec. 2.32 corresponds to takingV (1,1)

S2 (r) at leading order in perturbation theory,

Hcont
qq̄ =

32π

9

αs(r)

mqmq̄
Sq · Sq̄ δ3(r) (3.31)

gives rise to, for example theJ/ψ − ηc splitting. The colour tensor interaction, which in the language of

Sec. 2.32 corresponds to takingV (1,1)
S12

(r) at leading order in perturbation theory,

Hten
qq̄ =

4

3

αs(r)

mqmq̄

1

r3

[
3Sq · r Sq̄ · r

r2
− Sq · Sq̄

]
(3.32)

contributes to splitting ofL 6= 0 spin triplet multiplets like theχcJ andχbJ multiplets. The final spin
dependent term is the spin orbit interaction which has two contributions. The first piece arises from the
colour-magnetic one-gluon-exchange while the second piece is the Thomas precession term which is a
relativistic effect for an object with spin moving in a central potential

Hs.o.
qq̄ = H

s.o.(cm)
qq̄ +H

s.o.(tp)
qq̄ . (3.33)

The colour magnetic piece arising from one-gluon exchange is given by:

H
s.o.(cm)
qq̄ =

4

3

αs(r)

r3

(
Sq

mqmq̄
+

Sq̄

mqmq̄
+

Sq

m2
q

+
Sq̄

m2
q̄

)
· L (3.34)

and the Thomas precession term is given by

H
s.o.(tp)
qq̄ = − 1

2r

∂Hconf
qq̄

∂r

(
Sq

m2
q

+
Sq̄

m2
q̄

)
· L (3.35)

which includes a contribution from both the short distance1/r piece and the linear Lorentz-scalar confin-

ing potential. In the language of Sec. 2.32, both terms in (3.33) are obtained by takingV (1,1)
LS at leading

order in perturbation theory and using the Gromes relation for V (2,0)
LS . In these formulaeαs(r) is the

running coupling constant of QCD.
23Although other forms are still advocated. See Ebertet al. [173,193].
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For mesons consisting of quarks with different flavours suchas theBc meson, charge conjugation
is no longer a good quantum number so states with different total spins but with the same total angular
momentum, like the3P1 −1 P1 and3D2 −1 D2 pairs (i. e. J = L for L ≥ 1) can mix via the spin-
orbit interaction or some other mechanism. Eqns (3.34) and (3.35) can be rewritten to explicitly give the
antisymmetric spin-orbit mixing term:

H−
s.o. = +

1

4

(
4

3

αs

r3
− k

r

)(
1

m2
Q

− 1

m2
Q̄

)
S− · L (3.36)

whereS− = SQ − SQ̄. Consequently, the physical the physicalJ = L (J ≥ 1) states are linear
combinations of3LJ and1LJ states which we describe by the following mixing:

L′ = 1LJ cos θnL + 3LJ sin θnL

L = −1LJ sin θnL + 3LJ cos θnL (3.37)

whereL designates the relative angular momentum of theQQ̄ pair and the subscript is the total angular
momentum of theQQ̄ which is equal toL. Our notation implicitly impliesL − S coupling between
the quark spins and the relative angular momentum. In the limit in which only one quark mass is heavy,
mQ→∞, and the other one is light the states can be described by the total angular momentum of the
light quark which is subsequently coupled to the spin of the heavy quark. This limit gives rise to two
doublets, one withj = 1/2 and the otherj = 3/2 and corresponds to two physically independent mixing
anglesθ = − tan−1(

√
2) ≃ −54.7◦ andθ = tan−1(1/

√
2) ≃ 35.3◦ [194, 195]. Some authors prefer

to use thej − j basis [196] but we will follow theL − S eigenstates convention implied in the spin-
orbit terms given above and include theLS mixing as a perturbation. It is straightforward to transform
between theL− S basis and thej − j basis. We note that radiative transitions are particularlysensitive
to the3LL −1 LL mixing angle with the predictions from the different modelsgiving radically different
results. We also note that the definition of the mixing anglesare fraught with ambiguities. For example,
charge conjugatingcb̄ into bc̄ flips the sign of the angle and the phase convention depends onthe order
of couplingL, SQ andSQ̄ [195].

3.13 Relativistic corrections

The Hamiltonian with the spin-dependent terms as written above is actually inconsistent as it stands as
the terms more singular thanr−2 are illegal operators in the Schrödinger equation. This isresolved
by returning to the full scattering amplitude which has the effect of smearing the coordinater out over
distances of the order of the inverse quark mass and the strengths of the various potentials become de-
pendent on the momentum of the interacting quarks. The smearing of the potentials has the consequence
of taming the singularities. Alternatively, if one regardsthis Hamiltonian in the spirit of effective field
theories, these singular operators are subleading in any reasonable power counting, and hence they must
be treated as a perturbation. They may need regularization (smearing) at higher orders of perturbation
theory, which introduces a scale dependence. This scale dependence cancels against the one of higher
order NRQCD matching coefficients, see Sec. 2.32.

From this starting point different authors [169–180] diverge in how they incorporate further rel-
ativistic corrections. For example, Godfrey and Isgur (GI)[171] use the full relativistic scattering am-
plitude as the starting point but do not take it literally andinstead parameterize the various relativistic
effects. The relativistic smearing is described by a quark form factor and momentum dependent cor-
rections are parametrized in a form that is in keeping with the generalities, if not the details, of theqq̄
scattering amplitude. The reasoning is that the scatteringamplitudes are for free Dirac Fermions while
quarks inside a hadron are strongly interacting and will have off-mass-shell behavior. In addition, in
field theory the Schrödinger equation arises in theqq̄ sector of Fock space by integrating over more
complex components of Fock space such as|qq̄g〉. This integration will introduce additional momentum
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dependence in theqq̄ potential not reflected in eq. (3.30). There are other deficiencies that arise from
taking eq. (3.30) literally. Thus, GI use the full scattering amplitude as a framework on which to build a
semiquantitative model of relativistic effects. While they acknowledge that this procedure is not entirely
satisfactory they argue that it enables them to successfully describe all mesons, from the lightest to the
heaviest, in a unified framework.

In contrast, the more recent work by Ebert, Faustov and Galkin performs an expansion in powers of
velocity, including all relativistic corrections of orderv2/c2, including retardation effects and one-loop
radiative corrections [173, 193]. Ebertet al use a quasipotential approach in which the quasipotential
operator of the quark-antiquark interaction is constructed with the help of the off-mass-shell scattering
amplitude. The expression they derived to describe the spin-independent and spin-dependent corrections
are rather lengthy and we refer the reader to their papers [173, 193, 197]. They found that relativistic
effects are important, particularly in radiative transitions (which are outside the scope of this section).

While the GI calculation [171] assumed a short distance Lorentz-vector interaction and a Lorentz-
scalar confining potential Ebertet al [173, 193] employ a mixture of long-range vector and scalar linear
confining potentials. The effective long-range vector vertex includes an anomalous chromomagnetic
moment of the quark,κ. The fitted value forκ results in the vanishing of the long-range magnetic
contribution to the potential so that the long range confining potential is effectively Lorentz scalar.

In both cases taking the non-relativistic limit recovers eqns. (3.31-3.35). Despite differences in
the details of the various approaches most recent calculations are in fairly good agreement.

3.14 Charm mass corrections to the bottomonium mass spectrum24

For the calculation of the bottomonium mass spectrum it is necessary to take into account additional
corrections due to the non-zero mass of the charm quark [75, 95, 198, 199]. The one-loop correction to
the one-gluon exchange part of the staticQQ̄ potential in QCD due to the finitec quark mass is given
by [75,200]

∆Vmc(r) = −4

9

α2
s (µ)

πr
[ln(

√
a0mcr) + γE + E1(

√
a0mcr)] , E1(x) =

∫ ∞

x
e−t

dt

t
(3.38)

whereγE ∼= 0.5772 is the Euler constant anda0
∼= 5.2. Averaging of∆Vmc(r) over solutions of the

relativistic wave equation with the Cornell and Coulomb potentials yields the bottomonium mass shifts
presented in Table 3.4.

State 1S 1P 2S 1D 2P 3S

〈∆Vmc〉αs=0.22
Cornell [200] −12 −9.3 −8.7 −7.6 −7.5 −7.2

〈∆Vmc〉αs=0.22
Coul −9.5 −4.2 −3.8 −2.3 −2.2 −2.1

〈∆Vmc〉αs=0.3
Coul −20.7 −9.7 −8.8 −5.5 −5.2 −4.9

〈∆Vmc〉Coul [95] −14.3 −22.1 −21.9 −49 −40.5
αs(µ) 0.277 0.437 0.452 0.733 0.698

Table 3.4: Charm mass corrections to the bottomonium masses(in MeV).

The Table 3.4 shows that for a fixed value ofαs the averaging with and without confining potential
substantially differ especially for the excited states. For growingn = nr + L+ 1 the values of〈∆Vmc〉
slowly decrease for Cornell potential whereas for the Coulomb potential with a fixed value ofαs they
fall rapidly. The bottomonium mass spectrum with the account of the finite charm mass corrections was
obtained in Refs. [95,173]

24Author: R. Faustov
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3.15 Coupled-channel effects

An important ingredient that has not received the attentionit deserves but which has been brought to the
forefront by some spectacular recent failures of quark models are coupled channel effects. As the mass of
a quarkonium state approaches the threshold for decay to pairs of flavoured mesons, contributions from
virtual loops of the flavoured meson channels are expected tomake important contributions to masses
and other meson properties [169, 170, 201]. These coupled channel effects are expected to shift masses
from naive quark model predictions and to alter decay and production properties due to higher order
Fock-space components present in the wavefunctions. Thesemay account for the discrepancies between
quark model predictions and those of the recently discovered andX(3872) properties [187,188]. There
has been very little work on this important subject since theoriginal Cornell model [169, 170] and it is
an important topic that needs to be addressed [188]. For the charmonium example the present situation
is discussed in Sec. 3.3.

3.2 Comparison of models with experiment25

3.21 Bottomonium

We start with thebb̄ system as it has the most states observed of any of the heavy quarkonium systems
(see Table 3.5). This is due to the fact that threshold for theZweig allowed decay toBB lies above the
3S state. TheJPC = 1−− n3S1 states are copiously produced ine+e− annihilation and can decay via
E1 transitions to the13PJ and23PJ multiplets. The masses of theχb states provide valuable tests of the
spin-dependence of the various models. In particular, the splittings of the3PJ masses are determined by
the spin-orbit and tensor terms which are sensitive to the presence of vector and scalar interactions. The
Lorentz vector one-gluon-exchange plus Lorentz scalar linear confinement gives a good description of
the data (as long as no velocity dependent corrections are included [185,202].

A test of potential models is their ability to predict as yet unseen properties correctly. Most poten-
tial models predict that the lowestD-wave center of gravity is around 10.16 GeV. Although details of the
multiplet splittings differ most models predict that the splittings are smaller than in theP -wave states.
Thus, the observation of these states represents an important test of potential models.

Recently the CLEO collaboration has observed the firstD-wavebb̄ state in the cascadeΥ(3S)→
χ′
bγ→3DJγγ→χbγγγ→Υ(1S)γγγγ [203]. Due to expected transition probabilities (essentially reli-

able Clebsch factors) it is believed that the observed stateis theJ = 2, 13D2 state. This is an important
observation as it is able to distinguish among the various models [204]. Unfortunately this programme
at CLEO is completed and it is not clear when there will be another opportunity to search for more of the
missing states.

So far no spin singletbb̄ state has been observed. The mass splittings between the singlet and
triplet states is a key test of the applicability of perturbative quantum chromodynamics to thebb̄ system
and is a useful check of lattice QCD results. Theηb (n1S0) states can be produced via M1 radiative
transitions from theΥ (n3S1) states, either unhindered or hindered, and via E1 radiative transitions from
the n1P1 states [205]. In the latter case, the decay chain would beΥ(3S)→hb(

1P1)ππ followed by
hb→ηbγ. The decay chainΥ(3S)→hb + π0→ηb + π0 + γ is also possible [206]. We note that there
does not appear to be a consensus in the literature on the relative importance of the twoΥ→hb hadronic
transitions. The decay chains proceeding via an intermediatehb would also be a means of observing the
hb state. A recent run by CLEO did not lead to reports of the observation of theηb state although the
limits straddles the range of predictions. There is also thepossibility that theηb can be observed by the
Tevatron and LHC experiments.

25Authors:S. Godfrey
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State expt GI85 FU91 EQ94 GJ96 EFG03 ZVR95
[171] [175] [196] [179] [173] [180]

13S1 9460 9465 9459 9464 9460 9460 9460
11S0 9402 9413 9377 9408 9400 9410
13P2 9913 9897 9911 9886 9914 9913 9890
13P1 9893 9876 9893 9864 9893 9892 9870
13P0 9860 9847 9865 9834 9862 9863 9850
11P1 9882 9900 9873 9901 9901 9880
23S1 10023 10003 10015 10007 10016 10023 10020
21S0 9976 9992 9963 9991 9993 10000
13D3 10155 10172 10130 10162 10150
13D2 10162 10147 10166 10126 10158 10150
13D1 10138 10158 10120 10153 10140
11D2 10148 10167 10127 10158 10150
23P2 10269 10261 10269 10242 10270 10268 10280
23P1 10255 10246 10256 10224 10254 10255 10260
23P0 10232 10226 10234 10199 10229 10234 10240
21P1 10250 10261 10231 10259 10261 10270
33S1 10355 10354 10356 10339 10358 10355 10390
31S0 10336 10338 10298 10338 10328 10370

Table 3.5: Predicted and observed masses ofbb̄ states.

3.22 Charmonium

The discovery of theJ/ψ andψ′ states revolutionized our understanding of hadron spectrocopy by
demonstrating that they could be well described by potential models with the qualitative features ex-
pected from QCD (see Table 3.6).

The spin triplet3S1 states are produced copiously ine+e− annihilation and the3PJ states are
produced viaE1 radiative transitions. Theχ0 (3P0), χ1 (3P1) andχ2 (3P2) cc̄ states were first discov-
ered in radiative decays from the23S1 level (theψ(3685)). Theχ states themselves undergo radiative
transitions to theJ/ψ with measured partial widths in reasonable agreement with theoretical predictions
once relativistic effects are taken into account.

The singlet states have been far more elusive. The11S0 state has been known for some time,
seen in magnetic dipole (M1) transitions from both theJ/ψ andψ′. In contrast, a strong claim for
observation of the21S0 state has only occurred recently, first with its observationin the decayB→Kη′c,
η′c→KsK

+π− by the Belle Collaboration [207] and its subsequent observation by Belle in the mass
spectrum recoiling againstJ/ψ in e+e− annihilation [208] and by CLEO [209] and Babar [210] inγγ
collisions. While the mass measurement by Belle was higher than expected by most quark potential
models, the current world average [245] is in reasonable agreement with theory.

One place the models disagree is in the mass of the11P1 state relative to the13PJ cog [206].
However, the1P1 state has yet to be confirmed. The13Pcog − 11P1 splitting is dependent on the Lorentz
structure of the interquark potentials and relativistic corrections so that thehc mass measurement is an
important test of perturbative QCD and more phenomenological quark potential models which have a
large variation of predictions. The decay chainψ′→hc + π0→ηc + π0 + γ has been discussed as a
possible mode of discovery of thehc [206]. Optimistically, one might hope that the current CLEOrun
will see evidence for thehc in this cascade.

The charmoniumD-wave states are predicted to lie aboveDD threshold. Theψ(3770) is associ-
ated with the13D1 state. It’s leptonic width is larger than expected for a pureD state which is probably
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due to mixing with the23S1 state induced by tensor mixing or coupled channel effects. The13D3, 13D2,
and11D2 are predicted to lie close in mass to theψ(3770). A JP = 2− state cannot decay to two0−

particles so the13D2 and1D2 cannot decay toDD and are expected to lie below theD∗D threshold.
They are therefore expected to be narrow with prominent transitions to lowercc̄ states. While there is
no such conservation law for the13D3 state, recent calculations indicate that it should also be relatively
narrow,O(MeV), due to the angular momentum barrier [187,188]. It is therefore possible that allcc̄ D-
wave states will be observed. Acc̄ state has recently been observed inB decay, theX(3872) [211]. It’s
mass is higher than expected by quark models which has led to considerable speculation about whether
it is a conventionalcc̄ state or aDD̄∗ molecule [212]. A number of tests have been proposed to sort this
out [187, 188] and experimental analysis is in progress. Observation of theηc2 andψ(2,3) states would
constrain spin-dependent interactions and provide insights into the importance of coupled channel effects
in the charm threshold region.

State Expt GI85 EQ94 FU91 GJ96 EFG03 ZVR95
[171] [196] [175] [179] [173] [180]

13S1 3096.87 ± 0.04 3098 3097 3104 3097 3096 3100
11S0 2979.8 ± 1.8 2975 2980 2987 2979 2979 3000
13P2 3556.18 ± 0.13 3550 3507 3557 3557 3556 3540
13P1 3510.51 ± 0.12 3510 3486 3513 3511 3510 3500
13P0 3415.0 ± 0.8 3445 3436 3404 3415 3424 3440
11P1 3517 3493 3529 3526 3526 3510
23S1 3685.96 ± 0.09 3676 3686 3670 3686 3686 3730
21S0 3654 ± 10 3623 3608 3584 3618 3588 3670
13D3 3849 3884 3815 3830
13D2 3838 3871 3813 3820
13D1 3769.9 ± 2.5 3819 3840 3798 3800
11D2 3837 3872 3811 3820
23P2 3979 3972 4020
23P1 3953 3929 3990
23P0 3916 3854 3940
21P1 3956 3945 3990
33S1 4100 4088 4180
31S0 4064 3991 4130

Table 3.6: Predicted and observed masses ofcc̄ states (in MeV).

3.23 Bc mesons

TheBc mesons provide a unique window into heavy quark dynamics. Although they are intermediate to
the charmonium and bottomonium systems the properties ofBc mesons are a special case in quarkonium
spectroscopy as they are the only quarkonia consisting of heavy quarks with different flavours. Because
they carry flavour they cannot annihilate into gluons so are more stable and excitedBc states lying below
BD (andBD∗ or B∗D) threshold can only undergo radiative or hadronic transitions to the ground
state pseudoscalar which then decays weakly. This results in a rich spectroscopy of narrow radial and
orbital excitations (Figure 3.9 and Table 3.7) [171,173,174,176,179,180,182,196,213–216]. which are
more stable than their charmonium and bottomonium analogues. The hadronic transitions emitting two
charged pions should offer a good opportunity to reconstruct the excitedBc state.

The discovery of theBc meson by the Collider Detector at Fermilab (CDF) Collaboration [217]
in pp̄ collisions at

√
s = 1.8 TeV has demonstrated the possibility of the experimental study of this
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system and has stimulated considerable interest inBc spectroscopy. Calculations ofBc cross sections
at hadron colliders predict that large samples ofBc states should be produced at the Tevatron and at the
LHC opening up this new spectroscopy. It should therefore bepossible to start exploringcb̄ spectroscopy
at the Tevatron, producing1P and2S states and possibly even theD-wave states in sufficient numbers
to be observed. At the LHC, with its higher luminosity, theD-wavecb̄ states should be produced in a
sizable number so that the LHC should allow the study of the spectroscopy and decay ofBc mesons.
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Fig. 3.9:Bc spectrum.

3.3 Coupling to open-charm channels26

3.31 Theoretical models

Near the threshold for open heavy flavor pair production, there are significant nonperturbative contribu-
tions from light quark pairs to the masses, wavefunctions and decay properties of physicalQQ̄ states.
QCD sum rules [218,219] have been used to obtain some results[220–222] and lattice QCD calculations
extended into the flavor-threshold region [223] should eventually give a firm basis for predictions. How-
ever, at present a more phenomenological approach is required to provide a detailed description of these
effects.

The effects of light quark pairs near open heavy flavor threshold can be described by coupling
the potential modelQQ̄ states to nearby physical multibody states. In this threshold picture, the strong
interactions are broken into sectors defined by the number ofvalence quarks. This separation is rem-
iniscent of the Tamm-Dancoff approximation [224]. The dynamics of theQQ̄ states (with no valence
light quarks,q) is described by the interactionH0. Nonrelativistic potential models are normally used to
determine the properties of the resulting bound states in this sector. In this framework excitations of the
gluonic degrees of freedom would also be contained the spectrum ofH0.

The two meson sectorQq̄ + qQ̄ are described by the HamiltonianH2. In the simplest picture,H2

is assumed to be described the low-lying spectrum of two freeheavy-light mesons. The physical situation
is more complex. At large separation between two mesons the interactions are dominated t-channel pion
exchanges. For states very near threshold such as the X(3872) charmonium state such pion exchange in
attractive channels might have significant effects on properties of the physical states [225]. At somewhat
shorter distances, more complicated interactions exist and new bound states might arise, e.g. molecular
states [226,227].

Our command of quantum chromodynamics is inadequate to derive a realistic description of the
interactions,HI , that communicate between theQQ̄ andQq̄+qQ̄ sectors. Two simple phenomenological

26Authors: E. Eichten
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State GI85 EFG03 FU99 GKLT94 EQ94 GJ96 ZVR95 Lattice
[171] [173] [176] [174] [196] [179] [180]

13S1 6338 6332 6341 6317 6337 6308 6340 6321 ± 30
11S0 6271 6270 6286 6253 6264 6247 62606280 ± 30 ± 190

13P2 6768 6762 6772 6743 6747 6773 6760 6783 ± 30
1P ′

1 6750 6749 6760 6729 6730 6757 6740 6765 ± 30
1P1 6741 6734 6737 6717 6736 6738 6730 6743 ± 30
13P0 6706 6699 6701 6683 6700 6689 6680 6727 ± 30
θ1P 22.4◦ 20.4◦ 28.5◦ 17.1◦ ∼ 2◦ 25.6◦ 33.4 ± 1.5◦

23S1 6887 6881 6914 6902 6899 6886 6900 6990 ± 80
21S0 6855 6835 6882 6867 6856 6853 6850 6960 ± 80

23P2 7164 7156 7134 7153 7160
2P ′

1 7150 7145 7124 7135 7150
2P1 7145 7126 7113 7142 7140
23P0 7122 7091 7088 7108 7100
θ2P 18.9◦ 23.0◦ 21.8◦ 17◦

33S1 7272 7235 7280 7280
31S0 7250 7193 7244 7240
13D3 7045 7081 7032 7007 7005 7040
1D′

2 7036 7079 7028 7016 7012 7030
1D2 7041 7077 7028 7001 7009 7020
13D1 7028 7072 7019 7008 7012 7010
θ1D 44.5◦ -35.9◦ 34.4◦

13F4 7271 7250
1F ′

3 7266 7250
1F3 7276 7240
13F2 7269 7240
θ1F 41.4◦

Table 3.7: PredictedBc masses and Spin-Orbit mixing angles (in MeV).

models have been used to describe this coupling: the Cornellcoupled-channel model (CCC) and the
vacuum quark pair creation model (QPC).

The Cornell coupled-channel model for light quark pair creation [169] generalizes the CornellQQ̄
model [170] without introducing new parameters, writing the interaction Hamiltonian as

HI =
3

8

∑

a

∫
: ρa(r)V (r − r′)ρa(r

′) : d3r d3r′ , (3.39)

whereV is the quarkonium potential andρa(r) =
1

2
ψ†(r)λaψ(r) is the color current density, with

ψ the quark field operator andλa the octet of SU(3) matrices. To generate the relevant interactions,
ψ is expanded in creation and annihilation operators (for up,down, strange and heavy quarks), but
transitions from two mesons to three mesons and all transitions that violate the Zweig rule are omitted.
It is a good approximation to neglect all effects of the Coulomb piece of the potential in Eq.(3.39).
It was shown that this simple model coupling charmonium to charmed-meson decay channels gives a
qualitative understanding of the structures observed above threshold while maintaining the successes of
the single-channelcc̄ analysis below threshold [170].

The characteristic of the CCC model is the use of the time component of a long-range vector
interaction between the heavy quarks color densities rather than the Lorentz scalar confining interaction.
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State Mass Centroid
Splitting

(Potential)
Splitting
(Induced)

11S0

13S1

2 979.9
3 096.9

3 067.6
−90.5
+30.2

+2.8
−0.9

13P0

13P1

11P1

13P2

3 415.3
3 510.5
3 525.3
3 556.2

3 525.3

−114.9
−11.6
+1.5
+31.9

+5.9
−2.0
+0.5
−0.3

21S0

23S1

3 637.7
3 686.0

3 673.9
−50.4
+16.8

+15.7
−5.2

13D1

13D2

11D2

13D3

3 769.9
3 830.6
3 838.0
3 868.3

(3 815)

−40
0
0

+20

−39.9
−2.7
+4.2
+19.0

23P0

23P1

21P1

23P2

3 931.9
4 007.5
3 968.0
3 966.5

3 968

−90
−8
0

+25

+10
+28.4
−11.9
−33.1

Table 3.8: Charmonium spectrum, including the influence of open-charm channels. All masses are in MeV. The penultimate

column holds an estimate of the spin splitting due to tensor and spin-orbit forces in a single-channel potential model. The last

column gives the spin splitting induced by communication with open-charm states, for an initially unsplit multiplet. From [188].

The vacuum quark pair creation model (QPC). This model was developed by Le Yaouancet.
al. [228–230] based on an earlier idea of Micu [231] that the light quark pair is produced from the
vacuum with vacuum quantum numbersJPC = 0++. The model is also referred to as the3P0 model.
The form of the interaction Hamiltonian is

HI = γ

∫
ψ̄ψ(r)d3r (3.40)

The constantγ is a free parameter of the model. This model has been applied to the light meson states
[232,233]. It was first applied above charm threshold by the Orsay group [234].

The main theoretical weakness of the QPC model is its failureto reproduce the vanishing of the
pair production amplitudes for a staticQQ̄ source at zero spatial separation. The flux tube breaking
model [235,236] somewhat addresses this weakness. It has the same basic interaction as the QPC model
(Eq. 3.40) but the integration is only over a region near a ”string” between theQ andQ̄ positions. This
region is defined by a upper bound on the shortest distance between the pair creation point and the string.
Detailed applications of QPC models to the quarkonium systems are presently under investigation [237].

There have been attempts to compare the various models for quark pair creation [185, 238, 239].
At present the most studied system is the open charm threshold region and we will focus on that system
below. However, the same threshold effects are present in the bb̄ states nearBB threshold andcb̄ states
nearDB threshold. A detailed comparison of the scaling behaviour between different heavy quark
systems would provide valuable insight into the correct form for the coupling to light-quark pairs.
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3.32 Mass shifts

The massω of the quarkonium stateψ in the presence of coupling to decay channels is given by:

[H0 + H2 + HI ]ψ = ωψ. (3.41)

Above thresholdω has both a real (mass) and imaginary part (width).

The basic coupled-channel interactionHI (Eq.(3.39) or Eq.(3.40)) appearing in Eq.(3.41) is in-
dependent of the heavy quarks spin, but the hyperfine splittings ofD andD∗, Ds andD∗

s , induce spin-
dependent forces that affect the charmonium states. These spin-dependent forces give rise to S-D mixing
that contributes to theψ(3770) electronic width, for example, and are a source of additional spin splitting.

The masses resulting from a full coupled channel analysis [188] in the CCC model are shown in
the second column of Table 3.8. The parameters of the potential model sector,H0, must be readjusted to
fit the physical masses,ω, to the observed experimental values. To compute the induced splittings, the
bare centroid of the spin-triplet states is adjusted so thatthe physical centroid, after inclusion of coupled-
channel effects, matches the value in the middle column of Table 3.8. The centroid for the 1D masses
is determined by pegging the observed mass of the 13D1 ψ(3770). For the 2P levels, the bare centroid
is adjusted so that the 21P1 level lies at the centroid of a potential-model calculation. The assumed spin
splittings in the single-channel potential model are shownin the penultimate column and the induced
coupled channel spin splittings for initially unsplit multiplets are presented in the rightmost column of
Table 3.8. The shifts induced in the low-lying 1S and 1P levels are small. For the other known states in
the 2S and 1D families, coupled-channel effects are noticeable and interesting.

In a simple potential picture, theηc(2S) level lies below theψ(2S) by the hyperfine splitting given
by

M(ψ(2S)) −M(ηc(2S)) =
|ψ(2S)(0)|2
|ψ(0)|2 [M(ψ) −M(ηc)] . (3.42)

Using the observed 1S hyperfine splitting,M(ψ) −M(ηc) = 117 MeV, one would findM(ψ(2S)) −
M(ηc(2S)) = 67 MeV, which is larger than the observed48.3 ± 4.4 MeV, as is typical for potential-
model calculations.

One important result of coupling the open-charm threshold is that theψ ′ receives a downward
shift of the nearbyDD, that theη′c does not get, as this state does not couple toDD. This is implicitly
present in the early Cornell papers [170], but the shift of spin singlets states was not explicitly calculated.
The effect was first mentioned by Martin and Richard [240, 241], who calculated the size of the effect.
Recent papers using the CCC model interaction [188,242] have confirmed this behaviour. In fact, the 2S
induced shifts in Table 3.8 drawψ′ andη′c closer by20.9 MeV, substantially improving the agreement
between theory and experiment. This suggests that theψ′-η′c splitting reflects the influence of virtual
decay channels.

If the observedX(3872) is a charmonium state, it is most naturally interpreted as the 13D2 or 13D3

level [187, 188]; if not, both these states remain to be observed and the dynamics ofH2 is significantly
richer. As shown in Table 3.8, the coupling to open-charm channels increases the 13D2-13D1 splitting by
about20 MeV, but does not fully account for the observed102 MeV separation betweenX(3872) and
ψ(3770). However the position of the3−− 13D3 level turns out to be very close to3872 MeV.

3.33 Mixing and physical state properties

The physical states are not pure potential-model eigenstates but include components with two virtual
(real above threshold) open flavor meson states. Separatingthe physical state (ψ) intoQQ̄ (ψ0) and two
meson components (ψ2), the resulting separationH by sector leads to an effective Hamiltonian for the
ψ0 sector given by: [

H0 + H†
I

1

ω −H2 + iǫ
HI

]
ψ0 = ωψ0 (3.43)
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State Major Components Zcc̄
ψ(11S0) 0.986|11S0〉 − 0.042|21S0〉 − 0.008|31S0〉 0.974
ψ(13S1) 0.983|13S1〉 − 0.050|23S1〉 − 0.009|33S1〉 0.968

ψ(13P0) 0.919|13P0〉 − 0.067|23P0〉 − 0.014|33P0〉 0.850
ψ(13P1) 0.914|13P1〉 − 0.075|23P1〉 − 0.015|33P1〉 0.841
ψ(11P1) 0.918|11P1〉 − 0.077|21P1〉 − 0.015|31P1〉 0.845
ψ(13P2) 0.920|13P2〉 − 0.080|23P2〉 − 0.015|33P2〉 − 0.002|13F2〉 0.854

ψ(21S0) 0.087|11S0〉 + 0.883|21S0〉 − 0.060|31S0〉 − 0.016|41S0〉 0.791
ψ(23S1) 0.103|13S1〉 + 0.838|23S1〉 − 0.085|33S1〉 − 0.017|43S1〉 0.723

+0.040|13D1〉 − 0.008|23D1〉
ψ(13D1) 0.694|13D1〉 + 0.097 e0.935iπ |23D1〉 + 0.008 e−0.668iπ |33D1〉 0.520

+0.013 e0.742iπ |13S1〉 + 0.168 e0.805iπ |23S1〉 + 0.014 e0.866iπ |33S1〉
+0.012 e−0.229iπ |43S1〉

ψ(13D2) 0.754|13D2〉 − 0.084|23D2〉 − 0.011|33D2〉 0.576
ψ(11D2) 0.770|11D2〉 − 0.083|21D2〉 − 0.012|31D2〉 0.600
ψ(13D3) 0.812|13D3〉 + 0.086 e0.990iπ |23D3〉 + 0.013 e−0.969iπ |33D3〉 0.667

+0.007 e0.980iπ |43D3〉 + 0.016 e0.848iπ |13G3〉

Table 3.9: Charmonium content of states near flavor threshold. The wave functionψ takes account of mixing induced through

open charm-anticharm channels. Unmixed potential-model eigenstates are denoted by|n2s+1LJ〉. The coefficient of the dom-

inant eigenstate is chosen real and positive. The 1S, 1P, 2S,and 13D1 states are evaluated at their physical masses. The

remaining 1D states are considered at the masses in Table 3.8. Zcc represents the(cc̄) probability fraction of each state.

Solving Eq.(3.43) in theQQ̄ sector determines the mixing between the potential model states and
coupling to decay channels. This approach has been described in detail [170] for the CCC model with
HI (Eq. 3.39). An effective Hamiltonian approach has also beenconsidered in the QPC model [201].

The results for the low-lyingcc̄ states is shown in Table 3.9 for the CCC model. The overall
probability for the physical state to be in thecc̄ sector, denotedZcc̄, decreases as open charm threshold is
approached. For states above threshold the mixing coefficients become complex. These mixing effects
contribute to observed S-D mixing as well as modifying radiative transition rates [243, 244]. A more
detailed discussion of these effects appear in the Decay section.

3.34 Zweig-allowed strong decays

Once the mass of a resonance is given, the coupled-channel formalism yields reasonable predictions
for the other resonance properties. Eichten, Lane and Quigg[188] have estimated the strong decay
rates within the CCC model for all the charmonium levels thatpopulate the threshold region between
2MD and2MD∗ . For 13D1 stateψ′′(3770), which lies some40Mev above charm threshold, they obtain
Γ(ψ′′(3770) → DD) = 20.1 MeV, to be compared with the PDG’s fitted value of23.6 ± 2.7 MeV
[245]. The natural-parity 13D3 state can decay intoDD, but its f -wave decay is suppressed by the
centrifugal barrier factor. The partial width is only0.77 MeV at a mass of3868 MeV and the 13D3 may
be discovered as a narrowDD resonance up to a mass of about4000 MeV.

Barnes and Godfrey [187] have estimated the decays of several of the charmonium states into
open charm, using the3P0 model. Their estimates of open-charm partial decay widths into DD are
42.8 MeV for the 13D1 state and3.6 MeV for a 13D3 state at a mass of3868 MeV. They did not carry
out a coupled-channel analysis which makes a direct comparison of models more difficult. Detailed
comparisons (e.g. Ackleh, Barnes and Swanson [238]) between various light quark pair creation models
are highly desirable.
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State Mode ΓEXP (MeV) ΓTHEORY (MeV)
PDG Seth QPC Model CCC model

ψ(3770) (3D1) DD 42.8 20.1
total 23.6 ± 2.7 42.8 20.1

ψ(4040) (3 3S1) DD 0.1
DD∗ 33.
DsDs 8.
D∗D∗ 33.
total 52 ± 10 88 ± 5 74.

ψ(4159) (2 3D1) DD 16.
DD∗ 0.4
D∗D∗ 35.
DsDs 8.
total 78 ± 20 107 ± 8 73.

ψ(4415) (4 3S1) DD 0.4
DD∗ 2.3
D∗D∗ 16.
DsDs 1.3
DsD∗

s 2.6
D∗
sD

∗
s 0.7

total 43 ± 15 119 ± 15

Table 3.10: Open-charm strong decay modes of the1−− states. Experimental widths from the PDG [245] and a recent analysis

of Seth [246]. The theoretical widths using the QPC model [237] and the CCC model [188] are shown. For theψ(4159) some

S wave plus P wave charmed meson two body channels are also open.

Estimates for decay widths of the1−− charmonium states above open-charm threshold in the
3P0 model have recently been reported by Barnes [237]. The comparison with experimentally extracted
values is shown in Table 3.10. Along with the current PDG values for the total widths ofcc̄ resonances,
a reanalysis by Seth [246] of the existing experimental datais also shown in Table 3.10.

The resonance decay widths are determined from fitting measurements of∆R in e+e− annihila-
tion to a model for each resonance including radiative corrections. This whole procedure is complicated
by its dependence on the resonance shape, i.e. the expected non Breit-Wigner nature of the partial widths
for radially excited resonances. It may be more useful for theorists to produce a model of∆R for direct
comparison with data. Greater resolving power between models is possible if the contribution from each
individual open heavy flavor final state is separately reported.

For the CCC model, the structure of∆R(bb̄) in the threshold region was studied in the original
Cornell group works [169, 170] and later extended to the∆R(bb̄) in the threshold region [247]. The
structure of∆R(cc̄) and ∆R(bb̄) has also been studied in QPC models [248]. There are also some
attempts to compare the different models [249,250].

Experiments can also search for additional narrow charmonium states in neutral combinations of
charmed mesons and anticharmed mesons. The most likely candidates correspond to the13D3, 23P2, and
13F4 levels [188, 242, 251]. These detailed analyses of thecc̄ system can be extended to thebb̄ system,
where it may be possible to see discrete threshold-region states in direct hadronic production.
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3.4 QQq states and molecules27

3.41 Doubly charmed baryons

The earliest studies onQQq baryons were based on the flavour group SU(4)F, as an extension of SU(3))F.
After the discovery of hidden and naked charm, some classic papers were written on hadrons with charm,
including a section on(ccq) states [252,253].

Now, our ideas on flavour symmetry have evolved. The conventional SU(n)F approach, with
elegant mass formulae, is replaced byflavour independence. The potential between two quarks is gen-
erated by their colour, and flavour enters only in recoil corrections through the quark mass, mainly for
describing the fine and hyperfine structure.

Flavour independence was the main guide line of the detailedstudies of(QQq) baryons made in
the 80’s and later [254–263]: the dynamics tuned for mesons,light baryons and single-charm baryons
was tentatively extrapolated to the(QQq) sector. More papers came after the recent findings at SELEX
(cf. the experimental part ofthis chapter), for instance Ref. [264], where a link is made with double-charm
exotics, to be discussed shortly.

To study confinement,(QQq) baryons are perhaps the most interesting of ordinary hadrons, as
they combine two extreme regimes in a single bag:

1. the slow relative motion of two heavy quarks, as in charmonium,

2. the fast motion of a light quark. Remember that the electron moves faster in hydrogen than in
positronium. Similarly, a light quark is likely more relativistic in heavy-light hadrons than in light
mesons.

In the(QQq) wave function, the averageQQ separation is smaller than theQq one. This leads to
envisage approximations. One of them consists of replacingthe full three-body calculation by a two-step
procedure where one first calculates theQQ mass, by solving a two-body problem, and then estimates
theQQ − q mass by solving another two-body problem. The second step israther safe. The finite-
size corrections are small. For instance, they cancel out exactly for the harmonic oscillator. As for the
first step, one should be aware that theQQ potential iseffective, since it contains both the directQQ
interaction and a contribution from the light quark. For instance, in the harmonic oscillator model, 1/3 of
theQQ interaction comes from the light quark, and neglecting thisterm results into an underestimation
of energies and spacings by a factor

√
3/2. Another limitation to the quark–diquark picture, is that the

diquark is not frozen. The first excitations ofQQq occur inside the diquark. So one should recalculate
the properties of the diquark for each level.

Another way to take advantage of the large mass ratioM/m is to use the Born–Oppenheimer
approximation, as done, e.g., by Fleck and Richard [254]. For a givenQQ separationr12, the two-centre
problem is solved for the light quark, with proper reduced mass. The ground-state energyE0(r12),
supplemented by the directQQ interaction, provides the adiabatic potentialVQQ. Solving the 2-body
problem with this potential gives the first levels. The adiabatic potential built out of the second “elec-
tronic” energyE1(r12) leads to a second series of levels. This is very similar to thespectroscopy of H+2
in atomic physics.

Within explicit potential models, the Born–Oppenheimer approximation can be checked against an
accurate solution of the 3-body problem, using for instancea systematic hyperspherical expansion. The
approximation is excellent for(bbq) and(ccq), with q = u, d or s, or even for(ssu) or (ssd) [254,265].

In Ref. [254], (ccq) masses were estimated from a specific variant of the bag model, already
used for charmed mesons. The results turn out to be rather sensitive to details such as centre-of-mass
corrections, value of the bag constant, etc. Other bag-model calculations have been performed [266].

Potential models, on the other hand, tend to give very stableresults, when the parameters are
varied while maintaining a reasonable fit of lighter hadrons. One typically obtains:

27Author: J. M. Richard
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• a ground-state near or slightly above3.6 GeV for the(ccu) or (ccd) ground state,

• a hyperfine splitting of about80 MeV between the spin 3/2 and spin 1/2 states,

• the first orbital excitation about300 MeV above the ground-state,

• the first(ccs) state near3.7 GeV

Note that models tuned to(cqq) or lighter baryons might underestimate the short-rangeQQ at-
traction. If models are adjusted to(cc̄) spectroscopy, there is an ambiguity on how to translate it tocc.
The usual recipe stating that

VQQ =
1

2
VQQ̄ , (3.44)

implies pairwise forces mediated by colour-octet exchanges. Small, non-confining, colour-singlet ex-
changes, as well as three-body forces might complicate the issue.

Most existing calculations are of rather exploratory nature, since made when double charm was
considered as science fiction, or far future. Meanwhile, theart of QCD has made significant progress.
One could retain from simple potential models that the Born–Oppenheimer approximation provides an
adequate framework. The effectiveQQ potential could be estimated from relativistic models or from
lattice calculations, similar to those of theQQ̄ potential or the effectiveQQ potential in exotic(QQq̄q̄)
mesons, to be discussed shortly. It is hoped that the new experimental results will stimulate such calcu-
lations.

The literature already contains approaches somewhat more ambitious than simple bag or non-
relativistic potential models: relativistic models [267], QCD sum rules [258], string picture [261], etc.
The lattice QCD approach is presented in Sec. 2.23 and the EFTone is presented in Sec. 2.34.

The appearance of theD∗
s,J state not very far above the ground stateDs of meson with flavour

content(cs̄) has stimulated several studies on the dynamics of light quarks in a static colour field. In
Ref. [268], it is suggested that the same phenomenon will occur for double-charm baryons. On this
respect the doubling of states in the preliminary data by SELEX is of particular interest.

3.42 Exotic mesons with double charm

The physics of multiquarks, though it benefits from a dramatic revival since the tentative discovery of a
light pentaquark, remains penalized by the confusion aboutbaryonium states in the late 70’s and early
80’s. This is actually a difficult field, where speculations about confinement mechanisms should be
combined with delicate few-body calculations.

TheH dibaryon [269], and the heavy pentaquarkP proposed independently by Lipkin [270] and
the Grenoble group [271], owe their tentative stability to chromomagnetic forces, schematically [253]

Hcm = −C
∑

i<j

σi · σj λ̃i · λ̃j
mimj

δ(3)(rij) , (3.45)

or its bag model analogue [272], that describes the observedhyperfine splittings such as∆−N orJ/Ψ−
ηc. The astute observation by Jaffe [269] is that this operatorprovides a binding(ssuudd) − 2(sud) ∼
−150MeV to theH = (ssuudd) dibaryon with spin and isospinJ = I = 0. This estimate, however,
relies on SU(3)F flavour symmetry and〈δ(3)(rij)〉 being independent of(i, j) pair and borrowed from
the wave function of ordinary baryons. Relaxing these hypotheses, and introducing kinetic energy and
spin-independent forces in the 6-body Hamiltonian, and a realistic estimate of short-range correlations,
usually spoils the stability ofH [273–275]. The existence ofH is nowadays controversial. It has been
searched in many experiments, without success so far. For instance, the doubly-strange hypernucleus

Λ
6
ΛHe is not observed to decay intoH + α [276].

If the calculation made for theH is repeated in the limit wherem(Q)→∞, the same binding
(Q̄qqqq)− (Q̄q)− (qqq) ∼ −150MeV is obtained for the pentaquark(Q̄qqqq), qqqq being in a SU(3)F
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triplet [270, 271]. All corrections, again, tend to weaken this binding [275, 277] so it is not completely
sure that the actual pentaquark is stable. See, also, [278].

After the tentative discovery of a light pentaquark state atabout 1.53 GeV, with flavour content
(uudds̄), and possible partners with strangenessS = −2, many authors have revisited the possibility of
stable or metastable pentaquarks with heavy antiflavour. See, for instance Refs. [279–284]. In the light
pentaquark, the binding is achieved by the chiral dynamics of light quarks. A forerunner in this field
was Stancu [285], who proposed positive-parity pentaquarks with a heavy antiquark in a simple potential
model where the chromomagnetic interaction is replaced by ashort-range spin-flavour interaction which
looks like the exchange of Goldstone bosons between quarks.

In short, there are still many open issues for theH dibaryon, the pentaquarks, as well as for
possible light scalar mesons made out of two quarks and two antiquarks. This is, however, more of the
domain of light-quark spectroscopy.

More than twenty years ago, another mechanism for multiquark binding was proposed. It was
pointed out that current confining potentials applied to a(QQq̄q̄) system put its mass below the disso-
ciation threshold into(Qq̄) + (Qq̄), provided the mass ratiom(Q)/m(q) is large enough [286]. This
chromoelectricbinding was studied by several authors, in the context of flavour-independent poten-
tials [264,287–295] or with lattice QCD [296,297] (see, also, [298,299]), with a remarkable convergence
towards the same conclusion. This somewhat contrasts with the confusion in other sectors of multiquark
spectroscopy.

Let us consider, indeed, the limit of a purely flavour-independent potentialV for (QQq̄q̄). The
situation becomes similar to that of exotic four-body molecules(M+,M+,m−,m−), all of them using
the very same Coulomb potential whenM andm are varied. The hydrogen molecule withM ≫ m
is much more stable than the positronium molecule Ps2 with M = m. If one decomposes the 4-body
Hamiltonian as

H4 =

[
M−1 +m−1

4

(
p2

1 + p2
2 + p2

3 + p2
4

)
+ V

]
+
M−1 −m−1

4

(
p2

1 + p2
2 − p2

3 − p2
4

)
, (3.46)

the first term, even under charge conjugation, corresponds to a rescaled equal-mass system withthe same
thresholdasH4. The second term, which breaks charge conjugation, improves the energy ofH4 (one
can applies the variational principle toH4 using the symmetric ground state of the first term as a trial
wave function). In the molecular case, the second term changes the marginally bound Ps2 (or rescaled
copy) into the deeply bound H2. In quark models, an unbound(qqq̄q̄) becomes a stable(QQq̄q̄).

The effectiveQQ potential has been estimated by Rosina et al. [294] in the framework of empir-
ical potential models, and by Mihaly et al. [296] and Michaelet al. (UKQCD) [297], who used lattice
simulations of QCD. The question is obviously: is thec quark heavy enough to make(ccq̄q̄) bound when
q = u or d? At this point, the answer is usually negative, most authorsstating thatb is required to bind
(QQq̄q̄) below its(Qq̄) + (Qq̄) threshold.

There is, however, another mechanism: pion-exchange or, more generally, nuclear-like forces
between hadrons containing light quarks or antiquarks. This effect was studied by several authors, in
particular Törnqvist [300, 301], Manohar and Wise [302], and Ericson and Karl [303]. In particular a
D andD∗ can exchange a pion, this inducing an attractive potential.It is weaker than in the nucleon–
nucleon case, but what matters for a potentialgV (r) to bind, is the productgm of the strengthg and
reduced massm. It is found that(DD∗) is close to be bound, while binding is better established for
(BB∗). The result depends on how sharply the long-range potentialis empirically regularised at short
distances.

A lattice calculation such as those of Refs. [296,297] contains in principle all effects. In practice,
the pion is unphysically heavy such that long-range forces are perhaps not entirely included. Explicit
quark models such as [294] make specific assumptions about interquark forces, but do not account for
pion exchange. In our opinion, a proper combination of long-and short-range forces should lead to bind
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(DD∗), since each component is almost sufficient by itself. This ispresently under active study.

There is a further possibility to build exotic, multicharmed systems. If the interaction between
two charmed mesons is slightly too weak to lead to a bound state (this is presumably the case for(DD),
since pion exchange does not contribute here), it is likely that the very same meson–meson interaction
binds three or more mesons. This is known as the phenomenon of“Boromean” binding.

For instance, in atomic physics, neither two3He atoms nor a3He atom and a4He atom can
form a binary molecule, even at vanishing temperature, but it is found that3He3He4He is bound [304].
Similarly, in nuclear physics, the isotope6He is stable against evaporating two neutrons, or any other
dissociation process, while5He is unstable. In a 3-body picture, this means that(α, n, n) is stable, while
neither(α, n) nor (n, n) have a stable bound state. In short, binding three constituents is easier than two.

3.5 Quarkonium hybrids28

The existence of gluonic excitations in the hadron spectrumis one of the most important unanswered
questions in hadron physics. Hybrid mesons form one such class which consists of aqq̄ with an excited
gluonic degree of freedom. Their spectroscopy has been discussed extensively in the Chapter 3. Recent
observations of charmonium states in exclusiveB-meson decays [207, 305–309] suggest that charmo-
nium hybrid mesons (ψg) [310] with mass∼4 GeV may be produced inB-decay viacc̄ colour octet
operators [311,312]. Some of these states are likely to be narrow with clean signatures toJ/ψπ+π− and
J/ψγ final states. The unambiguous discovery of such a state wouldherald an important breakthrough
in hadronic physics, and indeed, in our understanding of Quantum Chromodynamics, the theory of the
strong interactions. In this section we give a brief overview of charmonium hybrid properties and and
suggest search strategies for charmonium hybrids at existing B-factories [313].

3.51 Spectroscopy

Lattice gauge theory and hadron models predict a rich spectroscopy of charmonium hybrid mesons [12,
23, 235, 310, 314–319]. For example, the flux tube model predicts 8 low lying hybrid states in the 4 to
4.2 GeV mass region withJPC = 0±∓, 1±∓, 2±∓, and1±±. Of these states the0+−, 1−+, and2+−

have exotic quantum numbers; quantum numbers not consistent with the constituent quark model. The
flux-tube model predictsM(ψg) ≃ 4− 4.2 GeV [314,315]; lattice QCD predictions for theJPC = 1−+

state range from 4.04 GeV to 4.4 GeV [23, 317] with a recent quenched lattice QCD calculation [12]
findingM(1−+) = 4.428 ± 0.041 GeV. These results have the1−+ lying in the vicinity of theD∗∗D
threshold of 4.287 GeV. There is the tantalising possibility that the1−+ could lie belowD∗∗D threshold
and therefore be relatively narrow. We refer the reader to the spectroscopy chapter for further details.

3.52 Decays

There are three important decay modes for charmonium hybrids: (i) the Zweig allowed fall-apart mode
ψg→D(∗,∗∗)D̄(∗,∗∗) [320–322]; (ii) the cascade to conventionalcc̄ states, of the typeψg→(cc̄)(gg)→(cc̄)
+(light hadrons) andψg→(cc̄)+γ [323]; (iii) decays to light hadrons via intermediate gluons,ψg→(ng)
→ light hadrons, analogous toJ/ψ→light hadrons andηc→light hadrons. Each mode plays a unique
role.ψg hybrids with exoticJPC quantum numbers offer the most unambiguous signal since they do not
mix with conventional quarkonia.

(i) Decays toD(∗)D(∗): In addition toJPC selection rules (for example,2−+ and2−− decay toDD̄
are forbidden by parity and the exotic hybridψg(0+−) decays toD(∗)D(∗) final states are forbidden
by P and/orC conservation) a general feature of most models of hybrid meson decay is that decays
to two mesons with the same spatial wave function are suppressed [324]. The dominant coupling of

28Author: S. Godfrey
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charmonium hybrids is to excited states, in particularD(∗)(L = 0) + D∗∗(L = 1) states for which
the threshold is∼ 4.3 GeV. This is at the kinematic limit for most mass predictionsso that decays into
the preferredD(∗)D∗∗ states are expected to be significantly suppressed if not outright kinematically
forbidden. A refined version of the Isgur Kokoski Paton flux model [320] predicts partial widths of 0.3-
1.5 MeV depending on theJPC of the hybrid [322]. These widths are quite narrow for charmonia of
such high mass. If the hybrid masses are aboveD∗∗ threshold then the total widths increase to 4-40 MeV
for 4.4 GeV charmonium hybrids which are still relatively narrow for hadron states of such high mass.
The challenge is to identify decay modes that can be reconstructed by experiment.

(ii) Decays to(cc̄)+ (light hadrons): Theψg→(cc̄)+ (light hadrons) mode offers the cleanest signa-
ture forψg observation if its branching ratio is large enough. In addition, a small total width also offers
the possibility that the radiative branching ratios intoJ/ψ, ηc, χcJ , andhc could be significant and offer
a clean signal for the detection of these states.

For masses belowDD∗∗ threshold the cascade decaysψg→(ψ, ηc, . . .) + (gg) and annihilation
decaysψg(C = +)→(gg)→light hadrons will dominate. If the masses of exoticJPC states are above
DD∗∗ threshold their widths are also expected to be relatively narrow for states of such high mass, in
which case cascades to conventionalcc̄ states transitions of the typeψg→(ψ, ψ′)+(light hadrons) should
have significant branching ratios [323] making them important signals to look for inψg searches. In the
Kuang–Yan formalism [325] the matrix elements for hadronictransitions between conventional quarko-
nia are related to hybrid-conventional quarkonium hadronic transitions. A not unreasonable assumption
is that the partial widths for the decaysψg(1−+)→ηc+(ππ, η, η′) andψg(0+−, 2+−)→J/ψ+(ππ, η, η′)
will be similar in magnitude to(cc̄)→ππJ/ψ and(cc̄)→ηJ/ψ, of O(10 − 100) keV.

Estimates of radiative transitions involving hybrids withlight quarks [326,327] found that theE1
transitions between hybrid and conventional states to be comparable in magnitude to transitions between
conventional mesons. While neither calculation can be applied directly tocc̄ one might take this to
suggest that the partial widths forψg(1−+)→γ + (J/ψ, hc) andψg(0+−, 2+−)→γ + (ηc, χcJ) are the
same order of magnitude as transitions between conventional charmonium states. However, a recent
flux-tube model calculations by Close and Dudek [327] found that the∆S = 0 E1 transitions to hybrids
only occur for charged particles, and hence would vanish forcc̄. The∆S = 1 M1 transitions can occur,
but are non-leading and less well defined. Estimates [327] for their widths areO(1 − 100) keV. Clearly,
given our general lack of understanding of radiative transitions involving hybrids, the measurement of
these transitions,ψg→(cc̄)γ, has important implications for model builders.

(iii) Decays to light hadrons: Decays of the typeψg→light hadrons offer the interesting possibility
of producing light exotic mesons. Estimates of annihilation widths to light hadrons will be order of
magnitude guesses at best due to uncertainties in wavefunction effects and QCD corrections. We estimate
the annihilation widthsΓ[ψg(C = −)→ light hadrons] andΓ[cc̄(C = +)→ light hadrons] by comparing
them toΓ(ψ′→ light hadrons) andΓ(η′c→ light hadrons). The light hadron production rate fromψg(C =
−) decays is suppressed by one power ofαs with respect toψg(C = +) decays. This very naive
assumption givesΓ[ψg(C = −)→ light hadrons] ∼ O(100) keV andΓ[cc̄(C = +)→ light hadrons] ∼
O(10) MeV [328]. These widths could be smaller because theqq̄ pair in hybrids is expected to be
separated by a distance of order1/ΛQCD resulting in a smaller annihilation rate than theS-waveψ′ and
η′c states.

3.53 Hybrid production

Recent developments in both theory and experiment lead us toexpect that charmonium hybrids will be
produced inB decays. The partial widths forB→cc̄+X, with cc̄ representing specific final states such as
J/ψ,ψ′,χc0,χc1,χc2, 3D2, 1D2 etc., have been calculated in the NRQCD formalism [3,329–333] which
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factorizes the decay mechanism into short (hard) and nonperturbative (soft) contributions. The hard
contributions are fairly well understood but the soft contributions, included as colour singlet and colour
octet matrix elements, have model dependent uncertainties. Insofar as hybridcc̄ wavefunctions have a
non-trivial colour representation they can be produced viaa colour octet intermediate state. Chiladzeet
al. [312] estimated the branching ratioB[B→ψg(0

+−) + X] ∼ 10−3 for M ∼ 4 GeV (though recent
quenched lattice calculations suggestM(0+−) = 4.70 ± 0.17 GeV, and hence will be inaccessible).
Closeet al. [311] estimate a similar branching ratio to1−+ and argued that ifMg < 4.7 GeV, the total
branching ratio toψg for all JPC could beB[ψg(all JPC) + X] ∼ O(1%). Thus, using two different
approaches for estimatingB[B→ψg +X] both Chiladzeet al. [312] and Closeet al. [311] obtain similar
results. Both calculations estimateB’s of O(0.1−1%) which are comparable to theB’s for conventional
cc̄ states.

3.54 Experimental signatures

The decays discussed above lead to a number of possible signals: ψg→D(∗)D(∗,∗∗), ψg(0+−, 2+−) →
J/ψ + (π+π−, η, η′), ψg(1−+)→ηc + (π+π−, η, η′), ψg→(cc̄)γ, andψg→light hadrons. Of the possi-
ble decay modes,ψg→J/ψπ+π−, ψg→J/ψη, andψg→(cc̄)γ give distinctive and easily reconstructed
signals. In the former case, the subsequent decay,J/ψ→e+e− andµ+µ− offers a clean tag for the
event so that searches for peaks in the invariant mass distributionsM(e+e−π−π+) − M(e+e−) is a
promising search strategy for hybrids. Both the0+− and2+− should decay via theψg→J/ψππ cas-
cade. For theψg lying belowDD∗∗ threshold combining estimates ofB(B→ψg + X) ≃ 10−3 and
B[ψg(2

+−)→J/ψπ+π−] ≃ 0.2 with the PDG value ofB(ψ→ℓ+ℓ−) = 11.81% and the Babar detection
efficiency we estimate that for 100 fb−1 of integrated luminosity each experiment should observe roughly
50 events. If the2+− lies above theDD∗∗ threshold theB for 2+−→J/ψππ decreases significantly to
2.6 × 10−2 lowering the expected number to about 6 events. Similarly, for the0+− hybrid we estimate
roughly 1200 events if it lies below threshold but only 5 events once theDD∗∗ decay modes open up.

The 1−+ state is expected to be the lightest exoticcc̄ hybrid [12, 23] and therefore the most
likely to lie belowDD∗∗ threshold. However, in this case the cascade goes toηcππ, a more difficult
final state to reconstruct. Estimates of the relevant partial widths areB(B→ψg + X) ≃ 10−3 and
B(ψg(1

−+→ηcπ
+π−) ≃ 9 × 10−3. The Babar collaboration studied the decayB→ηcK by observing

the ηc in KKπ andKKKK final states. Combining the PDG values for theB’s to these final states
with the Babar detection efficiencies of roughly 15% and 11% respectively we estimate that for 100 fb−1

each experiment should observe roughly 10 events. If the1−+ lies above theDD∗∗ threshold, theB for
1−+→ππηc decreases to3 × 10−3 lowering the expected number to about 3 events.

The radiative transition,ψg(1−+)→γJ/ψ, also has a distinct signal if it has a significant branching
ratio. The conservative value ofΓ(ψg(1

−+)→γJ/ψ) ≃ 1 keV, yields a rather smallB for this transition.
On the other hand, a monochramatic photon offers a clean tag with a high efficiency. One could look
for peaks inM(µ+µ−γ) −M(µ+µ−). Babar observedχc1 andχc2 this way [307] obtaining≃ 394
χc1’s and≃ 1100 χc2’s with a 20.3 fb−1 data sample and an efficiency of about 20 % for theJ/ψγ final
state [307]. So although the rate may be too small to observe,given the potential payoff, it is probably
worth the effort to perform this search.

Experiments might also look for charmonium hybrids in invariant mass distributions of light
hadrons. For example, Belle observed theχc0 by looking at the invariant mass distributions from the
decaysχc0→π+π− andχc0→K+K− [306]. They found efficiencies of 21% forχc0→π+π− and 12.9%
for χc0→K+K−, obtaining∼ 16 events in the former case and∼ 9 in the latter.

The decay to charmed mesons also needs to be studied. Becausethere are more particles in the final
state it will be more difficult to reconstruct the charmoniumhybrid. On the other hand, with sufficient
statistics these channels will be important for measuring theψg quantum numbers and distinguishing
their properties from conventionalcc̄ states.

135



3.55 Summary and future opportunities

The fundamental problem with all the estimates given above is that they are based on models that have
not been tested against experiment. Observing a charmoniumhybrid and measuring its properties is
necessary to test these calculations. It may be that the models are correct but it is also possible that they
have totally missed the mark.

Establishing the existence of mesons with explicit gluonicdegrees of freedom is one of the most
important challenges in strong interaction physics. As demonstrated by the discovery of theηc(2S) in
B decay,B decays offer a promising approach to discovering charmonium hybrid mesons. We have
focused on how to search for these states inB-decay. Other possibilities are1−− hybrids produced in
e+e− annihilation. These would likely mix with conventional vector quarkonium states so that it would
be very difficult to distinguish them from conventional states. And recently the Belle collaboration
observed theη′c in double charm production ine+e− collisions. Part of the GSI upgrade is to study and
search for charmonium states inpp̄ annihilation. It is quite possible that hybrids can be studied once the
PANDA project comes to fruition. While there is no question that the estimates for the various partial
widths are crude, the essential point is that these states are expected to be relatively narrow and that
distinctive final states are likely to have observable branching ratios. Given how much we can learn by
finding these states we strongly advocate that some effort bedevoted to their searches. In the long term,
with the various facilities mentioned above, we should be able to open up and study an exciting new
spectroscopy.

4. Introduction to experimental spectroscopy†

The experimental spectroscopy review is made of four Sections on charmonia and bottomonia, followed
by a Section onBc, and one on theccq systems. The paragraphs follow a hyerarchical structure, based
on the precision reached in the knowledge of the parameters of these states. Therefore we start from the
vector states (ψ’s andΥ’s), which were first discovered, have the narrowest widths,and are easiest to
produce and detect. At present, with the resonant depolarization technique, it is possible to know these
masses with absolute precision between 10 and 100 keV, and these states are widely used as calibration
tools for HEP detectors.

Sec. 6. scans through triplet P-wave states (known asχc’s andχb’s), which were discovered from
radiative transitions of upper vector excitations.χc’s could not be precisely studied before the 90’s,
when direct access to the formation of these states inp̄p annihilations allowed to reach 100-200 keV
precisions on their masses, and≈ 10% resolution of their total widths. The first two Sections allow to
realize that the S and P wave states of both ortho-charmoniumand -bottomonium constitute a very solid,
well established system of resonant states. These narrow resonances can be detected with very small or
negligible experimental background and have reached the mature stage, from a barely spectroscopical
point of view.

In contrast, all S=0 states are a very active field of researchfor spectroscopy. The best known
among those,ηc(1S) (described in Sec. 7.1) despite being produced with a wide variety of techniques,
has still an uncertainty above 1 MeV on the measured mass, anda rapid progress is expected to happen
in the next few years. Same can be said of the recently re-discoveredηc(2S), described in Sec. 7.1
which greatly benefits from the advent of the new generation of B-factories. The hyperfine splitting on
charmonium S states is then approaching maturity. On the other side, the large amount of data taken
by CLEO atΥ(1, 2, 3S) energies did not yield so far to the discovery ofηb states. A comprehensive
review of these searches, also performed at LEP experimentsand CDF, is then given in 7.2. The elusive
singlet P state of charmonium, namedhc, has been extensively searched by thepp̄ experiments, resulting
in inconclusive evidences; its saga is described in 7.3. With the advent of B-factories, its search has
regained interest.

†Author: R. Mussa
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Being right across the first open charm threshold, charmonium D-wave multiplets still lack a com-
plete understanding, while the first evidence of bottomonium D state comes from the recent CLEO-III
run atΥ(3S), described in subsection 6.3. The phenomenology of all the other vector orbital excitations
is still quite unclear as the different thresholds open up: Rscans between 3.7 and 4.7 GeV are reviewed
in Section 8.1. Further studies on these states have regained priority after the discovery of the narrow
state X(3872), seen by Belle, and confirmed by BaBar, CDF and D0. An overview on the experimental
evidences of this resonance, as well as the current experimental attempts to clarify its nature and its quan-
tum numbers, is given separately in 8.2. Despite its most likely interpretation as one of the two above
mentioned D states, other possible assignments of this resonance, extensively described in the theory
chapter, span from orbital excitations of P wave states to molecular charmonia, opening a wide number
of possible searches in this energy region.

Another field of research which can bloom in the next years, mostly thanks to large samples of B
states taken at the Tevatron as well as Hera-B, is the study oftheBc. Despite the weak decay of its ground
state may accomunate this object to the heavy light mesons, the mass of its two components suggests
that the spectrum of its excited states can be quite similar to the one of charmonium and bottomonium.
The experimental evidence of the ground state of such systemand the searches for its excitations are
described in Section 9.

The last Section is devoted to another class of bound states which share a set of similarities with
the heavy quarkonia. The evidence of the doubly charmed baryons claimed by Fermilab experiment
E781 is still rather weak and is described in Section 10.; further searches, possibly by the B-factories,
are needed before speculating on their phenomenology.

5. High precision measurements of vector state masses and widths

5.1 Charmonia†

The first precise measurement of theJ/ψ(1S) andψ(2S) meson masses [334] set the mass scale in
the range around 3 GeV which provided a base for the accurate determination of the charmonium state
location. The method of resonant depolarization, described in Appendix 8.1 of Chapter 2, has been
developed in Novosibirsk and first applied to theφ meson mass measurement at the VEPP-2M storage
ring [339]. Later it was successfully used to measure massesof theψ- [334] andΥ-meson family [340,
342, 343], see also Ref. [344], in which the values of the masses were rescaled to take into account
the change of the electron mass value. The accuracy of theJ/ψ(1S) meson mass measurement was
later improved in the Fermilabpp̄-experiment E760 [347] to1.2 · 10−5 using theψ(2S) mass value
from Ref. [334]. The new high precision measurement [337] oftheJ/ψ andψ′ meson masses has been
performed at the collider VEPP-4M using the KEDR detector [352]. The polarimeter unit was installed
in the technical straight section of VEPP-4M and consisted of the polarimeter - two scintillation counters
detecting electron pairs of the intrabeam scattering whoserate is spin-dependent (Touschek effect [350])
and the TEM wave-based depolarizer [351]. The characteristic jump in the relative rate of scattered
electrons at the moment of resonant depolarization is3 ÷ 3.5% with the statistical error of 0.3-0.4% for
the beam polarization degree higher than50%. Typical behavior of the rate ratio is shown in Fig. 3.10.

The characteristic uncertainty of the beam energy calibration due to the depolarization procedure
is 1.5 keV.

The first part of the experiment consisted of three scans of the J/ψ(1S) region (the integrated
luminosity≈ 40 nb−1, the beam energy spreadσE ≈ 0.6 MeV) and three scans of theψ(2S) region
(the integrated luminosity≈ 76 nb−1, σE ≈ 0.9 MeV). Then the betatron and synchrotron dumping
decrements of VEPP-4M were rearranged to reduce the energy spread down to 0.45 MeV and the fourth
scan ofJ/ψ(1S) was performed (the integrated luminosity is≈ 10 nb−1). The goal of this was the
verification of systematic errors connected with the collider operating mode and the beam energy spread.

†Author:S. Eidelman
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Fig. 3.10: The variation of the coincidence rate ratio for the polarized and unpolarized beams.

The beam polarization time in the VEPP-4M ring is about 100 hours at theJ/ψ(1S)-energy. For
the energy calibration runs, the beam spent the time sufficient for the polarization in the booster ring
VEPP-3 (2.5 hours atJ/ψ(1S) and about 1 hour atψ(2S) ) and was injected to VEPP-4M without
essential loss of the polarization degree.

During the scan the data were acquired at seven energies around the resonance peak. Before data
acquisition, the beam energy calibration was made at point 1to fix the current energy scale. At points 2–6
the calibrations before and after data taking were performed with the opposite direction of the depolarizer
frequency scan. The point 7 requires no energy calibration.

On completion of the scan the VEPP-4M magnetization cycle was performed and the whole proce-
dure was repeated. The energy dependence of the resonance cross section was fitted taking into account
the interference with continuum and radiative corrections. The results obtained can be presented in the
form

MJ/ψ(1S) −MPDG
J/ψ(1S) = 47 ± 10 ± 7 keV,

Mψ(2S) − MPDG
ψ(2S) = 151 ± 25 ± 9 keV,

demonstrating the agreement with the world average values taking into account their uncertainties of
±40 keV and±90 keV, respectively [245]. The following mass values have been obtained:

MJ/ψ(1S) = 3096.917 ± 0.010 ± 0.007 MeV,

Mψ(2S) = 3686.111 ± 0.025 ± 0.009 MeV.

The relative measurement accuracy reached4 · 10−6 for the J/ψ(1S), 7 · 10−6 for theψ(2S) and is
approximately 3 times better than that of the previous precise experiments in [334] and [347].

The new result for the mass difference is

Mψ(2S) −MJ/ψ(1S) = 589.194 ± 0.027 ± 0.011 MeV.
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Substantial improvement in the beam energy accuracy obtained by the presented experiment sets
a new standard of the mass scale in the charmonium range.

5.2 Bottomonia†

Development of the resonant depolarization method suggested and first realized in Novosibirsk [339,353]
also allowed high precision measurements of the resonance masses in theΥ family. The MD-1 group
in Novosibirsk carried out three independent measurementsof the Υ(1S) mass [340, 342, 343, 354].
The Υ(1S) mass was also measured by the CUSB collaboration in Cornell [345]. Their result was
by 0.63 ± 0.17 MeV or 3.8σ lower than that of MD-1. The reasons of this discrepancy are not clear,
however, when the MD-1 group performed a fit of the CUSB results using the Novosibirsk procedure (in
particular, it included a new method or calculating radiative corrections according to [355] instead of the
older approach of Ref. [356]), the difference between the two results decreased to0.32 ± 0.17 MeV or
1.9σ only.

The mass of theΥ(2S) meson was measured by the MD-1 group in Novosibirsk [342, 354] and
two groups in DESY – ARGUS and Crystal Ball [346]. Both groupsin DESY obtained the mass value
consistent with that in Novosibirsk, the average being0.5 ± 0.8 MeV lower than that of MD-1.

The mass of theΥ(3S) meson was measured by the MD-1 group only [342, 354]. As in thecase
of theΥ(2S) meson, a systematic error of the measurement was less than 0.2 MeV, much smaller than
the statistical one.

Finally, in 2000 all the results on the mass of theψ [334,357] andΥ [340,342,343,354,354] family
resonances were updated [344] to take into account a more precise value of the electron mass [358,359]
(for theψ family an additional correction has been made to take into account the new way of calculating
radiative corrections [355]). In Table 5.2 we summarize theinformation on these experiments presenting
for each detector the number of energy points and the energy range studied, the integrated luminosity
and the final value of the mass. The results after the update mentioned above are shown in parentheses.

Resonance Collider N of Points Detector
∫

Ldt, Mass, MeV√
s, MeV Reference pb−1

Υ(1S) VEPP-4 43 MD-1 [343] 2.0 9460.59 ± 0.09 ± 0.05
9420–9490 ( [344]) (9460.51 ± 0.09 ± 0.05)

CESR 13 CUSB [345] 0.285 9459.97 ± 0.11 ± 0.07
9446–9472

Υ(2S) VEPP-4 37 MD-1 [354] 0.6 10023.6 ± 0.5
9980–10075 ( [344]) (10023.5 ± 0.5)

DORIS 13 ARGUS [346] 2.0 10023.43 ± 0.45
9960–10040 Cr. Ball [346] 2.0 10022.8 ± 0.5

Average [346] 10023.1 ± 0.4 ± 0.5

Υ(3S) VEPP-4 35 MD-1 [354] 1.25 10355.3 ± 0.5
10310–10410 ( [344]) (10355.2 ± 0.5)

Table 3.11: Mass Measurements in theΥ Meson Family

†Author :S. Eidelman
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6. Spin averaged and fine splittings

6.1 Charmonium P states : COG and fine splittings†

The most precise determinations of mass and width come from the study of charmonium spectroscopy
by direct formation of̄cc states in̄pp annihilation at the Fermilab Antiproton Source (experiments E760
and E835). The E760 collaboration measured the resonance parameters of theχc1 andχc2 [360].

For both E760 and E835-I, the transition energy of the Antiproton Accumulator was close enough
to theχc0 mass to prevent stable running with large stacks in this energy region. Nevertheless, a few
stacks were decelerated to theχc0 region at the end of Run I, yielding an unexpectedly high rateof J/ψγ
events. The Accumulator underwent a major upgrade between 1997 and 2000, shifting the transition
energy [362] and allowing a smooth running at theχc0, with substantial increase in statistics [361], and
a better control of systematics.

A new measurement of theχc1 parameters was made in year 2000, with roughly 15 times more
statistics than the predecessor experiment E760. Theχc2 parameters were also remeasured with statistics
comparable to those of experiment E760. This report includes the new results, in publication, not yet
included in the PDG.

The effect of scanning a narrow resonance with a beam of comparable width is show in Fig.3.11,
where the excitation curve for one scan at theχc1 is compared with the deconvoluted Breit Wigner shape
and the measured beam energy profiles for each point.

Fig. 3.11: Measured cross section at each data point, excitation curve (full line) and deconvoluted resonance curve (dotted line)

for one scan at theχc1 ; plotted in the lower part of the figure are the beam energy profiles corresponding to each data point

In mass and width measurements, the systematic error comes from uncertainties on auxiliary vari-
ables measured concurrently to data taking (changes in beamorbit length, efficiency and luminosity at
each energy point), as well as the absolute calibration of the beam energy. The absolute calibration of the
beam energy is deduced from the absolute calibration of the orbit length, done usingψ(2S) scans, and
assuming 3686.000 for the mass of this state. The more precise determination recently done at VEPP-
4, documented in the previous section, implies a systematicshift (up) of 70,83,89 keV of theχc0,1,2
measurements respectively. The systematic error onχc masses fromψ(2S) mass determination reduces

†Authors: R. Mussa, G. Stancari
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then to 16,19,20 keV respectively, and is now negligible if compared to the other sources, which are
uncorrelated when we merge different scans. The impact of radiative corrections to account for proton
bremsstrahlung is still well below other systematic errors; it was estimated using the expression:

σradBW (β, s) = β

∫ √
s

2

0

dk

k

(
2k√
s

)β
σBW (s− 2k

√
s)

with
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2α

π
×


 s− 2m2

p√
s(s− 4m2

p)
× ln

s+
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s(s− 4m2

p)

s−
√
s(s− 4m2

p)
− 1




= 6.7 × 10−3(χc0), 7.0 × 10−3(χc1), 7.2 × 10−3(χc2).

Systematic shifts on masses are∆m(χc0,1,2) = −0.06,−0.01,−0.02MeV/c2 ; the shifts on total widths
are∆Γ/Γ ≈ −1% for all χc states.

R Expt. Mass(MeV/c2) Γ(MeV) Ref.

χc0

BES 3414.1±0.6±0.8 14.3±2.0±3.0 [365]

E835 3415.4±0.4±0.2 9.9±1.0±0.1 [361]

E835 3414.7±0.7±0.2 8.6±1.7±0.1 [363]

PDG 2004 3415.19±0.34 10.1±0.8 [245]

χc1

E760 3510.61±0.10±0.02 0.88±0.11±0.08 [360]

PDG 2004 3510.59±0.10 0.91±0.13 [245]

E835 3510.725±0.065±0.018 0.88±0.06±0.09 [364]

χc2

E760 3556.24±0.07±0.12 1.98±0.17±0.07 [360]

PDG 2004 3556.26±0.11 2.11±0.16 [245]

E835 3556.10±0.09±0.17 1.93±0.19±0.09 [364]

Table 3.12: Parameters ofχc states from E760, E835, and BES

E835 could also measure theχc0 excitation curve in thepp̄→π0π0 channel, exploting the ampli-
fication due to interference with continuum. The measurement is compatible with result obtained inψγ
and of course has correlated systematic errors.

A measurement of mass [365] and width [366] with accuracy almost comparable to the one ob-
tained inpp̄ annihilations was made by BES on theχc0, exploiting the sample of 3.8Mψ ′ decays to
various decay channels. There are not yet mass and width measurements ofχc states from the 14Mψ ′

sample. Table 3.12 summarizes the most accurate results on masses and widths at present. Statistical
errors onχc1,2 masses are obtained from gaussian sums of errors from event statistics and errors from
orbit length measurements; the latter are dominant, therefore future improvements will require to push
fractional errors on orbit lengths below10−6. In the case ofχc0 there is still room for improvement: ten
times more statistics at theχc0 in app̄ annihilation experiment could take errors on masses down to200
keV, and on widths down to 3%. To reach a comparable level on narrow χb states is very challenging,
and will require new ideas.

It is finally possible to present the results on P states by calculating the spin independent (MCOG),
spin-orbit (hLS) and tensor (hT ) terms of thecc̄ Hamiltonian. All values are summarized in Table 3.13.
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cc̄(n = 1)

MCOG (in MeV)
∆M21 = M(χc2) −M(χc1) (in MeV) 45.6±0.2
∆M10 = M(χc1) −M(χc0) (in MeV) 95.3±0.4
ρ(χ) = ∆M21/∆M10 0.470±0.003
hT (in MeV) 10.06±0.06
hLS (in MeV) 34.80±0.09

Table 3.13: Fine splittings betweenχc states

6.2 Bottomonium P states: COG and Fine splittings†

After discovery of theΥ(1S), Υ(2S) andΥ(3S) resonances at the fixed targetpN experiment at Fermi-
lab in 1997 [367] the first two were observed a year later at thee+e− storage ring DORIS at DESY [368].
Since DORIS energy reach was stretched well beyond its design, theΥ(3S) could not be reached. The
limited statistics and limited photon detection capabilities of the detectors prevented observation of the
χbJ(1P ) states via E1 photon transitions fromΥ(2S) at that time. Energy range of anothere+e− storage
ring, CESR at Cornell University, was extended high enough to reach theΥ(3S) in 1982. The CUSB de-
tector at CESR had sufficient photon detection resolution inNaI(Tl)/Lead-glass calorimeter to discover
the threeχbJ(2P ) states in inclusive photon spectrum inΥ(3S) decays [369]. TheJ = 1 andJ = 2
states were also observed in two-photon cascade,Υ(3S) → γχbJ(2P ), χbJ(2P )→γΥ(nS) (n = 1, 2),
followed byΥ(nS)→l+l−, wherel+l− stands fore+e− orµ+µ− [370]. The latter “exclusive” approach
eliminates all photon backgrounds fromπ0s copiously produced in hadronic decays ofbb̄ states, but re-
sults in low signal statistics. In fact, theJ = 0 is very difficult to observe this way since it has larger
gluonic annihilation width, which suppresses branching ratios for radiative transitions. A year later the
CUSB experiment produced similar evidence forχbJ(1P ) states in theΥ(2S) data [371]. TheJ = 2 and
J = 1 states were also observed by the CLEO experiment in inclusive photon spectrum, with photons
reconstructed in the tracking system after conversion toe+e− pairs at the beam-pipe [372].

Meanwhile DORIS accumulated more data at theΥ(2S) resonance with two new detectors: mag-
netic spectrometer ARGUS, and NaI(Tl)-calorimeter Crystal Ball, which previously explored photon
spectroscopy in charmonium at SPEAR. The Crystal Ball confirmed the CUSB results on theχbJ(1P )
states [373], though theJ = 0 photon line was observed at a different energy, soon confirmed by AR-
GUS via photon conversion technique [374]. Analysis of angular correlation inγγl+l− by Crystal Ball
established spin assignment to the observedχb2(1P ) andχb1(1P ) states [375].

Next round of improvements in experimental results came about a decade later from the CESR
upgraded to higher luminosity and upgraded CUSB and CLEO experiments. The CUSB-II detector was
equipped with compact BGO calorimeter. The CLEO-II collaboration built large CsI(Tl) calorimeter
which was put inside the superconductive magnet. Both experiments improved the results onχbJ(2P )
states, with the increasedΥ(3S) data size [376].

A few years later the CLEO-II experiments took a shortΥ(2S) run. Even though the number
of Υ(2S) resonance decays was not much larger than in the previous measurements, the results on
χbJ(1P ) states were substantially improved [377] thanks to much larger photon detection efficiency of
well-segmented CLEO-II calorimeter.

CESR continued to improve its luminosity via the storage ring upgrades. Its running time was
exclusively devoted toB-meson physics with data taken at theΥ(4S) resonance. The CLEO tracking
and particle identification systems were replaced, while the CsI(Tl) calorimeter was preserved. After the
B physics program at CESR had ended, the CLEO-III detector accumulated large samples at the narrow

†Author: T. Skwarnicki
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Fig. 3.14: Measurements of the photon energies inΥ(2S)→γχbJ (1P ). The vertical bars indicate the world average value

(solid) and its error (dashed). These are also listed on top.The thick horizontal bars to the right of the name of the experiment

give the relative weight of each experiment into the averagevalue. Photon energy measurements from analyses of exclusive

γγl+l− events are indicated with an “(e)” after the date of the publication.
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Υ(nS) resonances. Number of collectedΥ(2S) andΥ(3S) resonant decays was increased by an order
of magnitude. Analysis of inclusive photon spectra has beenrecently completed [378]. Photon lines
due toΥ(2S)→γχbJ(1P ) and Υ(3S)→γχbJ (2P ) observed in inclusive photon spectrum are shown
in Fig. 3.12 and Fig. 3.13 respectively. Determination of energies of these photon lines is limited by
the systematic error in calibration of the calorimeter. Thelatter was improved in CLEO-III by analysis
of the ψ(2S) photon spectrum obtained with the same detector [379]. Since the photon energies in
ψ(2S)→γχcJ(1P ) transitions are precisely know from the scans of the resonant cross-sections ine+e−

(ψ(2S)) or p̄p (χcJ ) collisions, theψ(2S) photon lines were turned into the calibration points.

Comparisons of the photon energies forΥ(2S)→γχbJ(1P ) andΥ(3S)→γχbJ(2P ) determined
in various experiments, together with the world average values, are shown in Fig. 3.14 and Fig. 3.15
respectively. The masses of theχbJ(1P ) (χbJ(2P )) states can be calculated from these photon energies
and the masses ofΥ(2S) (Υ(3S)). The errors on the latter are significant, thus the errors onthe masses
of theχbJ(nP ) states are strongly correlated between different values ofJ . These need to be properly
taken into account when calculating the center-of-gravitymass and fine-splitting parameters. The results
are tabulated in Table 3.14.

bb̄(n = 1)

M(χb2) 9912.2±0.4 (in MeV)
M(χb1) 9892.8±0.4 (in MeV)
M(χb0) 9859.5±0.5 (in MeV)
MCOG 9899.9±0.4 (in MeV)
∆M21 = M(χb2) −M(χb1) (in MeV) 19.4±0.4
∆M10 = M(χb1) −M(χb0) (in MeV) 33.3±0.5
ρ(χ) = ∆M21/∆M10 0.584±0.016 (0.574±0.012)
hT (in MeV) 3.27±0.08
hLS (in MeV) 13.64±0.14

bb̄(n = 2)

M(χb2) 10268.7±0.5 (in MeV)
M(χb1) 10255.4±0.5 (in MeV)
M(χb0) 10232.6±0.6 (in MeV)
MCOG 10260.3±0.5 (in MeV)
∆M21 = M(χb2) −M(χb1) (in MeV) 13.3±0.3
∆M10 = M(χb1) −M(χb0) (in MeV) 22.8±0.4
ρ(χ) = ∆M21/∆M10 0.583±0.020 (0.584±0.014)
hT (in MeV) 2.25±0.07
hLS (in MeV) 9.35±0.12

Table 3.14: Masses and fine splittings for theχb(nP ) states obtained from the world average values. The values ofρ given in

brackets come from the CLEO-III measurements [378] and havesmaller errors than the world average values since cancellations

in the systematic errors of photon energies for differentJ values are properly considered.

6.3 Bottomonium D states†

The lowest radial excitations of the D states in charmonium have masses above the theDD̄ meson
threshold. The lightest member of the spin-triplet is a vector state. It is identified with theψ(3770) state,
which is a thirdcc̄ resonance observed in thee+e− cross-section. Unlike theJ/ψ(1S) and theψ(2S)
resonances, theψ(3770) is broad because it decays toDD̄ meson pairs. Since, the coupling of theD

†Author:T. Skwarnicki
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state toe+e− is expected to be small, its largee+e− cross-section is attributed to a significant mixing
between the2S and1D JPC = 1−− states. Whether the narrowX(3872) state is one of the other
members of the1D family is a subject of intense disputes. TheJ=2 states (the spin triplet and the spin
singlet) are narrow below theDD̄∗ threshold, since they can’t decay toDD̄. TheJ =3 state can decay
to DD̄ but, perhaps, its width is sufficiently suppressed by the angular momentum barrier [187]. In all
scenarios, masses of all1D states must be strongly affected by the proximity of open-flavor thresholds
via coupled channel effects.

In contrast, the1D states of bottomonium are well below the open-flavor threshold, thus their
masses are easier to predict theoretically. Unfortunately, the mixing of the2S and1D JPC = 1−− states
is expected to be small for bottomonium. Not surprisingly, theJ =1 1D bb̄ state has not been observed
in e+e− collisions. The spin-triplet states are accessible from the Υ(3S) resonance by two subsequent
E1 photon transitions via intermediateχbJ(2P ) states. Energies of photons in theχbJ(2P )→γΥ(1D)
transitions fall in the same range as the dominantΥ(3S)→γχbJ(2P ) photon lines. Therefore, they
cannot be resolved in the inclusive photon spectrum. Two-photon coincidence is of not much help, since
the photon background fromπ0 decays is very large inΥ(3S) decays. Nevertheless, theΥ(1D) states
have been discovered by CLEO-III in theΥ(3S) decays [380]. The photon backgrounds are removed
by using the “exclusive” approach (see the previous section), in which the three additional decays are
required,Υ(1D)→γχbJ(1P ), χbJ(1P )→γΥ(1S), Υ(1S)→l+l−. Since the product branching ratio
for these five subsequent decays is rather small [204, 381], the large CLEO-III sample of theΥ(3S)
resonances was essential for this measurement. After suppression of theΥ(3S)→π0π0Υ(1S) and 4-
photon cascades via theχbJ(2P ), Υ(2S), χbJ(1P ) states 381D candidates are observed in the CLEO-
III data. The mass of the1D state is estimated by two different techniques, as shown in Fig. 3.16. In
both cases, the mass distribution appears to be dominated byproduction of just one state. The theoretical
and experimental clues point to theJ = 2 assignment. The mass of theΥ2(1D) state is measured by
CLEO-III to be: (10161.1 ± 0.6 ± 1.6) MeV.
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Masses of the other bottomonium1D states remain unknown. However, the fine structure of the
1D spin-triplet is predicted to be small. All potential model calculations predict theΥ2(1D) mass to be
between0.5 and1.0 MeV lower than the center-of-gravity (c.o.g.) mass for thistriplet [204]. Adding this
theoretical input, CLEO obtains(10162± 2) MeV for the c.o.g. mass, where they assigned an additional
uncertainty of 1 MeV to the correction for the13D2−c.o.g. mass difference.

The CLEO-III also looked forΥ(1D)→π+π−Υ(1S) andΥ(1D)→ηΥ(1S) transitions. No evi-
dence for such decays was found and upper limited were set [380]. The upper limit onΥ(1D) → π+ π−

Υ(1S) rules out rather large width for this transition predicted by the Kuang–Yan model [325,382].

7. Hyperfine splittings

7.1 ηc(1, 2S): comparison of all measurements†

Despite the large variety of available data on theηc(1S), the precise determination of its mass and
width is still an open problem. It is likely that unexpected systematic errors be present in some of these
measurements. It is worth to compare the subsets of measurements of masses and widths of theηc done
with the same reaction, before comparing the large variety of techniques which allowed to measure this
state, each one with its own dominant systematic error. The two states share most of the decay channels,
therefore the same analysis is usually applied to extract their signal.

7.11 ηc(1S) inJ/ψ andψ ′ decays

Theηc parameters have been extracted from the radiative transitions ofJ/ψ andψ ′ by a large number
of experiments : while Crystal Ball (and more recently CLEO-c) studied the inclusive photon spectrum,
Mark-II and -III, DM2, BES studied the invariant mass distributions of decay products in reactions
with 2 or 4 charged tracks and 0 to 2 neutral pions. The samplestaken in the 80’s and early 90’s
were recently overwhelmed by the 58 M BES sample. Table 3.15 summarizes the mass and width
measurements done in the past 20 years. Theηc peak is observed in the invariant mass of the following
decay modes:K0

SK
±π∓, π+π−π+π−, π+π−K+K−, K+K−K+K−, pp̄. Figure 3.17 shows two of

these distributions.
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Fig. 3.17: Invariant mass distributions forK0
SK

±π∓(left) andpp̄(right) events from BES

A cut on the kinematic fit to the exclusive hypothesis (referred asJ/ψ veto) is applied, to reject direct
J/ψ decays to the same channels, or feed-down from other decay channels, such as(ω, φ)ππ, ωK+K−,
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γK0
SK

0
S . The systematic errors on mass determination come mostly from the mass scale calibration

(0.8 MeV/c2, calculated by comparingK0
S , φ and evenχc masses with PDG values) and from theJ/ψ

veto. TheJ/ψ veto is also the dominant source of systematics on the total width determination: 5.6 out
of 7.4MeV/c2.

Expt. MarkIII DM2 BES-I BES-II

year 1986 1991 2000 2003

Mass(MeV/c2) 2980.2±1.6 2974.4±1.9 2976.3±2.3±1.2 2977.5±1.0±1.2

Width(MeV) 10.1+33.0
−8.2 - 11.0±8.1±4.1 17.0±3.7±7.4

Sample 2.7MJ/ψ 8.6MJ/ψ 3.8Mψ ′ +7.8MJ/ψ 58MJ/ψ

Table 3.15: The world largest samples ofJ/ψ andψ ′ used for the determination of theηc mass and width.

7.12 ηc(1S) inpp̄ annihilations

The ηc was investigated inpp̄ annihilation only in theγγ channel, which is affected by a substantial
feeddown from the continuum reactionsπ0π0 andπ0γ: both reactions are sharply forward-backward
peaked. The number of ’signal’ events is 12 in R704, 45 in E760and 190 in E835, which respectively
took 0.7,3.6,17.7 pb−1 of data in theηc mass region. It is worth to stress the fact that an increasingamount
of integrated luminosity was taken away from the peak , in order to better understand the size and nature
of the non resonant background. The experiment E835 can discriminate aπ0 from a single photon with
96.8% efficiency: this reduces the feed-down to 0.1%σπ0π0+ 3.2%σπ0γ at

√
s = 2984 MeV/c2.

Fig. 3.18: Cross section (black dots) observed by E760(left) and E835(right) for the reactionpp̄→γγ in the region with

cosθCM <0.25(E760), 0.2(E835). The blank squares show the expectedfeed-down fromπ0π0, π0γ.

The very small sample taken by R704 in the resonant region ends up with a remarkably small result on
theηc width: all this is based on theansatzto have a small background. Such hypothesis was strongly
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disconfirmed by E760, therefore the R704 result is affected by a very large hidden systematic error.
The statement is even stronger, if we take into account that the R704 fiducial region was extended up
to cos(θcm,π0) = 0.35, where the feeddown dominates, and the detector did not havefull azimuthal
coverage (thus introducing an even larger feeddown).

Expt. E760 E835
Ldt (pb−1) 3.6 17.7
m(ηc)( MeV/c2) 2988.3±3.3 2984.1±2.1±1.0
Γ(ηc) ( MeV/c2) 23.9+12.6

−7.1 20.4+7.7
−6.7 ± 2.0

Table 3.16: Comparison of E760 and E835 results.

E835 precisely measured theπ0γ andπ0π0 cross section: the feeddown from these reactions
can account for most of the background. E835 could not exclude the existence of a residual tinyγγ
continuum, which can in principle interfere with the resonant reaction, but is not large enough to shift
the mass peak beyond the statistical error. Figure 3.18, on the right, shows both signal and feed-down
cross section observed in E835. A power law dependence on energy was assumed for the background,
in the fits. The choice of background parametrization and of the fiducial region for the signal are the
dominant sources of systematic error, which amounts to 1MeV/c2 on the mass and 2 MeV on the width.
A comparative summary ofpp̄ measurements onηc(1S) parameters can be found in Table 7.12.

E760 and E835 also searched for theηc(2S) state in the energy range3575MeV/c2 <
√
s <

3660MeV/c2, putting a 90% CL upper limit at≃ 0.4 eV onB(ηc(2S)→pp̄) × Γ(ηc(2S)→γγ).

7.13 ηc(1,2S) in B decays

In the last years, the B-factories have exploited the B mesondecays to charmonium as a new powerful tool
for the measurement of theηc mass [393], as well as for the discovery ofηc(2S) and the measurement
of its mass. Exclusive decays of both B0 and B+ mesons were detected with theηc reconstructed in
theK0

SK
∓π±, K+K−π0, K∗0K∓π±, p̄p decay channels. Exploiting common decay modes, it was

possible to measure the mass difference betweenJ/ψ andηc, Figure 3.19(left) shows the invariant mass
distribution of decay products fromB → K + X in the 2.75-3.2 GeV/c2 region: J/ψ andηc peaks
are clearly visible. Fitting the distribution with a Breit-Wigner convoluted with a MonteCarlo generated
resolution function, it was possible to extract a value of 2979.6±2.3±1.6 MeV/c2 for the mass , and a
total width of 29±8±6 MeV (from a sample of 182±25 events, out of 31.3 MBB̄ pairs). The systematic
errors include the effect of varying the bin size as well as the shape of background, and the difference
between data and MC generated detector resolutions.

TheK0
SK

∓π± final state is an ideal place to look for theηc(2S), a state which was awaiting
confirmation since its first and only observation by Crystal Ball in the inclusive photon spectrum from
ψ ′ decays. In 2002, the Belle collaboration reported the evidence ofηc(2S) production via the exclusive
processesB+→K+ηc(2S) andB0→K0

Sηc(2S). Given the suppression of theψ ′→KSK
±π∓ decay,

contamination from the processB→Kψ ′ is estimated to be negligible. The first evidence [207] of the
ηc(2S) came from a sample of 44.8MBB̄ pairs, using the exclusive channelB→K(K0

SK
−π+). A

likelihood function based on the angle between the B candidate and thee+e− axis, and on the transverse
momenta of the other tracks with the respect to the B candidate thrust axis, was used to suppress any
background from continuum processes. Given a good B candidate, the feeddown fromB→D(Ds) +X
was reduced by cutting at|MKπ−MD| > 10MeV/c2 and|MKSK+−MDs | > 10MeV/c2; the feeddown
from B→K∗ + X was reduced by cutting at|MKπ − MK∗ | > 50MeV/c2, as theηc(nS)→KK∗

component is expected to be suppressed by the angular momentum barrier. The mass for theηc(2S) was
measured to be 3654±6±8 MeV/c2, with systematic error coming mostly from the choice of binning. A
90%C.L. upper limit on the width at 55 MeV was given.
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Fig. 3.19: On the left: distribution of reconstructed B decays toηc(1S) andJ/ψ, in the common final stateK0
SK

∓π±, from

refs. [393]. On the right: Belle observed theηc(2S) both in B decays (top, from ref. [207]) and in doublecc̄ (bottom, from

ref. [394]).

7.14 ηc(1S) inγγ fusion

The e+e− collider detectors collecting data in theΥ(4S) region (CLEO, BaBar, BELLE) have good
“reach” to produceC = +1 charmonium states through two-photon fusion. These are states such as
the ηc andχc which are not produced directly in thee+e− annihilation process. Suchγγ interactions
strongly peak at lowq2 so that the scattered lepton are not detected (“un-tagged” events) and the photons
are approximately real. For instance, in CLEO the active detector elements go to within22◦ of the beam
axis, or |cosθ|<0.93; this means that un-tagged events all have photons withQ2 less than roughly 1
GeV2, and usuallymuchless.29 Both CLEO and BaBar have thus recently studied the reactions:

γγ→(ηc/η
′
c)→K0

SK
±π∓ .

The ηc is known to be coupled to two photons (B(ηc→γγ) ∼ 5 · 10−4). An estimate of the two-
photon production rate ofηc(2S)suggests that also the radial excitation could be identifiedin the current
e+e− B-factory [395]. The regions of the detector acceptance occupied by suchγγ fusion reactions
and the competing initial state radiation (ISR for short, also called “radiative return”) processes are quite
dissimilar for a symmetric collider experiment such as CLEOand the asymmetricB-factories. Given this
and the differing sources of systematic uncertainties, theBaBar and CLEO results are rather independent.

The CLEO analysis used≈ 14 fb−1 and≈ 13 fb−1 of data taken with the CLEO II and CLEO III
detectors, respectively, mostly near theΥ(4S) resonance. The particle identification systems and tracking
chambers in these two configurations are quite different, sothese can be considered truly independent
experiments. The preliminary results were first shown at theApril 2003 APS meeting and submitted
[387] to the EPS meeting of that summer; final results have recently been submitted for publication
[388]. The BaBar collaboration has both preliminary [210] and final results [389], based on a sample
of data corresponding to an integrated luminosity of about90 fb−1. In the CLEO analysis, these events
are characterized by lots of missing energy and momentum, but very little transverse momentum (pT )

29The one publishedtaggedCLEO analysis started atQ2 = 1.5GeV2.
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of the hadronic system and very little excess energy in the detectors. The selection criteria included that
pT < 0.6GeV/c, that there were no additional charged tracks, and that the unassociated energy in the
electromagnetic calorimeter was less than 200 MeV (300 MeV)for CLEO II (CLEO III). The CLEO
mass spectra are shown in Fig. 3.20(a,b) , clearly indicating evidence for both theηc andη′c. Fits to
these spectra (polynomial backgrounds, Breit-Wigner lineshapes, double-Gaussian detector resolution
functions) yielded the results shown in Table 7.14.

In the BaBar analysis, events are selected by requiring fourcharged particles with total transverse
momentumpT < 0.5GeV/c and total energy in the laboratory frameEtot < 9 GeV, in order to suppress
e+e−→qq̄ events. One track is required to be identified as a kaon and pairs of oppositely charged tracks
are used to reconstructK0

S→π+π− decays. TheK0
SK

+π− vertex is fitted, with theK0
Smass constrained

to the world average value.

Figure 3.20 (c) shows the resultingK0
SK

+π− invariant mass spectrum. The presence of a peak at
theJ/ψ mass is due to ISR events, where a photon is emitted in the initial state, and a backward-going
J/ψ is produced, its decay products falling into the detector acceptance because of the Lorentz boost
of the center of mass. A fit to this distribution with a sum of a smooth background shape, a Gaussian
function for theJ/ψ peak and the convolution of a non-relativistic Breit-Wigner shape with a Gaussian
resolution function for theηc peak, gives:m(J/ψ)−m(ηc) = (114.4± 1.1) MeV/c2,m(J/ψ) = (3093.6
± 0.8) MeV/c2, Γ(ηc) = (34.3± 2.3 MeV/c2), σ(J/ψ) = (7.6± 0.8) MeV/c2. The numbers ofηc and
J/ψ events are respectively 2547± 90 and 358± 33.
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±π∓ events from (a) CLEO II, (b) CLEO III; from BaBarin the (c)ηc (and

J/ψ) region and (d)ηc(2S)region. The results from the fit are superimposed.

The results from B-factories can be compared in Table 7.14. For CLEO, the three major sources
of systematic uncertainty in the masses of these singlets are (i) comparisons of masses of theK0

S (in
π+π−), theD0 (in K0

Sπ
+π−), and theD+ (in K+π+π−) between CLEO data and the Particle Data

Group compilations, (ii) dependences on fitting shapes usedfor background and for signal, and (iii) the
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CLEO II CLEO III

ηc η′c ηc η′c

Yield (events) 282±30 28+13
−10 310±29 33+14

−11

Mass (MeV) 2984.2±2.0 3642.4±4.4 2980.0±1.7 3643.4±4.3

Width (MeV) 24.7±5.1 3.9±18.0 24.8±4.5 8.4±17.1

significance 15.1σ 4.4σ 17.0σ 4.8σ

R(η′c/ηc) 0.17±0.07 0.19±0.08

Table 3.17: Summary of the results forηc andη′c for both CLEOII and CLEOIII data sets. The errors shown are statistical only.

Expt. CLEO BaBar Belle
Ldt(fb−1) 13+14 90 29.1 [393], 31.3 [207]
m(ηc)( MeV/c2) 2981.8±1.3±1.5 2982.5±1.1±0.9 2979.6±2.3±1.6 [393]
Γ(ηc) (MeV) 24.8±3.4±3.5 34.3±2.3±0.9 29±8±6 [393]
m(ηc(2S))( MeV/c2) 3642.9±3.1±1.5 3630.8±3.4±1.0 3654±6±8 [207]
Γ(ηc(2S)) (MeV) <31 (90%CL) 17.0±8.3±2.5 <55 (90%CL) [207]

Table 3.18: Comparison of CLEO, BaBar and Belle results.

observed shifts between mass values used as input to the Monte Carlo simulations and the mass values
reconstructed. In obtaining the widths of these mesons, thedominant source of possible bias is the shape
assumed for the background.

In BaBar, theηc mass resolutionσ(ηc) is constrained by the closeJ/ψ peak; the small difference
(0.8 MeV/c2) observed betweenσ(J/ψ) andσ(ηc) in the simulation is taken into account in the fit to
data. The simulation is also used to check for possible bias in the fitted masses. Theηc andJ/ψmass
peaks are shifted by the same amount (1.1MeV/c2) in the simulation, therefore the bias does not affect
the mass difference. The systematic error on the mass accounts for an uncertainty onm(J/ψ) −m(ηc)
due to the background subtraction, and for an uncertainty associated to the different angular distribu-
tions of theJ/ψand theηc . The systematic error on the width is dominated by the uncertainty in the
background-subtraction and in the mass resolution.

7.15 Overview on all results

Table 7.15 summarizes the results of an attempt to fit the massof theηc(1S) by using (a) all measure-
ments quoted in this review, (b) only measurements published in the last 5 years, and results from (c)
ψ(1, 2S) decays, (d)pp̄ annihilation, (e) B-factories. The onlyrationale for dataset (b) is to exclude
samples that were superseded by new data taken by the same experiment. A scale factor S was applied
on theσ’s whenever the confidence level of theχ2 obtained from the fits was below 10%. The results
are then compared with the values found in PDG 2004. The B-factories have been arbitrarily grouped
together, despite they use different techniques.

Despite the substantial improvement in statistics, and thenew ways to explore theηc(nS) states
which came from the B-factories, a discrepancy between results obtained by different techniques re-
mains. The increase in statistics has been surely beneficialin understanding systematic effects. Nonethe-
less , crosschecks between all different measurement techniques will be even more vital in the future,
when statistic errors will be further reduced. Hopefully both asymmetric B-factories will be able to do
internal crosschecks of the results fromγγ fusion and from B-decays. CLEO-c will be able to crosscheck
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theγγ measurement by CLEO-III with one fromψ(1, 2S) decays.

Dataset Mass(MeV/c2) S C.L.
(a) ALL 2980.0±1.2 1.82 0.09%
(b) ALL after 1999 2980.4±1.2 1.44 6.6%
(c) ψ(1, 2S) decays 2977.5±0.9 1(1.38) 13%
(d) pp̄ 2984.5±1.6 1(1.05) 33%
(e) B-factories 2981.9±1.1 1(0.65) 65%
PDG 2004 2979.6±1.2 1.7 0.1%

Table 3.19: Fits of allηc mass measurements

ηc(1S) Mass=2980.0+/-1.2

2960 2970 2980 2990 3000
M(MeV/c2)S=  1.8 CL=9.0E-04
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DM2(91)
E760(95)
BES1(00)
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BES2(03)
BELLE(03)
CLEO3(04)
BABAR(04)

ηc(1S) Total Width=  28.1+/-3.0
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Fig. 3.21: Mass and width fits forηc(1S)
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Fig. 3.22: Mass and width fits forηc(2S)

7.2 ηb(nS) andhb(nP): searches†

Over twenty-five years after the discovery of theΥ(1S), no pseudoscalarbb states have been conclusively
uncovered. In recent years, the search has been conducted atCLEO, LEP, and CDF, using both inclusive
and exclusive methods.

The inclusive CLEO search [399] identifies distinctive single photons with its high-resolution CsI
electromagnetic calorimeter. These photons are signatures of Υ radiative decays, in this caseΥ(3S) →
ηbγ, Υ(2S) → ηbγ, Υ(3S) → η′bγ, andΥ(3S) → hbπ

0 or hbπ+π− followed byhb → ηbγ. Godfrey

†Authors: A. Böhrer, T. Ferguson, J. Tseng
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and Rosner have pointed out that these hindered M1 transitions could have observable branching ratios,
in spite of their small associated matrix elements, becauseof their large phase space [204].

No evidence of a signal for any of the above modes has been seenin the total2.4 fb−1 of data
taken at theΥ(2S) andΥ(3S) resonances between 2001 and 2002, corresponding to roughlysix million
decays of each resonance. Figure 3.23 shows the resulting 90% C.L. upper limits on the branching
fractions. Several of the theoretical predictions shown can be ruled out. It has been shown that with the
full data samples of LEP 2, theηb(1S) might be detected in two-photon events [404, 405]. Theηb is
fully reconstructed with four, six, or eight charged decay products and possibly aπ0. In the expected
mass range, for which estimates are listed in Table 3.20, thecorresponding invariant mass distribution
is rapidly decreasing, and the background fromτ pairs can be kept small. The results for ALEPH, L3,

∆m [MeV/c2] Ref

lattice NRQCD 19 - 100 [53,406–410]
lattice potential 60 - 110 [411]
pQCD 36 - 55 [93,412]
1/m expansion 34 - 114 [413]
potential model 57 - 141 [414] [415–418]

Table 3.20: Various theoretical estimates for the mass splitting ∆m = m(Υ) −m(ηb).

and DELPHI are summarized in Table 3.21. The search by ALEPH [419] in an800 MeV/c2 window
turned up one candidate, shown in Figure 3.24, with an excellent mass resolution of30 MeV/c2 at a
mass of9.30± 0.03 GeV/c2. The signal expectation is about 1.6 events over one background event. L3
has reported an analysis, considered close to final, in six decay modes [420]. Six candidates are found,
compatible with an expected background of 2.5 events. The mass measurement is dominated by the
detector resolution of about300 MeV/c2.

Recently, DELPHI has also reported preliminary results [421]. A total of seven candidates are
found in a search window of400 MeV/c2. The expected background level is 5.5 events, and the mass
resolution roughly120 MeV/c2. CDF has searched for the exclusive decayηb → J/ψJ/ψ, where both

Expt final state Γγγ × B (keV) Ref

ALEPH 4 charged < 0.048 [419]
6 charged < 0.132 [419]

L3 K+K−π0 < 2.83 [420]
4 charged < 0.21 [420]
4 chargedπ0 < 0.50 [420]
6 charged < 0.33 [420]
6 chargedπ0 < 5.50 [420]
π+π−η′ < 3.00 [420]

DELPHI 4 charged < 0.093 [421]
6 charged < 0.270 [421]
8 charged < 0.780 [421]

Table 3.21: 95% C.L. upper limits on theηb two-photon partial width times branching ratio into various hadronic states from

searches at LEP.

J/ψ’s decay to muon pairs, in the full 1992-96 “Run 1” data sampleof about100 pb−1 [422]. The mass
spectrum is shown in Figure 3.25; in this region, the mass resolution is about10 MeV/c2. A small cluster
of seven events can be seen, where 1.8 events are expected from background. The statistical significance
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Fig. 3.25: The 4-muon invariant mass distribution fromJ/ψJ/ψ events in CDF Run 1 data. The search window, the upper side

of which is the world-averagedΥ(1S) mass [245], is marked by arrows.

of the cluster is estimated to be2.2σ. A simple fit to the mass distribution gives9445± 6(stat) MeV/c2

as the mass of the cluster, where the error is only statistical. The mass difference relative toΥ(1S) is
well to the low side of the theoretical expectation. If this cluster is due toηb decay, then the product of
its production cross section and decay branching fractionsis near the upper end of expectations [423].
The existence of theηb is a solid prediction of the quark model, and its mass one of the most tractable
to calculate. Both its existence and mass remain, for the present time, open questions. Some data at
completed experiments remain to be published, however, while Run 2 is well underway at the Fermilab
Tevatron.

7.3 hc : searches†

The search of the singlet state of P wave charmonium (dubbedhc(1P )) poses a unique experimental
challenge for a variety of reasons:

• it cannot be resonantly produced ine+e−annihilation;

• it cannot be reached via E1 radiative transitions fromψ ′; C-parity conservation forbids the transi-
tion from a1−− to a1+− state.

• its production inψ ′ hadronic decays tohc(1P )π0 is isospin violating and has a small phase space
available (ifMhc(1P ) = MCOG, pπ0 = 86 MeV/c; the two Doppler broadened photons will have
and energy between 30 and 100 MeV in theψ ′ rest frame. Ine+e−machines, the sensitivity on
slow pions is not just affected by the physical backgrounds from otherψ ′ decays, but also by the
large combinatorial background with low energy uncorrelated photons from the beam.

• its production in B decays via the intermediate stateηc(2S), which can decay radiatively (E1) to
hc(1P ), is suppressed by the large hadronic width of theηc(2S).

• its detection in theJ/ψπ0 decay mode, fromψ ′ and B decays, as well as in hadroproduction, is
shadowed by the more copious decayχc1,2→γJ/ψ, with an extra photon accidentally matching
theπ0 mass; this is also the most likely explanation of the signal seen inJ/ψπ0 by experiment
E705, in 300 GeV/cπ± and proton interactions on a lithium target [426].

• its formation inpp̄ annihilationmaybe suppressed by helicity selection rule, but the same rule
would forbidχc0 andηc formation , against the experimental evidence.

†Authors: R. Mussa, D. Besson
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• its production in exclusive B decaysmaybe suppressed asB(B→χc0K); if such selection mech-
anism does not apply, a search ofhc(1P ) via its E1 decay toηc may soon give positive results.

Such elusive state was extensively searched for in formation from pp̄ annihilations: searching for a
resonance which has a width expected to be between theψ andχc1 but with an expectedB to detectable
EM decay channels of interests which is 100 to 1000 times weaker than the radiative decay ofχc1, i.e.
expected cross sections between 1 and 10 picobarns. Experiment R704 at CERN [424] observed the
signal:

Γ(hc(1P )→pp̄) × B(hc(1P )→J/ψ +X) × B(J/ψ→e+e−) = 0.14+0.15
−0.06 eV

at a nominal mass of 3525.4±0.8±0.5 , which should be shifted down 0.8MeV/c2after comparing the
χc measurements done by the two experiments.

Experiment E760 at Fermilab [425] observed the signal:

Γ(hc(1P )→pp̄) × B(hc(1P )→J/ψ + π0) × B(J/ψ→e+e−) = 0.010 ± 0.003 eV

at a nominal mass of 3526.2± 0.15, and did not see events in the channelsJ/ψπ+π−, J/ψπ0π0 E760
also determined a level of continuum for the inclusive reaction which was consistent with the one ob-
served by R704.

In channels with such low statistics, a large amount of integrated luminosity taken to precisely
quantify the background level is crucial. Such an issue was taken very seriously in E760, and even
more in E835. To complicate the experimental situation, thesignal observed by E760 is expected to be
comparable to theJ/ψπ0 continuum, as predicted in reference [427], from soft pion radiation. It is hard
to predict how interference between the resonant and continuum amplitude can distort the lineshape.

Fig. 3.26: Cross section (black dots) observed by E760(left) for the reactionpp̄→J/ψπ0 in the COG region; E835 could not

confirm this evidence and observed the hint on the right in theγηc→3γ channel.

E835 took 6 times more data with respect to E760, to confirm theobservation ofhc(1P ) and possibly
measure the width as well as its decay ratios to other channels:the probably dominant decay mode toηcγ
was studied, relying upon the rareηc decays toγγ. The first data set, 50 pb−1 taken in 1996, proved
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lately to be affected by an anomaly in the beam positioning system, which prevented to determine the
absolute energy calibration of the machine better than 200 keV. A second data taking period in year 2000
allowed to accumulate a comparable sample of data, but with 150 keV resolution on the CM energy
determination.

The E835 experiment, despite the 6 times larger statistics,could not confirm theJ/ψπ0 evidence
observed by E760. On the other side, a hint of a signal is observed in the3γ channel [428] Very tight cuts
were applied in order to reject hadronic backgrounds from reactions with two neutral mesons in the final
state. In the3γ Dalitz plot, invariant masses of all pairs were requested tobe above 1 GeV/c2, to reject
backgrounds fromπ0, η, η′, ω. As the recoil photon angular distribution is expected to behave assin θ2

CM

on the resonance, a cut atcos θCM < 0.5 was imposed. This allowed to suppress most of the two meson
background, which is prevalently forward-backward peaked. 13 events out of 29 pb−1 are observed in
a δM = 0.5MeV/c2 wide bin between 3.5257 and 3.5262MeV/c2, while 3 events are observed in
the remaining data between theχc1 and theχc2 (87 pb−1). The statistical significance of the excess is
between 1 and 3×10−3, with different hypotheses on the resonance width. If the excess is not a statistical
fluctuation, assuming a total width of 0.5 MeV, it is possibleto measureΓ(hc→pp̄)B(hc→ηcγ) = 10.4±
3.7 ± 3.4 eV, where the systematic error comes from the statistical error on B(ηc→γγ)), at a mass
M(hc) = 3525.8 ± 0.2 ± 0.2MeV/c2. The CLEO Collaboration has preliminary evidence [429] for
the spin singlethc (11P1) in looking at∼ 3 × 106 decays of theψ′(3686). This state is seen in two
independent analyses, both of which use the decay chainψ′→π0hc followed byhc→γηc: one analysis
is inclusive and the other uses six dominantexclusive decays of theηc.

The inclusive analysis shows an enhancement at over3σ significance at a mass of3524.4±0.7stat
MeV. The systematic uncertainty is∼ 1 MeV. The left plot in Fig. 3.27 shows the fit of the data to the
resolution function from Monte Carlo simulation and an “ARGUS” background shape.

Shown in the right panel of that figure is the exclusive analysis, with a statistical significance of
∼ 5σ. The figure shows the data with, again, a fit to an ARGUS background and detector resolution
function. Also shown are the events from the sideband of the invariant mass spectrum of theηc recon-
struction and the spectrum from aψ′ Monte Carlo simulation that does not include thehc decay chain.
Further checks on backgrounds peaking in the signal region are under way. The mass from the exclusive
analysis is3524.4 ± 0.9stat Mev, with systematic studies ongoing. All of these CLEO results on thehc
are considered preliminary. As a final remark, we can commentthat the 20 years old search for this state
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is not over yet, and its evidence is still weak. It is therefore necessary to (a) consolidate the evidence
for such a state from either B orψ(2S) decays , (b) to measure its mass at better than 1-2 MeV, (c) to
prove its coupling topp̄, before planning to precisely measure its mass, total widthand partial widths in
formation frompp̄ annihilations.

8. States close to open flavor thresholds

8.1 R values between 3.7 and 5 GeV†

TheR value to be discussed in this section is one of the most fundamental quantities in particle physics
that is defined as,

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
(3.47)

R value is expected to be constant so long as the center-of-mass (c.m.) energyEcm does not
overlap with resonances or the threshold of production of a new quark flavor. A thorough review of R
measurements on the full energy range can be found in Chapter6, while this subsection focuses on its
complex structure in the energy region between 3.7 GeV and 5 GeV.

The most striking feature of theR values below 5 GeV is the complex structure in the energy
region between 3.7 GeV and 4.5 GeV. Besides the resonance ofψ(3770), broad resonance like structures
peaking at around 4.04, 4.1 and 4.41 GeV have not been well understood in terms of their components
and decay channels. These resonances near the charm threshold were observed more than 20 years ago
[439–445,447]. Table 3.22 lists the resonance parameters reported by these experiments.

Resonance Experiment Mass(MeV) Γtot(MeV) Γee(eV)
MARK-I 3772 ± 6 28 ± 8 345 ± 85

ψ(3770) DELCO 3770 ± 6 24 ± 5 180 ± 60
MARK-II 3764 ± 5 24 ± 5 276 ± 50

BES( [456]) 3772.7 ± 1.6 24.4 ± 4.3 190 ± 25

ψ(4040) DASP 4040 ± 10 52 ± 10 750 ± 150
BES( [456]) 4050.4 ± 4.3 98.5 ± 12.8 1030 ± 110
BES( [246]) 4040 ± 1 89 ± 6 911 ± 130
CB( [246]) 4037 ± 2 85 ± 10 880 ± 110

ψ(4160) DASP 4159 ± 20 78 ± 20 770 ± 230
BES( [456]) 4166.5 ± 6.1 55.9 ± 12.3 370 ± 81
BES( [246]) 4155 ± 5 107 ± 16 840 ± 130
CB( [246]) 4151 ± 4 107 ± 10 830 ± 80

ψ(4415) DASP 4417 ± 10 66 ± 15 490 ± 130
MARK-I 4414 ± 7 33 ± 10 440 ± 140

BES( [456]) 4429.4 ± 8.5 86.0 ± 20.9 390 ± 74
BES( [246]) 4429 ± 9 118 ± 35 640 ± 230
CB( [246]) 4425 ± 6 119 ± 16 720 ± 110

Table 3.22: Resonance parameters measured for the broad structures between 3.7 and 4.5 GeV

8.11 PLUTO measurement between 3.1 and 4.8 GeV

The PLUTO Collaboration measuredR values with the magnetic detector PLUTO at thee+e− storage
ring DORIS between 3.1 and 4.8 GeV c.m. energy. A superconducting coil procedures a 2T magnetic

†Author: Z. Zhao
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field parallel to the beam axis. Inside coil there are 14 cylindrical proportional wire chambers and two
lead converter, a 2 mm converter at radius 37.5 cm and a 9 mm converter at radius 59.4 cm. Two or
more charged tracks are triggered and selected as hadronic event candidates. The background from
beam-gas interaction and cosmic ray events is subtracted using the distribution of reconstructed event
vertices alone the beam direction. Monte Carlo events are generated according to isotropic phase space
to determine the detection efficiency for the hadronic events. An external luminosity monitor system is
employed to observe the beam luminosity. The uncertainty ofthe luminosity measurement is about±5%.
The systematic error inR values is estimated to be about 12%. PLUTO results agree withthose of the
SLAC-LBL group within systematic errors, but is about 10-15% lower than those of SLAC-LBL on the
narrowJ/ψ resonance and higher energies. However, the agreement on the energy dependence and the
structure of theR values is quite good. The accuracy of PLUTO’s measurement islimited by systematic
error, which amount to almost one unit inR in the broad resonance region. The resonance parameters of
the broad resonances cannot be determined with such a limited accuracy and energy points.

8.12 DASP measurement between 3.6 and 5.2 GeV

DASP Collaboration measuredR values at c.m. energy between 3.6 and 5.2 GeV with a non magnetic
inner detector of the double arm spectrometer DASP, which has similar trigger and detection efficiencies
for photon and charged particles. The inner detector of DASPis mounted between the two magnet
arms of DASP. It is azimuthally divided into eight sectors, six of which consist of scintillation counters,
proportional chambers, lead scintillator sandwiches and tube chambers, and the remaining two facing the
magnet aperture, have only scintillation counter and proportional chambers. Tracks are recorded over
solid angle of 62% for photon and 76% of4π for charged particles. DASP collected a total integrated
luminosity of 7500nb−1, which was determined by small angle Bhabha scattering measured by four
identical hodoscopes with an uncertainty of 5%. The additional normalization uncertainty is estimated to
be 15%. The uncertainties of the detection efficiencies for the hadronic events is about 12%. Three peaks
centered around 4.04, 4.16 and 4.42 are observed. The data are insufficient to resolve structures between
3.7 and 4.5 GeV. By making a simplifying assumption that the cross section can be described by an
incoherent sum of Breit-Wigner resonances and a non resonant background, DASP reported resonance
parameters as listed in Table 3.22.

8.13 SLAC-LBL measurement between 2.6 and 7.8 GeV

SLAC-LBL group did aR scan with MARK-I at SPEAR which operated at c.m. energy between 2.6
and 7.8 GeV with peak luminosity between1029 and1031 cm−2 sec−1. MARK-I was a general purpose
collider detector of the first generation. Its solenoidal magnet provide a near uniform magnetic field
of 3891 ± 1 G over a volume 3.6 m long and 3.3 m in diameter. A pipe counter consisting of four
hemicylindrical plastic counters surrounding the vacuum pipe were used to reduce the trigger rate of
cosmic ray. Two sets of proportional wire chambers on the outside of the pipe counters had spacial
resolution of 700µm. Four modules of concertric cylindrical wire spark chambers were the main tracking
elements of the detector, which gave a spacial resolution inthe azimuthal direction of 340µm, 1.0 and
0.5 cm for the20 and40 stereo gaps, respectively. Outside the spark chamber was anarray of 48 plastic
scintillation counters with a width of 20 cm each. The time-of-flight for this system was about 480 psec.
An array of 24 shower counters made of five layers, each consisting of 0.64 cm of pilot F scintillator and
0.64 cm of lead. The energy resolution measured with Bhabha events was∆E/E = 35%/

√
E. The

muon-identification spark chamber, the end-cap spark chamber, and the photon-detection capabilities
of the shower counters were not used in this analysis. TheR values and the corresponding resonance
parameters in the energy region between 3.4 and 5.5 GeV is plotted together with those from PLUTO
and DASP in Figure 1.

MARK-I studied exclusive decay channels on the resonance at4040 MeV and reported [446]
PsPs : PsV : V V = 0.05 ± 0.03 : 1 : 32 ± 12, wherePs representsD meson and V stands forD∗
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meson. These early results stimulated a variety of theoretical interpretations.

8.14 BES measurement between 2 to 5 GeV

BES Collaboration has done aR scan with updated Beijing Spectrometer (BESII) at Beijing Electron-
Positron Collider(BEPC).

The trigger efficiencies, measured by comparing the responses to different trigger requirements
in R scan data and special runs taken at theJ/ψ resonance, are determined to be 99.96%, 99.33% and
99.76% for Bhabha, dimuon and hadronic events, respectively.

BES’s measurement first selects charged tracks, then hadronic events with charged tracks equal
and greater than two. The number of hadronic events and the beam-associated background level are
determined by fitting the distribution of event vertices along the beam direction with a Gaussian for real
hadronic events and a polynomial of degree two for the background.

The subtraction of the beam-associated backgrounds is cross checked by applying the same hadronic
event selection criteria to separated-beam data.

A new Monte Carlo event generator called LUARLW is developedtogether with LUND group for
the determination of detection efficiencies of the hadronicevents [450]. LUARLW removes the extreme-
high-energy approximations used in JETSET’s string fragmentation algorithm. The final states simulated
in LUARLW are exclusive in contrast to JETSET, where they areinclusive. In addition, LUARLW uses
fewer free parameters in the fragmentation function than JETSET. Above 3.77 GeV, the production of
charmed mesons is included in the generator according to theEichten Model [451,452].

Different schemes for the radiative corrections were compared [355, 453–455]. Below charm
threshold the four different schemes agree with each other to within 1%. Above charm threshold, where
resonances are important, the agreement is within 1 to 3%. The formalism of Ref. [455] is used in our
calculation, and differences between it and the schemes described in Ref. [355] are included in the sys-
tematic errors. In the calculation of the radiative correction above charm threshold, where the resonances
are broad and where the total width of the resonance is related to the energy, we take the interference
between resonances into account. The integrated luminosity is determined to a precision of 2-3% from
the number of large-angle Bhabha events selectedusing onlythe BSC energy deposition. Figure 2 shows
the BESR scan results between 3.6 and 4.6 GeV. Previously, BES Collaboration measured cross section
for charm meson production, using 22.3 pb−1 of e+e− data collected with BESI at

√
S=4.03 and 15

pb−1 at 4.14 GeV [460]. The charmed mesons used in this measurement areD0 andD+, of which the
number of signal events are selected by fitting the inclusiveK−π+ andK−π + π+ invariant mass dis-
tribution with Gaussian as signal plus a third order of polynomial background. Taking into account the
detection efficiency, the correction of initial state radiation, and quote the corresponding braching ratio
from PDG1998, BES reported their results as shown in Table 3.23, together with that predicted by the
coupled channel model.

8.15 Remarks and prospects

DASP data agree with those of PLUTO resonabl well in shape butexceed their cross sections by about
half a unit in R above 4 GeV. In magnitude DASP’s data are in closer agreement with those of SLAC-
LBL but show some difference in the finer details of the energydependence. For example, SLAC-LBL
data didn’t resolve the structure at 4.16 GeV. The total width measured by SLAC-LBL is smaller than
that of DASP measurement. Despite of these discrepances, the difference observed among the three
experiments are within the systmatic errors quoted.

BES’sR scan is done with a newer generation detector ande+e− collider as compared with the
previous measurements, and has about 80 points in the energyregion from 3.7 to 5 GeV. Because of this
fine scan in this energy region that contributes most to the precision evaluation ofαQED(MZ).
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Fig. 3.28:R Values between 3.7 and 5 GeV from PLUTO, DASP and MARKI (left), and BES (right) experiments.

√
s=4.03 GeV Experiment Coupled channel model
σD0+σD̄0 19.9±0.6±2.3 nb 18.2 nb
σD++σD− 6.5±0.2±0.8 nb 6.0 nb
σD+

s
+σD−

s
0.81±0.16±0.27 nb 11.6 nb

σcharm 13.6±0.3±1.5 nb 12.9 nb√
s=4.14 GeV Experiment Coupled channel model
σD0 + σD̄0 9.3±2.1±1.1 nb 15.1 nb
σD+ + σD− 1.9±0.9±0.2 nb 4.5 nb
σD+

s
+ σD−

s
1.64± 0.39± 0.42 nb 1.85 nb

σcharm 6.4±1.2±0.7 nb 10.7 nb

Table 3.23: Comparison of tree level cross section measurement of BES with predictions of the coupled channel model. exper-

imentalDs cross section is taken from early work.
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BES also fitted resonances as a Breit-Wigner shape with different continue background and takes
into account the energy-dependence of resonance width and the coherence of the resonance [457]. BES’s
preliminary results are consistent with those of previous measurements for the peak positions at 3.77,
4.04, 4.16 and 4.42 GeV, and show largerΓtot of the resonances at 4.04 and 4.42 GeV and smallerΓee
of the resonaces at 3.77 and 4.16 GeV.

Fitting BES’sR data between 3.7 and 4.6 GeV (75 data points) with Breit-Wigner resonances and
none resonant background based on perturbative QCD [456], one obtain resonance parameters as listed
in Table 3.22. The results from this fit has similar conclusion as the one from BES’s, except thatΓtot is
no longer larger than the other measurements of the resonance at 4.42 GeV.

Recently, Kamal K. Seth refitted resonance parameters of thehigher vector states of charmonium
with existingR data [246]. Three Breit-Wigner resonances plus backgroundthat is parametrized with a
linear function. He shows that the Crystal Ball (CB) and BES measurements are in excellent agreement.
The analysis of the CB and BES data leads to consistent resonance parameters for the three vector reso-
nances above theDD̄ threshold. The masses of the three resonances determined byhim in general agree
with PDG, but have much smaller errors. However, the total widths of these three resonances determined
by this work are about 67%, 37% and 179% larger than those adopted by PDG. The corresponding elec-
tron widths determined by this work are 23%, 8% and 51% largerwith about a factor of 2 less errors.
Figure 3 shows the fits to CB and BES data. A factor of 2 to 3 reduction in uncertainty in the energy

Fig. 3.29: Refit the R data of CB and BESII.

region of 3-5 GeV significantly improved the experimental situation, providing an opportunity to directly
test QCD sum role where the notion of quark-hadron-duality (QHD) plays a dominant role [456], and
evaluate charm quark mass via experimental data to a precision below 10%. However, BES’s data is still
not enough, in terms of both statistics and systematic errorrestriction, to provide a clear picture of the
broad resonance structures. To fully understand the complicated structures at the energies between 3.7
and 4.5 GeV, one needs to:

- perform theR scan with smaller energy steps and higher statistic in the entire energy region to a
precision around 2-3%.

- collect data at the peak positions with high enough statistics to study the exclusive decay channels
of the resonances.

These could be the important physics topics for CLEOC at CESR-C and BESIII at BEPCII [458,
459]. Both CLEOC and BESIII may have the ability to clarify the ambiguity that has been bothering
physicists for over 20 years.
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Fig. 3.30: From the Belle discovery paper [211]: projections of the data (points with error bars) and the results of an unbinned

maximum likelihood fit (solid curve) for theX(3872)→π+π−J/ψ signal region. The variables (a) beam-constrained mass

Mbc =
√
E2

beam − p2
B , (b) invariant massMπ+π−J/ψ, and (c) energy difference∆E = EB − Ebeam, are those used in the

fit; EB andpB are the energy and momentum of theB±→K±π+π−J/ψ candidate, andEbeam the energy of eithere± beam,

in thee+e− center-of-mass system.

8.2 X(3872) : discovery and interpretations†

TheX(3872) is a narrow state decaying intoπ+π−J/ψ, with a massMX ∼ 3872MeV. Given the
observed final state and the observed mass, in the charmoniumregion, it is natural to assume that the
X(3872) is itself a charmonium state. It has however proved difficultto identify theX(3872) with any
of the expected narrowcc̄ mesons, leading to suggestions that it may be a more exotic particle. In this
section, we briefly review the discovery and known properties of theX(3872), and the difficulties they
create for its interpretation.

8.21 Discovery, confirmation, and properties

TheX(3872) was discovered by the Belle collaboration in a study ofB±→K±π+π−J/ψ decays [211].
In addition to the well-knownψ′, a second peak was seen in theM(π+π−J/ψ) distribution; the results
of an unbinned maximum likelihood fit to theX(3872) signal region inM , and two other variables which
peak in the case ofB±→K±π+π−J/ψ decay, are shown in Fig. 3.30. A yield of35.7 ± 6.8 events was
observed, with high significance (10.3σ), and the width of the mass peak was found to be consistent with
the detector resolution. As the measured mass is well above theDD open charm threshold, the narrow
width implies that decays toDD are forbidden; Belle [461] reportsΓ(X(3872) → DD)/Γ(X(3872)
→π+π−J/ψ) < 7 (90% CL), to be compared with a corresponding value> 160 for theψ(3770) [462].
Comparing decays via theX(3872) to those via theψ′, Belle finds a considerable production rate inB
decays, with product branching ratio

B(B+→K+X(3872)) × B(X(3872)→π+π−J/ψ)

B(B+→K+ψ′) × B(ψ′→π+π−J/ψ)
= 0.063 ± 0.012 (stat) ± 0.007 (syst). (3.48)

The observation has been confirmed in inclusivepp collisions by CDF [463] and D0 [464], as shown in
Fig. 3.31, and in exclusiveB meson decays by BaBar [465], shown in Fig. 3.32. The observedmasses
are consistent, with a weighted average value

MX = (3871.9 ± 0.5)MeV (3.49)

across the four experiments [211,463–465]. Each of CDF, D0,and BaBar likewise find a width consistent
with the detector resolution; the only limit is that inferred by Belle [211],

ΓX < 2.3MeV (90% CL). (3.50)
†Author: B. Yabsley
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Belle finds aM(π+π−) distribution concentrated at the kinematic boundary [211], coinciding with
the ρ mass (Fig. 3.33). This is confirmed by CDF [463], who find little signal withM(π+π−) <
500MeV; BaBar report that their statistics are too small to allow a clear conclusion, but do not exclude
a concentration at the boundary [465].

8.22 Decay modes and interpretation of theX(3872)

The Belle collaboration has performed searches for variousdecay modes [211, 466] and an angular
distribution study [466], to compareX(3872) properties with those of predicted, but so far unseen,
charmonium states. They restrict their attention to stateswith

1. expected masses [401] within 200 MeV ofMX ≃ 3872MeV;

2. unnatural quantum numbersJP = 0−, 1+, 2−, . . . since decays toDD are not seen; and

3. spin angular momentumJ < 3, since the state is seen in exclusiveB→KX(3872) production with
a significant rate, making highJ unlikely (cf.B+→K+χc2, still not observed, andB+→K+χc0
andK+χc1 with branching fractions(6 ∼ 7) × 10−4).

The13D3 state,ψ3, is also studied following suggestions [187,188] that the rate forψ3→DD, suppressed
by anL = 3 angular momentum barrier, may be low.

The search therefore includes theC = −1 statesψ2, h
′
c, andψ3, and theC = +1 statesηc2, χ′

c1,
and η′′c . The observation of decays toπ+π−J/ψ favorsC = −1, for which this mode is isospin-
conserving; this would implyΓ(X→π0π0J/ψ) ≃ 1

2Γ(X→π+π−J/ψ). On the other hand, the observed
concentration of events atM(π+π−) ≈ mρ suggests that the decay may proceed viaX(3872)→ρJ/ψ,
an isospin-violating process; this requiresC = +1 and forbids the decay toπ0π0J/ψ. A study of the
π0π0J/ψ final state is therefore important.

8.23 Searches for radiative decays

If the X(3872) is identified with the13D2 (ψ2) state, the decay toγχc1 is an allowed E1 transition
with a large partial width, calculated to beΓ(X→γχc1) ≃ 210 keV in potential models, taking coupled
channel effects into account [187,188]. Similarly, the partial width for 13D3 (ψ3)→γχc2 is calculated to
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in the search for decays toγχc2 [466]; the fitted yield is2.9 ± 3.0 ± 1.5 events.

be∼ 300 keV. This is to be compared to the partial width forψ2,3→π+π−J/ψ, expected to be equal to
theψ(3770) partial width for both states. Ref. [466] conservatively assumesΓ(ψ(3770)→π+π−J/ψ) <
130 keV, leading to predictionsΓ(X→γχcJ)/Γ(X→π+π−J/ψ) > 1.6 for ψ2→γχc1 and> 2.3 for
ψ3→γχc2 respectively. Belle has performed searches forX(3872) decays to these final states (see
Fig. 3.34), setting upper limits on the branching ratios (at90% CL) of0.89 for γχc1 [211], and1.1 for
γχc2 [466], below these expectations. Other considerations disfavor these states. If theX is theψ2, its
separation from theψ(3770), ∆M = 102MeV, is larger than present theory can accomodate [188]. The
ψ3 mass is expected to be similar. ProductionB+→K+ψ3 is also expected to be suppressed relative
to otherK+(cc̄) decays, due to the high spinJ = 3, whereas the data implies a comparable rate if
X(3872) = ψ3 [466].

Another radiative decay search, forX(3872)→γJ/ψ, tests theX(3872) = 23P1 (χ′
c1) assign-

ment [466]. The partial widthΓ(χ′
c1→γJ/ψ), for Mχ′

c1
= 3872MeV, is expected to be 11 keV in the

potential model [187], possibly reduced by coupled channeleffects [188]. To estimate the partial width
for the isospin-violating processχ′

c1→π+π−J/ψ, we take the isospin-violating hadronic charmonium
transitionψ′→π0J/ψ, with Γ ≃ 0.3 keV: the ratioΓ(X→γJ/ψ)/Γ(X→π+π−J/ψ) should then be
O(10). The Belle search places an upper limit of0.40 (90% CL) on this ratio, inconsistent with the
expected value. Theχ′

c1 mass is predicted [187, 188] to be3930 ∼ 3990MeV or greater, likewise
inconsistent with theX(3872).

8.24 Studies of angular distributions

TheX(3872) will be produced polarized in the reactionB±→K±X(3872) for any spinJX > 0, as both
the initial stateB and the accompanyingK mesons are spin zero. Angular distributions of the final state
particles can therefore distinguish between different quantum number assignmentsJPC for theX(3872).
If the X is theh′c, with JPC = 1+−, decays should be distributed as(1 − cos2 θJ/ψ)d cos θJ/ψ [467],
whereθJ/ψ is the angle between theJ/ψ and the negative of theK momentum vectors in theX(3872)
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rest frame. In the Belle study [466], the data tend to peak near cos θJ/ψ = 1, where the1+− expectation
is zero; both the data and expectation are shown in Fig. 3.35.The poor fit to the data (χ2/dof = 75/9)
rules out any1+− assignment for theX(3872), including theh′c; this state in any case has an expected
mass well above 3872 MeV. Further angular studies of other modes are foreseen.

8.25 Other searches

If X(3872) = 11D2 (ηc2), the isospin conserving transitionηc2→π+π−ηc should be much more com-
mon thanηc2→π+π−J/ψ, which is isospin violating; the branching fractionB(X→π+π−J/ψ) would
be O(1%) or less, implying a largeB→KX(3872) rate. This seems unlikely but can be tested by
searching for theX(3872)→π+π−ηc decay.

Similar considerations apply ifX(3872) = η′′c : the branching fraction toπ+π−J/ψ should be
small, although in this case (with theη′′c below open charm threshold) the dominant decay would be into
two gluons, less convenient for a search. Assuming that sucha state would have a similar width to the
ηc (17 ± 3MeV) [245], which also predominantly decay via two gluons, it isalready disfavored by the
2.3MeV upper limit on theX(3872) width. GivenMψ(3S) = (4040 ± 10)MeV, Mη′′c = 3872MeV
also implies a largeψ(3S)− η′′c mass splitting,∼ 168MeV, contrary to the expectation that the splitting
will decrease with increasing radial quantum number (cf.Mψ′ −Mη′c = 48MeV [391] andMψ−Mηc =
117MeV) [245].

8.26 Summary

The status of the six candidates considered by Belle [466] issummarized in Table 3.24: some are already
excluded by the data, and none is a natural candidate. Significant further information is expected once
searches for other decays become available; the search forX(3872)→π0π0J/ψ is particularly important.
Already however the lack of a natural charmonium candidate that fits the data suggests two possibilities:
(1) that the theory used to predict charmonium properties isflawed, or (2) that theX(3872) is not a
conventional(cc̄) state. As theX(3872) mass is very close to theMD0 +MD∗0 threshold, aDD

∗
bound

state is a natural candidate [212,467–472].
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state alias JPC Mpred Γpred comment

13D2 ψ2 2−− 3838 0.7 Mass wrong;Γγχc1
too small

21P1 h′c 1+− 3953 1.6 Ruled out by| cos θJ/ψ| distribution

13D3 ψ3 3−− 3849 4.8 M, Γ wrong;Γγχc2
too small;J too high

11D2 ηc2 2−+ 3837 0.9 B(π+π−J/ψ) expected to be very small

23P1 χ′

c1 1++ 3956 1.7 ΓγJ/ψ too small

31S0 η′′c 0−+ 4060 ∼ 20 Mass and width are wrong

Table 3.24: From [466]: Some properties of candidate charmonium states for theX(3872), and a summary of the comparison

with data. Mass predictions are taken from [401], and width predictions computed from [187], using a 3872 MeV mass value;

the predicted width for theη′′c is taken to be the same as theηc width. Masses and widths are shown in MeV.

9. The observation of theBc meson at CDF and D0†

The CDF Collaboration has observed the ground state of the bottom-charm mesonB±
c via the decay

modeB±
c → J/ψl±ν and measured its mass, lifetime and production cross section [39, 473]. The

measurement was done at the Tevatron, in Run I, at
√

(s) = 1.8 TeV. Fig. 3.36a shows the mass
spectra for the combinedJ/ψe andJ/ψµ candidate samples, the combined backgrounds, and the fitted
contribution from theB±

c → J/ψl±ν decay. The fitted number ofBc events is 20.4+6.2
−5.5, out of which

12.0+3.8
−3.2 come for the electron sample and 8.4+2.7

−2.4 from the muon sample.A fit to the same distribution
with background alone was rejected at the level of 4.8 standard deviations. TheB±

c mass was measured
to be equal to 6.40±0.39(stat.)±0.13(syst.) GeV/c2.
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Fig. 3.36: On the left, (a) the histogram of theJ/ψl mass that compares the signal and background contributionsdetermined

in the likelihood fit to the combined data forJ/ψe andJ/ψµ. The mass bins, indicated by tick marks at the top, vary in width.

The totalB±
c contribution is 20.4+6.2

−5.5 events. The inset shows the behavior of the log-likelihood function−2Ln(L) vs the

number ofBc mesons. On the right, (b) the distribution inct∗ for the combinedJ/ψe andJ/ψµ data along with the fitted

curve and contributions to it from signal and background. The inset shows the log-likelihood function vscτ for theBc meson.

†Author: V. Papadimitriou
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A measure of the time between production and decay of aB±
c meson is

ct∗ ≡ M(J/ψl) · Lxy(J/ψl)
|pT (J/ψl)| (3.51)

whereLxy is the distance between the beam centroid and the decay pointof theB±
c candidate in the trans-

verse plane and projected along theJ/ψl direction, andpT (J/ψl) is the tri-lepton transverse momentum.
Fig. 3.36b shows thect∗ distribution for the data, the signal and the background distributions. The mean
proper decay lengthcτ and hence the lifetimeτ of theB±

c meson was obtained from the above distribu-
tion. It was determined thatcτ = 137+53

−49(stat.) ± 9(syst.) µm or τ = 0.46+0.18
−0.16(stat.) ± 0.03(syst.)

ps.
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Fig. 3.37: TheJ/ψµ invariant mass (top left) and pseudo-proper time distributions (bottom left) of theBc→J/ψµX candidates

(points with error bars) from D0. The signal MonteCarlo events, generated with a mass of 5.95 GeV/c2, as well as the most

likely background sources are shown as solid histograms. The right plot shows theJ/ψπ+π− invariant mass ofJ/ψπ+π−µX

events that have M(J/ψπ+π−µ) between 4 and 6 GeV/c2. The background (solid histogram) is estimated from eventsoutside

this mass range.

Recently [474] the D0 collaboration has reported the observation of aBc signal in the decay mode
B±
c → J/ψµ±ν, from a sample of 210 pb−1 of data taken during Run II, at

√
s = 1.96 TeV. The

dimuon coming fromJ/ψ was required to be within 0.25 from theJ/ψ mass, and a third muon track was
required to come from the same vertex. The analysis yielded 95±12±11 events, at a massM(B±

c ) =
5.95+0.14

−0.13(stat.)±0.34(syst.) GeV/c2. The lifetime was calculated to beτ(B±
c ) = 0.448+0.123

−0.096 (stat.)
±0.121(syst.) ps. Fitted mass and lifetime are found to be uncorrelated. Figure 3.37(left) shows the
invariant mass and pseudo-proper time distributions of theevents. The analysis accounts for the possible
contribution fromBc→ψ(2S)µ±ν on the inclusive sample. As shown in Figure 3.37(right), it is esti-
mated that about 15 events are due to this component, and the systematic errors are obtained by varying
this contribution from 0 to 30 events. In the near future, themass uncertainty can be improved to better
than 5(50) MeV/c2 by CDF(D0) by using hadronic exclusive decay channels.
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10. Evidence for doubly charmed baryons at SELEX†

The addition of the charmed quark to the (uds) triplet extends the flavor symmetry of the baryon octet
and decuplet from SU(3) to SU(4). There is strong experimental evidence for all the predicted baryon
states which contain zero or one valence charmed quark [245]. We review here the first experimental
evidence for one of the six predicted baryon states which contain two valence charmed quarks - the
doubly charmed baryons. There have been many predictions ofthe masses and other properties of these
states [475–478]. The properties of doubly charmed baryonsprovide a new window into the structure of
baryonic matter.

10.1 The SELEX experiment

The SELEX experiment uses the Fermilab 600GeV/c charged hyperon beam to produce charm par-
ticles in a set of thin foil targets of Cu or diamond. The three-stage magnetic spectrometer is shown
elsewhere [479, 481]. The most important features are: (a) the high-precision, highly redundant, sili-
con vertex detector that provides an average proper time resolution of 20 fs for single-charm particle
decays, (b) a 10 m long Ring-Imaging Cherenkov (RICH) detector that separatesπ from K up to 165
GeV/c [480], and (c) a high-resolution tracking system that has momentum resolution ofσP /P < 1%
for a 200GeV/c reconstructedΛ+

c .

The experiment selected charm candidate events using an online secondary vertex algorithm which
required full track reconstruction for measured fast tracks. An event was written to tape if all the fast
tracks in the event were inconsistent with having come from asingle primary vertex. This filter passed
1/8 of all interaction triggers and had about50% efficiency for otherwise accepted charm decays. The
experiment recorded data from15.2 × 109 inelastic interactions and wrote1 × 109 events to tape using
both positive and negative beams.67% of events were induced byΣ−, 13% by π−, and18% by protons.

10.2 Search strategy

A Cabibbo-allowed decay of a doubly charmed baryon must havea net positive charge and contain a
charmed quark, a strange quark and a baryon. We chose to search for decay modes likeΞ+

cc → Λ+
c K

−π+

with an intermediateK−π+secondary vertex between the primary vertex and theΛ+
c vertex and

Ξ+
cc → pD+K− with an intermediatepK− secondary vertex between the primary vertex and theD+ .

Events were analyzed for evidence of a secondary vertex composed of an opposite-signed pair
between the primary and the single charm decay point. We usedall tracks not assigned to the single
charm candidate in the search. The new secondary vertex had to have an acceptable fitχ2 and a separation
of at least 1σ from the new primary. These cuts were developed and fixed in previous searches for short-
lived single-charm baryon states. We have applied them herewithout change. As a background check
we also kept wrong-sign combinations in which the mass assignments are reversed.

10.3 Ξ+
cc → Λ+

c K
−π+ Search results and significance

The signal and wrong-sign backgrounds are shown in Fig. 3.38. There is a obvious peak at a mass
of 3519± 2MeV/c2. The number of events in the signal region shown is22 events. We estimate the
number of expected background events in the signal region from the sidebands as6.1 ± 0.5 events.
This determination has a (Gaussian) statistical uncertainty, solely from counting statistics. The single-
bin significance of this signal is the excess in the signal region divided by the total uncertainty in the
background estimate:15.9/

√
6.1 + 0.52 = 6.3σ. The Poisson probability of observing at least this

excess, including the Gaussian uncertainty in the background, is1.0 × 10−6. The overall probability of
observing an excess at least as large as the one we see anywhere in the search interval is1.1×10−4. This
result is published in reference [481].

†Author:P. Cooper
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Fig. 3.38: (a) TheΛ+
c K

−π+ mass distribution in 5MeV/c2 bins. The shaded region 3.400-3.640GeV/c2 contains the signal

peak and is shown in more detail in (c). (b) The wrong-sign combinationΛ+
c K

+π− mass distribution in 5MeV/c2 bins.

(c) The signal (shaded) region (22 events) and sideband mass regions with162 total events in 2.5MeV/c2 bins. The fit is a

Gaussian plus linear background.

10.4 Ξ+
cc → pD+K− search

After the discovery and publication of theΞ+
cc → Λ+

c K
−π+ signal we sought to confirm the discovery

in another decay mode which was likely to have a significant branching ratio. Obvious choices were
Ξ+
c π

+π− and Ξ+
cc → pD+K− . Since the SELEXD+ signal is large and well studied we began with it.

A similar analysis technique [482] resulted in the signal and wrong-sign background shown in
figure 3.39. In this new decay mode we observe an excess of5.4 events over an expected background
of 1.6 ± 0.35 events. The Poisson probability that a background fluctuation can produce the apparent
signal is less than1.5 × 10−5. The observed mass of this state is 3518± 3 MeV/c2, consistent with
the published result. Averaging the two results gives a massof 3518.7± 1.7MeV/c2. The observation
of this new weak decay mode confirms the previous suggestion that this state is a double charm baryon.
The relative branching ratioΓ(Ξ+

cc → pD+K− )/Γ(Ξ+
cc → Λ+

c K
−π+ ) = 0.078± 0.045.

The lifetime of this state in both decay modes is very short; less than 33fs at 90% confidence.
The properties of these two signals are consistent with eachother. SELEX reports an independent con-
firmation of the double charm baryonΞ+

cc, previously seen in theΞ+
cc → Λ+

c K
−π+ decay mode, via the

observation of its decayΞ+
cc → pD+K−.

10.5 Conclusions

TheΞ+
cc(ccd) doubly charmed baryon has now been observed by SELEX in two decay modes at a mass of

3518.7± 1.7MeV/c2with a lifetime less than 33fs at 90% confidence. Analysis continues with SELEX
data to searchfor additional decays modes for this state andto search for the two other doubly-charmed
baryons ground states expected:Ξ++

cc (ccu) andΩ+
cc(ccs).
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11. Summary and outlook30

It took few years , after the discovery of theJ/ψ, to sketch the spectroscopical pattern of the narrow
ortocharmonium and ortobottomonium states: the experimental determination of such energy levels is
extremely good, all states are know with precisions better than 1 MeV. On the other side, the experimental
history of spin singlet states has started to clear up only inthe recent years, but open puzzles remain:

• the total width of theηc(1S) (the ground state of charmonium) is as large as the one of theψ(3770),
which can decay to open charm:

• after 16 years, the realηc(2S) has been observed, disconfirming an evidence by Crystal Ballthat
misled theory calculations on hyperfine splittings for morethan a decade.

• two compatible evidences of thehc state have been found in the last year, and may bring to an
end the saga of the spin singlet P state; a concrete strategy to consolidate this observation is now
needed.

• none of the 5 spin singlet states in the bottomonium system has been found yet; given the absence
of scheduled running time on narrowΥ states in the near future, it is necessary to elaborate smarter
search strategies to spot these states at asymmetric B-factories or hadron colliders .

The quest to complete the experimental spectra is now extending to the higher excitations:

• the search for narrow D-states resulted in the discovery of theΥ(1D) states in CLEO-III, and to
the observation of the intriguing X(3872) meson by Belle; while the bottomonium state falls well
in the expected pattern, there is a wide variety of speculations on the nature of the X(3872).

• the need to achieve a deeper understanding of the region justabove open charm threshold, together
with the improvement of the experimental tools, will allow to disentangle each single contribution
to the R ratio, hopefully clarifying the puzzles opened by the pioneering studies of Mark-II.

As we have seen in this chapter the application of EFTs of QCD to heavy quarkonium has considerably
increased our understanding of these systems from a fundamental point of view. NRQCD has allowed,
on the one hand, for efficient lattice calculations of the masses of the bottomonium and charmonium
states below open heavy flavor threshold. On the other hand, it has paved the way to pNRQCD, which
provides, in the strong coupling regime, a rigorous link from QCD to potential models for states below

30Authors: G. Bali, N. Brambilla, R. Mussa, J. Soto
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open heavy flavor threshold. In the weak coupling regime, pNRQCD has allowed to carry out higher-
order calculations and to implement renormalization groupresummations and renormalon subtractions in
a systematic way. This regime appears to be applicable at least for theΥ(1S) andηb(1S). Interestingly,
as discussed in Sec. 2.31 (Tables 2 and 3) even some excited states can be reproduced in perturbation
theory (inside the errors of the perturbative series).

The most challenging theoretical problem at present is the description of states above open heavy
flavor threshold. The recent discovery ofX(3872) has made clear that potential models suffer from large
systematic uncertainties in this region and that the inclusion of, at least, heavy-light meson degrees of
freedom is necessary. Although NRQCD holds in this region, extracting information from it on the lattice
is not simple, since besides heavy quarkonium, heavy-lightmeson pairs and hybrid states populate it. It
would be important to develop theoretical tools in order to bring current phenomenological approaches
into QCD based ones.

In order to stimulate progress in heavy quarkonium spectroscopy, we shall try to pose a number
of questions, and try to provide what we believe to be reasonable answers to them, from the theory and
experimental point of view.

• Q. What does theory need from experiment?

A1(TH:) Discovery and good mass measurements of the missing states below open heavy flavor
threshold.

A1(EXP:) Concerning triplet S and P states of neutral heavy quarkonia, experimental measure-
ments are mature and ahead of theory. Concerning the singletS and P states, charmonia are under very
active investigation at present, and probably will be nailed down to less than .5 MeV/c2 in the near future,
with an active cooperation amid experimental groups. In bottomonium, the situation looks less promis-
ing: only Tevatron experiments have currently some chance to detect the missing (narrow?) states, while
CLEO-III searches turned out no plausible candidates, and showed that more luminosity is needed at
Υ(1, 2, 3S), but none of the active B-factories is planning to shift out of Υ(4S).

The experimental study of the spectrum of the charged heavy quarkonium, theBc, has not started
yet. The ground state has been seen by CDF and confirmed by D0, but via its semileptonic decay,
which yield still very wide uncertainties on the mass (0.4 GeV/c2). The experimental search for an
exclusive, non leptonic mode is under way and will allow to know this state with accuracies better than
5 MeV/c2 in the near future. Beyond this, most experimental efforts will be focused on finding the
dominant decay modes of the ground state. The search for theB∗

c , which decays dominantly toBc via
M1 radiation of a soft photon , will be extremely challengingfor current Tevatron experiments, due to
the high combinatorial background and to the low efficiency on low energy photons. Same can be said
for the P states , which are expected to decay toB

(∗)
c via dipion emission. It is hard to predict whether

the hadronic B-factories, BTEV and LHCB, will be able to contribute to these spectroscopical studies.
The issue should be discussed in Chapter 9.

A2(TH:) Thorough analysis of the region above open heavy flavor threshold in search for quarko-
nium states, hybrid states, molecules and other exotica.

A2(EXP:) The BES-II R scan and the surprises from the asymmetric B-factories (X(3872) and
doublecc̄ production) have ignited new experimental and theoreticalinterest in this physics region. The
CLEO-c running atψ(3770) and aboveDsD̄s threshold has a very large physics potential for heavy
quarkonium studies. At the same time, B factories can benefitfrom a large variety of techniques to
identify new charmonium states: (a) inclusive ones , such asJ/ψ andψ ′ recoil in doublecc̄, or K recoil in
tagged B decays; (b) exclusive ones , such asB→(ψ, ηc)XK

(∗) (for narrower states),B→D(∗) ¯D(∗)K(∗)

(for wider states).

Some discovery potential is to be expected also from hadron colliders, where the large, very clean
samples of D mesons can be used as starting point to search forpeaks inDD̄ invariant mass combina-
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tions.

• Q. What does experiments need from theory?

A1(EXP:) In spectroscopy, two are the crucial issues in the search of missing states: (a) a good
understanding of the production/formation mechanisms; (b) a comprehensive set of decay channels, with
solid predictions on the partial widths. The two issues are related between each other, and to the hot topics
of the next chapter.

There is NOT an infinite number of ways to produce charmonium,less for bottomonium, much less
for Bc : these couplings deserve a higher level of understanding, both theoretically and experimentally.
This is much more important, when we do want to understand whether we can get some deeper insight
from the non observation of a missing state. It must be noticed that most production mechanisms are not
fully understood, and/or lead to wrong predictions.

A limited set of processes, then, deserve deeper theoretical understanding:

• M1 hindered radiative transitions: relativistic corrections are dominant in these processes that are
the main gateways toηb’s.

• isospin violating hadronic transitions: it is now very important to establish a physical relation
betweenψ(2S)→hcπ

0 andhc→J/ψπ0. This can help clarifying the consistency between the two
(still weak) evidences.

• factorization in B decays: exclusive B decays to K+cc̄ were expected to yield0−+, 1−−, 1++

charmonia, and, in smaller quantities,0++, 2++. The prediction holds for the second, butχc0’s
are produced as copiously asχc1’s . The understanding of the effective selection rules can help to
set limits on thehc production, and to find the possible quantum numbers of the X(3872) meson.

• coupling to exclusivepp̄: helicity selection rule in perturbative QCD forbids the formation ofηc,
χc0, hc from pp̄ annihilations; no suppression is observed in the first two cases, and the third is
under active investigation. It is auspicable that recent developments in NRQCD can help to explain
thepp̄ coupling and make testable predictions on the coupling toηc(2S) and X(3872).

• the doublecc̄ selection rules are not yet clear: so far only scalars and pseudoscalars were ob-
served recoiling against theJ/ψ . This process has already allowed an indipendent confirmation
of theηc(2S) observation. By understanding the dynamics, one can converge more rapidly on the
determination of the quantum numbers of any bump that shows up in theJ/ψ recoil spectrum.

Within theory one may ask the following questions:

• Q. What does the phenomenological approach need from the theoretical one?

A ∗ That the theory clearly points out the most relevant feautures that should be implemented in
phenomenological models.

• Q. What does the theoretical approach need from the phenomenological one?

A ∗ To point out shortcomings in models which are relevant to experimental observations.

Within the theoretical approach:

• Q. What does EFTs need from lattice?

∗ Calculation of the correlators which parameterize nonperturbative effects in the weak coupling

regime of pNRQCD.

∗ Calculation of the various potentials which enter pNRQCD inthe strong coupling regime.
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• Q. What does lattice need from EFT?

∗ Calculation of the NRQCD matching coefficients in lattice regularizations.

∗ Chiral extrapolations.

Let us next describe the future development which are desirable within each particular approach.

From the side of the EFT the priority “to-do” list is:

• Develop a suitable EFT for the region above open heavy flavor threshold.

• Include the effects of virtual pions. Pions should be included in the strong coupling regime of
pNRQCD as ultrasoft degrees of freedom and their effect on the spectrum should be investigated.

• A systematic investigation of the structure of the renormalon subtractions in NRQCD matching
coefficients and in the perturbative potentials.

For what concerns lattice calculations the priority practical lattice ”to-do list” is:

• Further investigations of sea quark effects, in particularon charmonia and also in bottomonia,
including charm mass effects.

• Calculation of threshold effects in charmonia and bottomonia, first using lattice potentials, then a
multichannel analysis in lattice NRQCD/QCD.

• Further investigations of OZI suppressed contributions, in particular in the PS charm-sector.

• Mixing of charmonia and would-be glueballs.

• Doubly charmed baryons.

• QQq potentials.

From the side of phenomenological models the wish list includes:

• The major deficiency of these models is that they only includetheqq̄ components of the Fock space
expansion and totally neglect higher Fock space componentswhich can be included as coupled
channel effects. These are expected to be most prominent forstates close to threshold.

From the side of experiments we need:

• to clarify the nature of the X(3872) state, fully exploitingthe four running experiments that see
this state.

• to strengthen thehc evidence , by asking for an active collaboration between experiments , in order
to intensify the checks which certify the compatibility between the two recent evidences.

• to support further cross checks on the systematic errors on the masses of pseudoscalar charmonia:
both BaBar and Belle should already have a large sample ofγγ→ηc(1, 2S), to measure with high
precision both states.

• to search for doubly charmed baryons in asymmetric B-factories, as well as at the Tevatron.

• to measure, at CLEO-c, the coupling of theψ(3770) and theΥ(1, 2, 3S) states topp̄, to quantify
the perspectives to study charmonium at open charm threshold and bottomonium with antiproton
beams.

• to support furtherηb searches at the Tevatron, and to strengthen the physics casefor further running
at narrow bottomonium energies.
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Chapter 4

DECAY

Conveners:E. Eichten, C. Patrignani, A. Vairo

Authors: D. Z. Besson, E. Braaten, A. Deandrea, E. Eichten, T. Ferguson, F. Harris, V. V. Kiselev,
P. Kroll, Y.- P. Kuang, A. Leibovich, S. L. Olsen, C. Patrignani, A. Vairo

1. Introduction1

The study of decay observables has witnessed in the last years a remarkable progress. New experimental
measurements, mainly coming from Belle, BES, CLEO and E835 have improved existing data on inclu-
sive (Sec. 3. and 4.), electromagnetic (Sec. 3.) and severalexclusive (Sec. 5.) decay channels as well as
on several electromagnetic (Sec. 6.) and hadronic (Sec. 7.)transition amplitudes. In some cases the new
data have not only led to a reduction of the uncertainties butalso to significant shifts in the central values.
Also the error analysis of several correlated measurementshas evolved and improved our determination
of quarkonium branching fractions (Sec. 2.). New data have also led to the discovery of new states.
These have been mainly discussed in Chapter 3.

From a theoretical point of view several heavy quarkonium decay observables may be studied
nowadays in the framework of effective field theories of QCD.These have been introduced in Chapters
1 and 3. In some cases, like inclusive and electromagnetic decay widths, factorization of high and low
energy contributions has been achieved rigorously. In someothers, where more degrees of freedom, apart
from the heavy-quarkonium state, are entangled and the problem becomes quite complicated, models are
still used to some extent and factorization formulas, if there are, are on a less solid ground. There is
room there for new theoretical developments. High energy contributions can be calculated in perturba-
tion theory. Low energy matrix elements, which may include,among others, heavy quarkonium wave
functions, color-octet matrix elements, correlators, overlap integrals in radiative transitions, multipole
gluon emission factors, can be determined either by suitable fitting of the data or on the lattice or by
means of potential models. They typically set the precisionof the theoretical determinations.

In each of the following sections we will have a first part where the theoretical framework is
reviewed and the basic formalism set up and a second part thatsummarizes the phenomenological appli-
cations and presents the experimental status. In the last section of the chapter, Sec. 8., we will discuss
decay modes of theBc. There are no data available yet (apart from the lifetime), but Bc will be copi-
ously produced at future hadron colliders. This system, differently from bottomonium and charmonium,
decays only weakly. Therefore, it opens in quarkonium physics a window to some of the electroweak
parameters of the Standard Model.

The outline of the chapter is the following. We will start in Sec. 2. by making some general
remarks on the determination of quarkonium branching ratios from experiments. In Sec. 3. we will

1Author: A. Vairo
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discuss inclusive and electromagnetic decay widths, in Sec. 4. Υ inclusive radiative decays, in Sec. 5.
exclusive decays, in Sec. 6. radiative and in Sec. 7. hadronic transitions. Finally, Sec. 8. will be devoted
to the decays of theBc.

2. Branching ratio measurements2

The measurement of branching ratios (or partial widths)B is deceptively simple: the total number of
events observed in a given final stateNobs

QQ̄→f
is proportional to the total number of events produced

Nprod
QQ̄

for that particular resonance:

Nobs
QQ̄→f = eff ×Nprod

QQ̄
× B(QQ̄→f), (4.1)

Nprod
QQ̄

in turn needs to be measured by counting some specific events.In most cases, depending on the

process under study and the analysis strategy,Nprod
QQ̄

is calculated from the number of events observed in

a given “reference” final stateNobs
QQ̄→Ref

:

Nprod
QQ̄

=
Nobs
QQ̄→Ref

eff ′ BRef
.

The reported value ofB(QQ̄→f) will therefore useBRef as reported by some previous experiment:

B(QQ̄→f) =
Nobs
QQ̄→f

Nobs
QQ̄→Ref

eff ′

eff
BRef . (4.2)

As discussed in [1], there are a number of potentially dangerous consequences in this procedure.
First of all different experiments might use the same reference mode, so their values ofB are not in-
dependent. Even worse, theB(QQ̄→f) reported in Eq. (4.2) will also be (hiddenly) correlated to the
normalizationRef ′ chosen by the previous experiment(s) whereBRef had been measured, and ultimately
may depend on some other branching ratioB′

Ref′ . Such hidden correlations are hard to identify and can
have pernicious consequences on the evaluation ofB′ based on independent measurements from different
experiments.

For precision determination of branching ratios or partialwidths, it is important to know the nor-
malization used in each measurement and to quote explicitlythe quantity that is indeed directly measured
by each experiment

B(QQ̄→f)

BRef
=

Nobs
QQ̄→f

Nobs
QQ̄→Ref

eff ′

eff
, (4.3)

i.e. the ratio or product of branching ratios (even of different particles), which is most directly related to
the event yield. Many experiments could also provide measurements of ratios of branching ratios

RB(f/f ′) =
B(QQ̄→f)

B(QQ̄→f ′)
, (4.4)

which do not depend on the normalization, and where usually also a number of other systematics cancel.

With the increased statistical precision that is to be expected in the next few years, it will become
increasingly important for an appropriate branching ratioand partial width evaluation that individual
measurements are reported according to Eq. (4.3) and whenever possible also as in Eq. (4.4). In or-
der to perform the best estimate based on a set of measurements from different experiments, it might

2Author: C. Patrignani
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also become important to take into account the systematic errors that are common to all measurements
performed by the same experiment. An appropriate choice of aset of independent measurements of
(4.3) and (4.4) from each experiment is likely the best option for a global fit to quarkonium branching
ratios. A comparison ofRB(f/f ′) that could be directly measured by virtually all experiments, could
also help understand possible systematic effects, which are going to be the limiting factor on branching
ratio determinations.

Here, we briefly outline the experimental techniques and analysis strategies adopted to determine
these branching ratios with emphasis on the corresponding possible normalization choices, as a necessary
ingredient to understand possible mutual dependencies andconstraints.

2.1 Branching ratios measured ine+e− formation experiments

e+e− formation experiments are undoubtedly the most important tool to investigate charmonium and
bottomonium branching ratios by a variety of techniques. Inthese experiments then3S1 quarkonium
states can be directly formed and theB(n3S1→f) are determined either normalizing to a specific decay

mode, i.e. providing a direct measurement of
B(n3S1→f)

B(n3S1→Norm)
, or measuring the number ofn3S1 by

performing a scan of the resonance.

The usual choice for the normalization channel is the inclusive hadronic decay mode, which is
close to 100% for all resonances, i.e. it provides to a good approximation an absolute normalization.
However, it requires subtraction of the non resonant hadronic cross section whose yield (at the given
running condition) must be calculated taking into account the interference with the resonance. When the
total number of events is determined by a scan of the resonance (which also provides measurements of
Γtot, Bℓℓ andBhadr), there is in principle a possible correlation of the branching ratio to the values for
these quantities that is likely small if the scan has many points, but should not be overlooked. As stressed
in Chapter 2, Sec. 8.5, interference with the continuum for any specific final state might introduce size-
able corrections. A measurement of the ratioRB(f/Norm) across the formation energy of the resonance
is needed to understand the interference and its impact on branching ratios.

All other states are studied in hadronic or radiative decays, and the number of events produced for
each state must be determined using the appropriaten3S1 branching ratio:

Nprod
n′3PJ

= Nprod
n3S1

× B(n3S1→γ n′3PJ), (4.5)

Nprod
n′1S0

= Nprod
n3S1

× B(n3S1→γ n′1S0). (4.6)

Thus, for3PJ and1S0 states these experiments can only directly measure the ratiosRB(f/f ′) and the
following combinations of branching ratios:

B(n3S1→γ n′3PJ)
B(n3S1→Norm)

B(n3PJ→f), (4.7)

B(n3S1→γ n′1S0)

B(n3S1→Norm)
B(n′1S0→f). (4.8)

On the other hand, since theB(ψ(2S)→J/ψπ+π−) is reasonably large, and the events can be
easily selected by just reconstructing theπ+π− recoiling against theJ/ψ, absolute measurements of
J/ψ branching ratios have been obtained based on “tagged”J/ψ samples:

B(J/ψ→f) =
effπ+π−X

effπ+π− f

Nobs(ψ′→(π+π−)recoilf)

Nobs(ψ′→(π+π−)recoilX)
. (4.9)

From the experimental point of view this is a particularly clean measurement, since the efficiency ratio
can be determined with high precision. With the increased CLEO-III samples, it would be interesting to
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fully exploit the possibility of using “tagged”Υ(2S) andΥ(3S) samples to perform absoluteΥ(1S) and
Υ(2S) branching ratios determinations.

Radiative decay branching ratios (e.g. direct1−−→γ X and1−−→γ X→γγX ′) have also been
directly measured.

In all cases, photon candidates that are likely to originatefrom π0 are not considered (π0 veto),
and the efficiency correction relies on Monte Carlo, and ultimately on the event generator used to model
the particle multiplicities, and the angular and momentum distributions.

Despite efforts to tune JETSET [2] fragmentation parameters to reproduce specific classes of inclu-
sive events (e.g. hadronic events in the continuum [3] belowDD̄ threshold orJ/ψ, ψ(2S) decays [4]),
there are simply not enough experimentally measuredχc, χb, ηc, ηb decays to light hadrons (l.h.) to
compare these models with. That could eventually become a limiting systematic to these measurements.

2.2 Branching ratios and partial widths measured inpp̄ formation experiments

In these experiments [5] a scan of the resonance allows direct measurements of mass, total width and
B(pp̄)Bf for all charmonium resonances.3 For resonances whose natural width is comparable or smaller
than the beam width (O(700MeV) for E760 and E835), the productB(pp̄)Bf is highly correlated to
the total width, and the quantityΓ(pp̄)Bf is more precisely determined. By detecting the resonance
formation in more than one final state, the ratio of branchingratiosRB(f/f ′) can be determined inde-
pendently from the total width andB(pp̄), in general with small systematic errors since the final state
is fully reconstructed, and the angular distribution only depends on a limited number of decay and for-
mation amplitudes. Interference effects with the continuum could affect the measurement ofB(pp̄)Bf

andRB(f/f ′), but as ine+e− experiments, their relevance could be estimated by a measurement of
RB(f/f ′) across the formation energy of the resonance. Unfortunately, only a few highly characteristic
final states of charmonium (e+e−, J/ψX, γγ) can be detected by these experiments, because of the
large hadronic non-resonant cross section.

Recently, a pioneering study ofpp̄→π0π0 [6] and ηη differential cross sections at theχc0 for-
mation energy has shown that also selected exclusive two-body hadronic decays can be successfully
measured. The interference with the continuum could be successfully exploited by the next generation
of pp̄ annihilation experiments to extend the knowledge ofχc andηc branching ratios to baryons or light
hadrons.

2.3 Branching ratios and partial widths measured in two-photon reactions

The number of events observed for a specific final state is proportional to ΓγγBf × Lγγ , where the
effective two-photon luminosity functionLγγ (see Sec. 2.8.4) is calculated by all experiments using the
same formalism (even if not all using the same generator). The only directly measurable quantity is

ΓγγBf , (4.10)

or (if more than one final state is detected)RB(f/f ′). The theoretical uncertainties inLγγ are largely
common to all experiments and that should be taken into account for future high statistics measurements.
It might be worth mentioning here that the values reported inthe past by different experiments for the
Γγγ , derived from their measurement of (4.10), are not independent and they are not always easily
comparable since some of them are obtained by a weighted average of many decay modes, which are
individually poorly known.

3Thepp̄ branching ratios of bottomonium states are likely 3 orders of magnitudes smaller than for charmonium, and only
when a measurement will be available, it will be possible to judge on the feasibility of such experiments.
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2.4 Branching ratios and partial widths measured by radiative return (ISR)

Because of initial state radiation (ISR, also referred to ashard photon emission or radiative return),
e+e− colliders are effectively at the same time (asymmetric) colliders for all

√
s energies below nominal

collision energy. The effective luminosity (and thereforeevent yields) can be sizeable [7] and can be
determined quite accurately by countingµµγ events, for which precise expressions (and event generators
based on them) are commonly available. The major advantage of this technique is thate+e−→X can
be measured simultaneously and under uniform detector conditions over a broad range of

√
s. And they

“come for free” at any of thee+e− factories, which are expected to collect large data samples.

The main interest is the measurement ofR, but for any exclusive final state those experiments
could obtain a direct measurement ofΓe+e−Bf for any resonance whose mass is lower than the collision
energy, and, again by detecting more than one final state,RB(f/f ′). To date only BES [8] and BaBar [9]
have used this technique to measureΓ(ψ′→e+e−)B(ψ′→J/ψππ) andΓ(J/ψ→e+e−)B(J/ψ→µ+µ−)
respectively. Measurements ofΓe+e−Bl+l− would provide important constraints on both the total width
andΓe+e− for all 1−− states, providing at the same time an important cross check for possible systematic
errors.

2.5 Branching ratios measured inB decays

AsymmetricB factories focused originally on exclusiveB decays to final states involving acc̄ as the
cleanest modes to study CP violation.

With the impressive amount of data collected so far (more than 500 fb−1 as of summer 2004 adding
Belle and BaBar) andB(B→cc̄X) of order 10−3, both experiments are collecting larger and larger
samples of exclusiveB decays to charmonia, and they are obviously interested in reconstructing them
into as many different final states as possible. The same is true for D0 and CDF, since the preliminary
reconstruction of highly characteristic exclusive charmonium (and bottomonium) final states is needed
for other analyses.

For charmonium the quantity directly measured by these experiments is

B(B→cc̄X) × B(cc̄→f), (4.11)

and again from the number of fully reconstructed events intodifferent final states these experiments can
directly measureRB(f/f ′) for a variety of final states and for virtually all quarkoniumstates. Even
if the precision might not always compete with other techniques, the wide range of possibleRB(f/f ′)
measurements, with likely different sources of systematicerrors, would certainly be important in evalu-
ating quarkonium branching ratios, in particular for thosestates (χQ andηQ) whose branching ratios are
largely unknown.

2.6 Indirect determinations as a tool to investigate systematic effects

The possibilities offered by the mutual constraints posed by measurements of different products or ratios
of branching ratios have so far been only partially exploited.

The first advantage is that branching ratios measured by different techniques have different sources
of systematic errors, and the comparison can provide insight on how to nail them down. The current best
estimate forB(χc2→γJ/ψ) [10] is largely determined by measurements ofΓ(χc2→pp̄)B(χc2→γJ/ψ),
Γ(χc2→γγ)B(χc2→γJ/ψ) andB(χc2→γγ)/B(χc2→γJ/ψ), to the point that these measurements in-
directly constrain the estimate ofB(ψ′→γχc2) to a value significantly lower than the world average
of direct measurements, since the productB(ψ′→γχc2)B(χc2→γJ/ψ) has been measured with high
precision.4

4New more precise measurements ofB(ψ′→γχc2) might in turn provide constraints forB(ψ′→γχc2)B(χc2→γJ/ψ)
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The other advantage is that measurements of different product and ratios of branching ratios pose
constraints on their values: forχc0 at present the partial widthsΓγγ andΓγJ/ψ are known to≈10% [10],
even if none of the many measurements more or less directly related to these quantities (Γ, ΓγγB4π,
Γγγ/ΓγJ/ψ , ΓγJ/ψBpp̄, B(ψ′→γχc0), B(ψ′→γχc0)Bpp̄, B(ψ′→γχc0)BγJ/ψ and others) is individually
known much better than that.

The proposed next generation ofpp̄ experiments with extended PID ability could provide invalu-
able information by measuringpp̄→pp̄ differential cross section at theηc (and possibly at theχc0). This
would provide a direct measurement ofB(cc̄→pp̄), indirectly constraining the radiativeJ/ψ (andψ′)
M1 transitions from the well measuredB(J/ψ→γηc→γpp̄). Since at present the≈30% uncertainty in
B(J/ψ→γηc) is the major source of uncertainty in allηc branching ratios, this will also directly affect
all ηc branching ratios.

With the increased statistics available atB factories it might soon become possible to deter-
mine at least some of theB(B→cc̄ l.h.) branching ratios without explicitly reconstructing the char-
monium. In this case, simultaneous measurements of the sameB decay mode in exclusive final states
B(B→cc̄ l.h.)B(cc̄→f) would allowB factories to directly measureB(cc̄→f) from Eq. (4.11). Con-
sidering that the photon inψ(2S)→γηc(2S) is very soft and that this inclusive radiative transition will
likely be difficult to measure for both CLEO-c and BES-III, this might well be the best way of determin-
ing theηc(2S) branching ratios, and indirectly determining the partial width for the M1ψ(2S)→γηc(2S)
transition itself.

3. Electromagnetic and inclusive decays into light particles5

3.1 Theoretical framework

The main dynamical mechanism of heavy-quarkonium decay into light particles is quark-antiquark anni-
hilation. Since this happens at a scale2m (m is the heavy quark mass), which is perturbative, the heavy
quarks annihilate into the minimal number of gluons allowedby color conservation and charge con-
jugation. The gluons subsequently create light quark-antiquark pairs that form the final state hadrons:
QQ̄→ng∗→m(qq). Values ofn are given for various quarkonia in Tab. 4.1; for comparison the minimal
number of photons into which aQQ̄ pair can annihilate is also listed. Experimentally this fact is reflected
by the narrow width of the heavy quarkonia decays into hadronic channels in a mass region where strong
decays typically have widths of hundreds of MeV. As an example let us consider theJ/ψ decay into light
hadrons. Following [11], this process is regarded as the decay into three real gluons. The calculation of
this width leads to the result

Γ(J/ψ→l.h.) =
10

81

π2 − 9

πe2c

α3
s

α2
em

Γ(J/ψ→e+e−) = 205 keV
( αs

0.3

)3
. (4.12)

Although this value is somewhat larger than the experimental one it explains the narrowness of the
hadronic decays of the quarkonia. Corrections like relativistic,αs or color-octet ones, may lead to a better
agreement with experiment. A systematic way to include these corrections is provided by nonrelativistic
effective field theories of QCD.

In an effective field theory language6, at scales lower thanm heavy-quarkonium annihilation is
resolved as a contact interaction. This is described at the Lagrangian level by four-fermion operators
whose matching coefficients develop an imaginary part. Consequently, the annihilation width of a heavy
quarkonium state|H〉 into light particles may be written as

Γ(H → light particles) = 2 Im 〈H|Lψχ|H〉, (4.13)

5Authors: T. Ferguson, C. Patrignani, A. Vairo
6We refer to Chapter 1 for a basic introduction to effective field theories and NRQCD.
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2S+1LJ IG(JPC) gluons photons

ηc, ηb 1S0 0+(0−+) 2g 2γ

J/ψ, Υ(1S) 3S1 0−(1−−) (3g)d γ

hc, hb 1P1 0−(1+−) (3g)d 3γ

χc0, χb0 3P0 0+(0++) 2g 2γ

χc1, χb1 3P1 0+(1++) 2g 2γ

χc2, χb2 3P2 0+(2++) 2g 2γ

Table 4.1: Quantum numbers of quarkonium states and the minimal number of virtual gluons and photons into which they can

annihilate. The subscriptd refers to a gluonic color-singlet state that is totally symmetric under permutations of the gluons.

whereLψχ is given by Eq. (1.8) of Chapter 1 up to four-fermion operators of dimension 6. The low-
energy dynamics is encoded in the matrix elements of the four-fermion operators evaluated on the heavy-
quarkonium state. If one assumes that only heavy-quarkonium states with quark-antiquark in a color-
singlet configuration can exist, then only color-singlet four-fermion operators contribute and the matrix
elements reduce to heavy-quarkonium wave functions (or derivatives of them) calculated at the origin.
This assumption is known as the “color-singlet model”. Explicit calculations show that at higher order
the color-singlet matching coefficients develop infrared divergences (forP waves this happens at NLO
[12]). In the color-singlet model, these do not cancel in theexpression of the decay widths. It has
been the first success of NRQCD [13,14] to show that the Fock space of a heavy-quarkonium state may
contain a small component of quark-antiquark in a color-octet configuration, bound with some gluonic
degrees of freedom (the component is small because operators coupling transverse gluons with quarks
are suppressed by powers ofv ≪ 1, v being the heavy-quark velocity in the centre-of-mass frame),
that due to this component, matrix elements of color-octet four-fermion operators contribute and that
exactly these contributions absorb the infrared divergences of the color-singlet matching coefficients in
the decay widths, giving rise to finite results [14, 15]. NRQCD is now the standard framework to study
heavy-quarkonium inclusive decays.

The NRQCD factorization formulas are obtained by separating contributions coming from de-
grees of freedom of energym from those coming from degrees of freedom of lower energy. Inthe case
of heavy-quarkonium decay widths, they have been rigorously proved [14]. High-energy contributions
are encoded into the imaginary parts of the four-fermion matching coefficients,f, g1,8,ee,γγ,...(2S+1LJ)
and are ordered in powers ofαs (coefficients labeled withee, γγ, ... refer to pure electromagnetic decays
into e+e−, γγ, ...). Low-energy contributions are encoded into the matrix elements of the four-fermion
operators on the heavy-quarkonium states|H〉 (〈. . .〉H ≡ 〈H| . . . |H〉). These are, in general, nonper-
turbative objects, which can scale as powers ofΛQCD, mv, mv2, ... (i.e. of the low-energy dynamical
scales of NRQCD). Therefore, matrix elements of higher dimensionality are suppressed by powers of
v or ΛQCD/m. Including up to four-fermion operators of dimension 8, theNRQCD factorization for-
mulas for inclusive decay widths of heavy quarkonia into light hadrons, which follow from Eq. (4.13),
read [14,15]:

Γ(VQ(nS) → l.h.) =
2

m2

(
Im f1(

3S1) 〈O1(
3S1)〉VQ(nS)

+Im f8(
3S1) 〈O8(

3S1)〉VQ(nS) + Im f8(
1S0) 〈O8(

1S0)〉VQ(nS)

+Im g1(
3S1)

〈P1(
3S1)〉VQ(nS)

m2
+ Im f8(

3P0)
〈O8(

3P0)〉VQ(nS)

m2
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+Im f8(
3P1)

〈O8(
3P1)〉VQ(nS)

m2
+ Im f8(

3P2)
〈O8(

3P2)〉VQ(nS)

m2

)
, (4.14)

Γ(PQ(nS) → l.h.) =
2

m2

(
Im f1(

1S0) 〈O1(
1S0)〉PQ(nS)

+Im f8(
1S0) 〈O8(

1S0)〉PQ(nS) + Im f8(
3S1) 〈O8(

3S1)〉PQ(nS)

+Im g1(
1S0)

〈P1(
1S0)〉PQ(nS)

m2
+ Im f8(

1P1)
〈O8(

1P1)〉PQ(nS)

m2

)
, (4.15)

Γ(χQ(nJS) → l.h.) =
2

m2

(
Im f1(

2S+1PJ)
〈O1(

2S+1PJ )〉χQ(nJS)

m2

+Im f8(
2S+1SS) 〈O8(

1S0)〉χQ(nJS)

)
. (4.16)

At the same order the electromagnetic decay widths are givenby:

Γ(VQ(nS) → e+e−) =
2

m2

(
Im fee(

3S1) 〈OEM(3S1)〉VQ(nS)

+Im gee(
3S1)

〈PEM(3S1)〉VQ(nS)

m2

)
, (4.17)

Γ(PQ(nS) → γγ) =
2

m2

(
Im fγγ(

1S0) 〈OEM(1S0)〉PQ(nS)

+Im gγγ(
1S0)

〈PEM(1S0)〉PQ(nS)

m2

)
, (4.18)

Γ(χQ(nJ1) → γγ) = 2 Im fγγ(
3PJ)

〈OEM(3PJ)〉χQ(nJ1)

m4
, J = 0, 2 . (4.19)

The symbolsVQ andPQ indicate respectively the vector and pseudoscalarS-wave heavy quarkonium
and the symbolχQ the genericP -wave quarkonium (the statesχQ(n10) andχQ(nJ1) are usually called
hQ((n− 1)P ) andχQJ((n− 1)P ), respectively).

The operatorsO,P1,8,EM(2S+1LJ) are the dimension6 and8 four-fermion operators of the NR-
QCD Lagrangian. They are classified by their transformationproperties under color as singlets (1) and
octets (8), and under spin (S), orbital (L) and total angular momentum (J). The operators with the
subscript EM are the color-singlet operators projected on the QCD vacuum. The explicit expressions of
the operators can be found in [14] (or listed in Appendix A of [16]). The dimension 6 operators are also
given in Eq. (1.8) of Chapter 1.

In general different power countings are possible at the level of NRQCD, due to the fact that dif-
ferent scales (mv, ΛQCD,mv2,

√
mΛQCD, ...) are still dynamically entangled [17,18]. Likely different

power countings will apply to different physical systems. Therefore, the relative importance of the differ-
ent matrix elements that appear in Eqs. (4.14)-(4.19) may change in going from lower to higher quarko-
nium states and from bottomonium to charmonium. Whatever the power counting is, the pseudoscalar
and vector state decay widths are dominated by the color-singlet matrix elements, which contribute at
ordermv3. The hadronicP -state decay widths have two contributions (the color-singlet and color-octet
matrix elements), which contribute at the same ordermv5, if we assume that a fractionv of theP -state
wave function projects onto the color-octet operator.
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Since NRQCD is an expansion in two small parameters (αs andv), progress comes typically from
(1) improving the perturbative series of the matching coefficients either by fixed order calculations or by
resumming large contributions (large logs or large contributions associated to renormalon singularities);
(2) improving the knowledge of the NRQCD matrix elements either by direct evaluation, which may be
obtained by fitting the experimental data, by lattice calculations, and by models, or by exploiting the
hierarchy of scales still entangled in NRQCD and constructing EFTs of lower energy.

3.11 The perturbative expansion

The imaginary parts of the four-fermion matching coefficients have been calculated over the last twenty
years to different levels of precision. Up to orderα3

s the imaginary parts off8(
1S0), f1(

3P1), and
f8(

3PJ) can be found in [19], the imaginary parts off8(
3S1), f8(

1P1) in [20] and the imaginary part of
f1(

1S0) in [19,21]. Two different determinations off1(
3P0) andf1(

3P2) exist at NLO in [19] and [22].
The imaginary part off1(

3S1) has been calculated (numerically) up to orderα4
s in [23]. The imaginary

part ofg1(3S1) at orderα3
s can be found in [24], the imaginary part ofg1(1S0) at orderα2

s in [14]. Where
the electromagnetic coefficients are concerned, the imaginary part offee(3S1) has been calculated up to
orderα2α2

s in [25, 26], the imaginary parts offγγ(1S0) andfγγ(3P0,2) up to orderα2αs can be found
in [19, 27] andgee(3S1) andgγγ(1S0) up to orderα2 in [14]. A complete list of the above matching
coefficients at our present level of knowledge can be found inAppendix A of [28]. The LL running
for the imaginary parts of the matching coefficients of the four-fermion NRQCD operators of dimension
6 and 8 have been obtained in [16] and can be read there in Appendix C. The tree-level matching of
dimension 9 and 10S-wave operators can be found in [29]. The tree-level matching of dimension 9 and
10 electromagneticP -wave operators can be found in [30].

The convergence of the perturbative series of the four-fermion matching coefficients is often poor.
While the large two-loop contribution ofIm fee(

3S1) seems to be related, at least in the bottomonium
case, to the factorization scale and, therefore, may be put presumably under control via renormalization
group improvement techniques [26,31], large corrections appearing in otherS-wave decay channels have
been ascribed to renormalon-type contributions [32]. There is no such study so far forP -wave decays.

3.12 The relativistic expansion

The NRQCD matrix elements may be fitted to the experimental decay data [33–35] or calculated on
the lattice [36, 37]. The matrix elements of color-singlet operators can be linked at leading order to
the Schrödinger wave functions at the origin [14]7 and, hence, may be evaluated by means of potential
models [38] or potentials calculated on the lattice [39]. In[34] by fitting to the charmoniumP -wave
decay data it was obtained that〈O1(

1P1)〉hc(1P ) ≈ 8.1 × 10−2 GeV5 and 〈O8(
1S0)〉hc(1P ) ≈ 5.3 ×

10−3 GeV3 in theMS scheme and at the factorization scale of 1.5 GeV. In the quenched lattice simulation
of [37] it was obtained that〈O1(

1S0)〉ηc(1S) ≈ 0.33 GeV3, 〈O1(
1P1)〉hc(1P ) ≈ 8.0 × 10−2 GeV5 and

〈O8(
1S0)〉hc(1P ) ≈ 4.7 × 10−3 GeV3 in the MS scheme and at the factorization scale of 1.3 GeV. In

the lattice simulation of [36] and in the three light-quark flavors extrapolation limit it was obtained that
〈O1(

1S0)〉ηb(1S) ≈ 4.1 GeV3, 〈O1(
1P1)〉hb(1P ) ≈ 3.3 GeV5 and〈O8(

1S0)〉hb(1P ) ≈ 5.9 × 10−3 GeV3

in theMS scheme and at the factorization scale of 4.3 GeV.

It has been discussed in [30] and [29], that higher-order operators, not included in the formulas
(4.14)-(4.19), even if parametrically suppressed, may turn out to give sizable contributions to the decay
widths. This may be the case, in particular, for charmonium,wherev2 ∼ 0.3, so that relativistic correc-
tions are large, and forP -wave decays where the above formulas provide, indeed, onlythe leading-order
contribution in the velocity expansion. In fact it was pointed out in [30] (see also [40]) that if no special
cancellations among the matrix elements occur, then the order v2 relativistic corrections to the electro-
magnetic decaysχc0→γγ andχc2→γγ may be as large as the leading terms.

7This statement acquires a precise meaning only in the context of pNRQCD, see Sec. 3.13.
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In [24, 34] it was also noted that the numerical relevance of higher-order matrix elements may be
enhanced by their multiplying matching coefficients. This is, indeed, the case for the decay width of
S-wave vector states, where the matching coefficients multiplying the color-octet matrix elements (with
the only exception ofImf8(

3P1)) are enhanced byαs with respect to the coefficientImf1(
3S1) of the

leading color-singlet matrix element.

In the bottomonium system, 14S- andP -wave states lie below the open flavor threshold (Υ(nS)
andηb(nS) with n = 1, 2, 3; hb(nP ) andχbJ(nP ) with n = 1, 2 andJ = 0, 1, 2) and in the charmonium
system 8 (ψ(nS) andηc(nS) with n = 1, 2; hc(1P ) andχcJ(1P ) with J = 0, 1, 2). For these states
Eqs. (4.14)-(4.19) describe the decay widths into light hadrons and into photons ore+e− in terms of 46
NRQCD matrix elements (40 for theS-wave decays and6 for theP -wave decays), assuming the most
conservative power counting. More matrix elements are needed if higher-order operators are included.

3.13 pNRQCD

The number of nonperturbative parameters may be reduced by integrating out from NRQCD degrees of
freedom with energy lower thanm, since each degree of freedom that is integrated out leads toa new
factorization. Eventually, one ends up with pNRQCD [41,42], where only degrees of freedom of energy
mv2 are left dynamical. In the context of pNRQCD, the NRQCD four-fermion matrix elements can
be written either as convolutions of Coulomb amplitudes with non-local correlators (in the dynamical
situationmv2 >∼ ΛQCD) or as products of wave functions at the origin by non-local correlators (in the
dynamical situationmv2 ≪ ΛQCD).

The first situation may be the relevant one at least for the bottomonium ground state [42–44].
In the limiting casemv2 ≫ ΛQCD, the correlators reduce to local condensates and explicit formulas
have been worked out in [45, 46]. Concerning the perturbative calculation of the electromagnetic decay
widths, the NLL renormalization group improved expressioncan be found in [47] and has been used
in a phenomenological analysis in [48]. The perturbative wave functions at the origin at NNLO order
can be found in [49]. Recently, a full NNLL analysis has been carried out in [31]; the authors predict
Γ(ηb→γγ)/Γ(Υ(1S)→e+e−) = 0.502 ± 0.068 ± 0.014, where the first error is an estimate of the the-
oretical uncertainty and the second reflects the uncertainty in αs. We also mention that there exists a
determination ofΓ(Υ(2S) → e+e−) / Γ(Υ(1S)→e+e−) in lattice NRQCD with 2+1 flavors of dynam-
ical quarks [50]. The calculated ratio is still far from the experimental result, although the unqueching
has considerably reduced the discrepancy.

The last situation is expected to be the relevant one for mostof the existing excited heavy-
quarkonium states (with the possible exception of the lowest bottomonium states) and has been studied
in [16, 51, 52]. However, a general consensus on the above assignments of heavy-quarkonium states to
dynamical regions has not been reached yet (see also Chapter3).

At leading order in thev andΛQCD/m expansion, the color-singlet matrix elements can be ex-
pressed in terms of the wave functions at the origin only [14,16]:

〈O1(
3S1)〉VQ(nS) = 〈O1(

1S0)〉PQ(nS) = 〈OEM(3S1)〉VQ(nS)

= 〈OEM(1S0)〉PQ(nS) = CA
|R(0)

n0 (0)|2
2π

, (4.20)

〈O1(
2S+1PJ)〉χQ(nJS) = 〈OEM(2S+1PJ )〉χQ(nJS) =

3

2

CA
π

|R(0) ′
n1 (0)|2, (4.21)

whereR(0)
nℓ is the zeroth-order radial part of the heavy-quarkonium wave function, obtained from the

pNRQCD Hamiltonian [18,53] andCA = Nc = 3.

In the situationmv2 ≪ ΛQCD there are no dynamical gluons at energies of ordermv2. Under the
conditions that: (a) all higher gluonic excitations between the two heavy quarks develop a mass gap of
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orderΛQCD, (b) threshold effects are small, and (c) contributions coming from virtual pairs of quark-
antiquark with three-momentum of order

√
mΛQCD are subleading,8 the NRQCD color-octet matrix

elements relevant for Eqs. (4.14)-(4.19) can be written at leading order in thev andΛQCD/m expansion
as [16,51]:

〈O8(
3S1)〉VQ(nS) = 〈O8(

1S0)〉PQ(nS) = CA
|R(0)

n0 (0)|2
2π

(
−2(CA/2 − CF )E(2)

3

3m2

)
, (4.22)

〈O8(
1S0)〉VQ(nS) =

〈O8(
3S1)〉PQ(nS)

3
= CA

|R(0)
n0 (0)|2
2π

(
−(CA/2 − CF )c2FB1

3m2

)
, (4.23)

〈O8(
3PJ )〉VQ(nS)

2J + 1
=

〈O8(
1P1)〉PQ(nS)

9
= CA

|R(0)
n0 (0)|2
2π

(
−(CA/2 − CF )E1

9

)
, (4.24)

〈O8(
1S0)〉χQ(nJS) =

TF
3

|R(0) ′
n1 (0)|2
πm2

E3, (4.25)

wherecF stands for the chromomagnetic matching coefficient, which is known at NLL [54],CF =
(N2

c − 1)/(2Nc) = 4/3 andTF = 1/2. Therefore, at the considered order, the color-octet matrix ele-
ments factorize into the product of the heavy-quarkonium wave function with some chromoelectric and
chromomagnetic correlator (Wilson lines connecting the fields are not explicitly shown, but understood):

En =
1

Nc

∫ ∞

0
dt tn〈Tr(gE(t) · gE(0))〉, Bn =

1

Nc

∫ ∞

0
dt tn〈Tr(gB(t) · gB(0))〉, (4.26)

E(2)
3 =

1

4Nc

∫ ∞

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)

3

{
〈Tr({gE(t1)·, gE(t2)} {gE(t3)·, gE(0)})〉c

− 4

Nc
〈Tr(gE(t1) · gE(t2))Tr(gE(t3) · gE(0))〉c

}
, (4.27)

where

〈Tr (gE(t1) · gE(t2) gE(t3) · gE(0))〉c = 〈Tr (gE(t1) · gE(t2) gE(t3) · gE(0))〉

− 1

Nc
〈Tr(gE(t1) · gE(t2))〉〈Tr(gE(t3) · gE(0))〉. (4.28)

These correlators are universal in the sense that they do notdepend on the heavy-quarkonium state and,
hence, may be calculated once and for all, either by means of lattice simulations [55], or specific models
of the QCD vacuum [56], or extracted from some set of experimental data [51].

Finally, at leading order the matrix elements of theP1 operators can be written as:

〈P1(
3S1)〉VQ(nS) = 〈P1(

1S0)〉PQ(nS) = 〈PEM(3S1)〉VQ(nS)

= 〈PEM(1S0)〉PQ(nS) = CA
|R(0)

n0 (0)|2
2π

(
mE

(0)
n0 − E1

)
, (4.29)

whereE(0)
n0 ≃ M − 2m ∼ mv2 is the leading-order binding energy. Equation (4.29) reduces to the

formula obtained in [24] if the heavy-quarkonium state satisfies also the conditionmv ≫ ΛQCD.

The leading corrections to the above formulas come from quark-antiquark pairs of three momen-
tum of order

√
mΛQCD. The existence of this degree of freedom in the heavy-quarkonium system has

been pointed out in [52], where the leading correction to Eq.(4.20) has been calculated.

The pNRQCD factorization formulas reduce, when applicable, the number of nonperturbative
parameters needed to describe heavy-quarkonium decay widths [16]. In particular, using charmonium
data to extractE3, in Ref. [51] it was foundE3(1GeV) = 5.3+3.5

−2.2, where the errors account for the
experimental uncertainties only. This value has been used to predictP -wave bottomonium inclusive
decay widths in [51,57]. We will come back to this in Sec. 3.24.

8Condition (b) may be problematic for theψ(2S), whose mass is very close to theDD̄ production threshold.
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3.2 Experimental status

This section is a snapshot of the current status of various experimental results on the electromagnetic and
inclusive hadronic decays of heavy-quarkonium states. Theresults come from the CLEO experiment at
CESR, the BES experiment at BEPC and E835 at Fermilab.

3.21 Υ widths

Crucial parameters for any heavy-quarkonium state are its total width and its hadronic and three leptonic
partial widths. For the threeΥ bound states, since their total widths,Γtot, are much less than the energy
spread of the CESR machine (≈ 4 MeV) where they are studied, the procedure is to scan over each
resonance measuring the hadronic andµ+µ− rates. Then we use:

∫
σhad dEcm ∝

(
Γee Γhad

Γtot

)
and Bµµ =

Γµµ
Γtot

. (4.30)

Assuming lepton universality, we have:Γtot = Γhad + 3 Γℓℓ. This allows us to solve for the total
width and the partial widths into electrons and hadrons:

Γee =
(ΓeeΓhad/Γtot)

1 − 3 Bµµ
, Γtot =

Γee
Bµµ

, Γhad = Γtot(1 − 3Bµµ) . (4.31)

Once the total width is known, the partial width intoτ+τ− can then be determined from its respective
branching ratio. The current experimental status from the 2004 PDG [10] is shown in Table 4.2.

Resonance Γtot (keV)(% error) Γee (keV)(% error) Bµµ(%)(% error) Bττ (%)(% error)

Υ(1S) 53.0± 1.5 (2.8%) 1.314± 0.029 (2.2%) 2.48± 0.06 (2.4%) 2.67± 0.15 (5.6%)

Υ(2S) 43± 6 (14%) 0.576± 0.024 (4.2%) 1.31± 0.21 (16%) 1.7± 1.6 (94%)

Υ(3S) 26.3± 3.4 (13%) − 1.81± 0.17 (9.4%) −

Table 4.2: Present PDG values [10] for the parameters of theΥ states.

The PDG does not use the 1984 CLEO measurement ofΓee(3S) = 0.42 ± 0.05 keV because
new radiative corrections have now been accepted which werenot used in that analysis, thus invalidating
the measurement. From the large percentage errors on many ofthe quantities in the table, it is obvious
that there is much room for improvement. To this end, the CLEOIII detector devoted a large amount of
running at each of the threeΥ resonances, as shown in Table 4.3.

Resonance
∫

L dt (fb−1) Number of Decays (M) Factor Increase Over CLEO II

Υ(1S) 1.2 29 15

Υ(2S) 0.9 6.0 12

Υ(3S) 1.5 6.5 14

Table 4.3: Summary of the CLEO III running at the threeΥ bound states.

All the results from this running have not yet been finalized,but new measurements of the muonic
branching ratios for the 3 boundΥ states have been published [58]. These new measurements areshown
in Table 4.4, along with the corresponding new values for thetotal widths. The newΥ(2S) andΥ(3S)
muonic branching ratio measurements are substantially higher than previous results, giving correspond-
ingly smaller total widths for these resonances.
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Resonance Bµµ(%)(% error) Γtot (keV)(% error)

Υ(1S) 2.49± 0.02± 0.07 (2.8%) 52.8± 1.8 (3.4%)

Υ(2S) 2.03± 0.03± 0.08 (4.0%) 29.0± 1.6 (5.5%)

Υ(3S) 2.39± 0.07± 0.10 (5.1%) 20.3± 2.1 (10.3%)

Table 4.4: New CLEO measurements [58] of the muonic branching ratios for the 3Υ states, along with their statistical and

systematic errors and the corresponding new values for the total widths.

From the number of detected hadronic and leptonic events anda knowledge of the CLEO detector
performance, estimates of the final statistical and systematic errors for the other resonance parameters
can be made. These are shown in Table 4.5. Thus, once the analyses are complete, there will be a
tremendous improvement in our knowledge of the basic parameters of theΥ bound-state resonances.

Parameter Statistical Error Systematic Error Total Error

ΓeeΓhad/Γtot 1% 2.5% 3%

Γee 2% 2% 3%

Bττ 2% 3% 4%

Γtot 2% 3% 4%

Table 4.5: Expected fractional errors for various quantities from the eventual CLEO III measurements.

3.22 J/ψ andψ(2S) widths

In the last two years the knowledge of bothJ/ψ andψ(2S) parameters has improved. In 2002, the
BES collaboration reported results [59] from a new scan of the ψ(2S) resonance, corresponding to an
integrated luminosity of 1.15 pb−1 and 114kψ(2S) hadronic decays. In 2004 BaBar has presented the
first measurement ofΓeeBµµ [9] from ISR production ofJ/ψ in 88.4 fb−1 taken at theΥ(4S) resonance.
Table 4.6 lists the values of the widths and leptonic branching ratios forJ/ψ andψ(2S) from PDG [10].

Resonance Γtot (keV)(% error) Γee (keV)(% error) Bµµ(%)(% error) Bττ (%)(% error)

J/ψ 91.0± 3.2 (3.5%) 5.40± 0.15±0.07 (3.1%) 5.88± 0.10 (1.7%) —

ψ(2S) 281± 17 (6%) 2.12± 0.12 (9%) 0.73± 0.08 (11%) 0.28± 0.07 (25%)

Table 4.6: Present PDG values [10] for the parameters of theJ/ψ andψ(2S) states.

3.23 Two-photon partial widths measurements

Experimental determinations of two-photon partial widthsof quarkonia depend on measurements of
products and ratios of branching ratios performed by more than one experiment, and the best estimate
is obtained from a global fit to directly measured quantitiesas it is done by the PDG [10]. When more
measurements are available, subsets of measurements may allow a direct extraction of the value forΓγγ ,
in general with a larger error than a global fit. But this can beuseful both as a cross check for the global
fit and to identify which measurements could yield improvements.
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The simplest case is theχc2, where direct measurements of three independent quantities allows
one to extractΓγγ andΓJ/ψγ :

Γ = 2.00 ± 0.18MeV, (4.32)

ΓγγBJ/ψγ = 121 ± 13 eV , (4.33)

and
Bγγ
BJ/ψγ

= (1.02 ± 0.15) · 10−3, (4.34)

where experimental values are world averages [10] except inEq. (4.34) where we averaged the E835
result with the ratio ofBpp̄Bγγ andBpp̄BJ/ψγ measured by E760 [61, 62]. The product of Eq. (4.32),
Eq. (4.33), and Eq. (4.34), yieldsΓγγ = 0.50 ± 0.05 keV, while taking Eq. (4.33) multiplied by Eq.
(4.32) and divided by Eq. (4.34), we would obtainΓJ/ψγ = 490 ± 50 keV, orBJ/ψγ = 0.244 ± 0.024.
The global fit to all measurements [10] (including all other measurements related toBJ/ψγ) improves on
ΓJ/ψγ = 430± 40 keV andBJ/ψγ = 0.202± 0.017, but has almost no effect onΓγγ = 0.52± 0.05 keV,
indicating that the measurements considered above are the only ones relevant toΓγγ .

The case forχc0 is similar to that of theχc2, even if apparently more complicated. The world
average of total width measurements is [10]

Γ = 10.2 ± 0.9MeV. (4.35)

There is a measurement of
ΓγγB2π+2π− = 75 ± 13 ± 8 eV [63], (4.36)

and measurements (from a single experiment) ofBpp̄Bγγ [64] andBpp̄Bπ0π0 [6], from which we can
calculate (assuming isospin symmetry) the ratio

Bγγ
Bππ

= 0.043 ± 0.011 . (4.37)

Even ifBππ andB2π+2π− are not directly measured, their ratio can be determined from quantities mea-
sured by a single experiment (in this case BES [65–67]):

Bππ
B2π+2π−

= 0.47 ± 0.10 . (4.38)

This means that we can extractΓγγ = 3.9 ± 0.8 keV from the product of the four quantities in Eqs.
(4.35), (4.36), (4.37), and (4.38). Notice that including MARK-II measurements in the evaluation of Eq.
(4.38) would giveΓγγ = 3.1 ± 0.8. The global fit (which does not include the new measurement of
Bpp̄Bγγ [64]) yields a significantly more precise valueΓγγ = 2.6 ± 0.5 keV, indicating that in this case
there are other measurements that are relevant, such asB(ψ(2S)→γχc0→3γ).

The case forηc(1S) andηc(2S) is different. To date these states have been observed in two-photon
reactions with direct measurement of

ηc(1S) : ΓγγBKK̄π = 0.48 ± 0.06 keV , (4.39)

ηc(2S) : ΓγγBKK̄π = 73 ± 23 eV [68] . (4.40)

Theηc(1S) has also been observed inp̄p annihilations with direct measurement of

BγγBpp̄ = (0.26 ± 0.05) × 10−6. (4.41)

In this case there are no measurements of the ratio of branching ratios between theγγ and any other
decay mode, so it is necessary to use the values ofBKK̄π or Bpp̄ that (forηc(1S) only) are determined
by

BX =
B(J/ψ→γηc→γ X)

B(J/ψ→γηc)
, (4.42)
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with precision limited by the≈ 30% uncertainty inB(J/ψ→γηc) that is to date a common systematic to
all two-photon partial widths ofηc(1S). Since no measurement is yet available for theηc(2S) branching
ratio toKK̄π, its Γγγ cannot be determined.

The most obvious strategy to increase the precision onΓγγ is to improve the measurements for
quantities used in its determination. But based on the case of χc2 discussed above, a major improvement
could be obtained by measuring the pair of quantitiesΓγγBX andBγγ/BX for more than one final state
X. B factories can reasonably measure to< 10% precisionΓγγBX for more than one final state. It is
also reasonable that total widths will be more precisely measured inpp̄ experiments, thus the question is
whether it is possible to measure to better than10% the ratiosBγγ/BX . How well can BES and CLEO
measureψ(2S) or J/ψ to 3γ? How well canp̄p→γγ be measured and what are the channels that could
be measured in these experiments simultaneously top̄p→γγ? With a magnetic detector,pp̄→φφ is the
obvious choice, but interference with two-body non-resonant reactions may offer other opportunities
(e.g.pp̄→pp̄). The goal of< 5% precision on two-photon widths is not unreasonable.

3.24 χb widths

Since theχb(2PJ ) states are not produced directly ine+e− annihilations, their hadronic widths cannot
be measured using the same technique as for theS states. However, we can use the fact that the partial
width for their photonic E1 transitions to theΥ(2S) state are proportional to a common matrix element
squared times a phase space factor ofE3

γ (see Secs. 6.13 and 6.22,Eγ = k). Thus, from measuring the
individual photon energies and branching ratios for the decaysχb(2PJ ) → Υ(2S) + γ, along with the
branching ratios forχb(2PJ ) → Υ(1S) + γ, we can measure the ratio of theχb(2PJ ) hadronic partial
widths,Γ(had). We first use:

B(2S) =
Γ(2S)

Γ(1S) + Γ(2S) + Γ(had)
, (4.43)

whereB(2S) = B(χb(2PJ ) → Υ(2S) + γ) and B(1S) = B(χb(2PJ ) → Υ(1S) + γ) are the
two E1 branching ratios, andΓ(2S) and Γ(1S) are the corresponding partial widths. Then, since
Γ(2S)/Γ(1S) = B(2S)/B(1S), we can solve for the hadronic partial width, obtaining:

Γ(had) = Γ(2S)

[
1 − B(1S)

B(2S)
− 1

]
. (4.44)

Making the assumption mentioned above that the partial widths for E1 transitions of differentJ states
to the sameΥ state should be proportional to a common matrix element squared timesE3

γ , we obtain an
expression for the ratio of hadronic partial widths for two differentχb(2PJ ) states. For example, forJ =
0 andJ = 2, we get:

Γhad(2P0)

Γhad(2P2)
=

(
Eγ(2P0 → 2S + γ)

Eγ(2P2 → 2S + γ)

)3



1−B(1S)0
B(2S)0

− 1

1−B(1S)2
B(2S)2

− 1


 , (4.45)

whereB(2S)0 = B(χb(2P0) → Υ(2S)+γ), etc. Using this technique and the E1 branching ratios given
in Sec. 6.22, CLEO III finds the ratio of theJ = 0 to theJ = 2 hadronic widths to be:

Γhad(2P0)

Γhad(2P2)
= 6.1 ± 2.8. (4.46)

For theJ = 1 andJ = 2 states, CLEO III measures:

Γhad(2P1)

Γhad(2P2)
= 0.25 ± 0.09. (4.47)
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Since theJ = 1 state cannot annihilate into two massless gluons, to firstorder its hadronic width is
expected to be suppressed by one order ofαs compared to theJ = 2 state. The measurement confirms
this suppression.

As discussed in Sec. 3.1, at leading order in the heavy-quarkvelocity expansion, the above ratios
depend on a color-octet matrix element. One can consider thecombination

Γhad(2P0) − Γhad(2P1)

Γhad(2P2) − Γhad(2P1)
, (4.48)

which is completely determined by perturbative QCD [15]. Using (4.46) and (4.47), this ratio is measured
by CLEO III to be:

Γhad(2P0) − Γhad(2P1)

Γhad(2P2) − Γhad(2P1)
= 7.8 ± 3.8. (4.49)

LO QCD predicts 15/4 = 3.75 for this ratio, and NLO QCD about 7,which is quite consistent with
(4.49). However, the combination (4.48) distinguishes between bottomonium and charmonium only at
NNLO, while the ratios (4.46) and (4.47) do so at NLO. A directdetermination of these ratios has been
done in the framework of pNRQCD, as discussed in Sec. 3.13, using the factorization formula (4.25)
and fixing the nonperturbative constant to the value found from charmonium data. The result at NLO is
Γhad(2P0)/Γhad(2P2) ≃ 4.0, consistent with (4.46), andΓhad(2P1)/Γhad(2P2) ≃ 0.50, which is
somewhat larger than (4.47) [51,57].

CLEO cannot resolve the individual photon lines for the similar decays from theΥ(3S) to the
χb(1PJ ) states (see Sec. 6.22). However, we can use the quite oldχb(1PJ ) → Υ(1S) + γ branching
ratios from the PDG [10] forJ = 1 and 2 (theJ = 0 branching ratio is very small, given the large
hadronic width of that state). In this case, the ratio of the hadronic widths for the two states can be found
from:

Γhad(1P1)

Γhad(1P2)
=

(
Eγ(1P1 → 1S + γ)

Eγ(1P2 → 1S + γ)

)3
(

1
B(1S)1

− 1

1
B(1S)2

− 1

)
. (4.50)

This leads to the result:
Γhad(1P1)

Γhad(1P2)
= 0.46 ± 0.20, (4.51)

showing again the suppression of theJ = 1 state’s hadronic width compared to theJ = 2, albeit with
larger errors in this case.

Resonance Γtot (MeV)(% error) Γ(γJ/ψ) (keV)(% error) Γ(γγ)(%)(% error)

χc0 10.1± 0.8 (8%) 119± 16 (13%) 2.6± 0.5 (19%)

χc1 0.91± 0.13 (14%) 290± 50 (17%) —-

χc2 2.11± 0.16 (8%) 430± 40 (9%) 0.52±0.05 (10%)

Table 4.7: Widths ofχc states from PDG [10].

3.25 χc widths

Theχc states are also not directly produced ine+e− annihilations. However, in this case an extremely
powerful alternative method has been used to measure their masses and total widths. In an experimental
technique first pioneered by experiment R704 at CERN, and continued by experiments E760 and E835
at the Fermilab Antiproton Accumulator, a stochastically cooledp beam collides with a hydrogen gas
jet target. In the subsequentpp annihilations, allJPC states can be formed via 2 or 3 gluons. Thus,
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theP -wave charmonium states are directly accessible. By scanning the proton beam energy over each
resonance, the mass and total width of eachP state can be measured with extremely high accuracy.

As mentioned in Sec. 3.23, these experiments have also measured products or ratios of branching
ratios that help constrain the radiative andγγ widths of those states. Table 4.7 shows the current best
estimates of theχc widths, using data from PDG [10]. E835 is finalizing the analysis of the scans of the
χc1 andχc2 resonances [69], with an anticipated precision of≈ 7% onχc1 andχc2 total widths.

In order to show the impact of the new measurements of theχc widths, in Tab. 4.8 we compare the
PDG 2000 [70] with the PDG 2004 [10] determinations of different ratios of hadronic and electromag-
netic widths (similar ratios have been considered in the previous section for theχb case). There have been
sizable shifts in some central values and considerable reductions in the errors. In particular, the error on
the ratio of the electromagneticχc0 andχc2 widths has been reduced by about a factor 10, while in all
other ratios the errors have been reduced by a factor 2 or 3. The considered ratios of hadronic and elec-
tromagnetic widths do not depend at leading order in the velocity expansion (see Eqs. (4.16) and (4.19))
on any nonperturbative parameter. Therefore, they can be calculated in perturbation theory. The last
two columns of Tab. 4.8 show the result of a leading and next-to-leading order calculation respectively.
Despite the fact that the convergence is not always very goodand that, therefore, the NLO calculation
should be taken with some care (see also Sec. 3.11), all data now clearly prefer (and are consistent with)
NLO results.

Ratio PDG 2004 PDG 2000 LO NLO

Γ(χc0→γγ)

Γ(χc2→γγ)
5.1±1.1 13±10 ≈ 3.75 ≈ 5.43

Γ(χc2→l.h.) − Γ(χc1→l.h.)

Γ(χc0→γγ)
410±100 270±200 ≈ 347 ≈ 383

Γ(χc0→l.h.) − Γ(χc1→l.h.)

Γ(χc0→γγ)
3600±700 3500±2500 ≈ 1300 ≈ 2781

Γ(χc0→l.h.) − Γ(χc2→l.h.)

Γ(χc2→l.h.) − Γ(χc1→l.h.)
7.9±1.5 12.1±3.2 ≈ 2.75 ≈ 6.63

Γ(χc0→l.h.) − Γ(χc1→l.h.)

Γ(χc2→l.h.) − Γ(χc1→l.h.)
8.9±1.1 13.1±3.3 ≈ 3.75 ≈ 7.63

Table 4.8: Comparison of ratios ofχcJ partial widths. The experimental values PDG 2004 are obtained from the world averages

of [10], with the assumptionΓ(χc0→l.h.) ≈ Γ(χc0) = 10.1 ± 0.8 MeV, Γ(χc1→l.h.) ≈ Γ(χc1) [1 −B(χc1→γJ/ψ)]

=0.62±0.10 MeV,Γ(χc2→l.h.) ≈ Γ(χc2) [1 − B(χc2→γJ/ψ)] =1.68±0.15 MeV. Similarly the experimental values PDG

2000 have been obtained from [70]. The chosen ratios do not depend at leading order in the velocity expansion on octet

or singlet matrix elements. The LO and NLO columns refer to a leading and next-to-leading order calculation done at the

renormalization scale2mc with the following choice of parameters:mc = 1.5 GeV andαs(2mc) = 0.245.
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3.26 Υ(1S)→ γ + X andΥ(1S)→ X

There has been much theoretical interest lately in trying topredict the direct photon energy distribution
for Υ(1S)→ γ + X inclusive decays [71]. See the following section. The last reported measurement
was from the CLEO II experiment in 1997 [72], based on 1.4 million Υ(1S) decays. Besides the photon
energy spectrum, they measured the ratio:

Γ(γgg)

Γ(ggg)
= (2.75 ± 0.04 ± 0.15) % , (4.52)

which allowed a fairly accurate determination ofΛMS andαs. Given the small statistical errors in these
measurements, it is doubtful that the CLEO III experiment will repeat them using their 29 millionΥ(1S)
decays. Rather, the emphasis will be on detailed studies of exclusiveγ + X decays of theΥ(1S), espe-
cially the search for possible glueball candidates.

For measurements of the inclusive production of various hadronic particle types from theΥ(1S),
one must go back to a 1985 paper by the CLEO I experiment [73], based on only 50kΥ(1S) decays.
They measured the average multiplicities and momentum distributions ofπ, K, ρ, K∗, φ, p, Λ andΞ
in Υ(1S) decays and compared them to those from the nearby continuum. The only addition to these
results was a 2003 CLEO II measurement [74] of the inclusiveη′ production from theΥ(1S), based on
1.9 million decays and motivated by the large observedB → η′ +X branching ratio.

4. Inclusive radiative decays9

The radiative inclusive decay of heavy quarkonium has been investigated for about a quarter century.
Here we will studyΥ→Xγ decays in particular. The direct radiative decay is calculated by using the op-
erator product expansion, where the operators are the same nonperturbative matrix elements that appear
in the inclusive decay to hadrons (see Sec. 3.1). Thus we obtain an expansion in the velocity,v, of the
heavy quarks. The rate is written as

1

Γ0

dΓdir

dz
=
∑

n

Cn(M,z)〈Υ|On|Υ〉, (4.53)

whereM = 2mb, z = 2Eγ/M , theCn(z,M) are short distance Wilson coefficients, calculable in
perturbation theory, and the NRQCD matrix elements scale with a certain power inv. The lowest order
contribution is the color-singlet3S1 operator, where the quark-antiquark pair annihilate into aphoton
and two gluons. Therefore, in thev→0 limit, we obtain the color-singlet model calculation of Ref. [75].
At higher order in the velocity expansion, there are direct contributions from the color-octet matrix
elements [76]. The decay through a color-octet matrix element can occur at one lower order inαs, with
thebb̄ decaying to a photon and a single gluon.

However, this calculation is only valid in the intermediaterange of photon energies (0.3 <∼ z <∼
0.7). For low photon energies,z <∼ 0.3, the major photon production mechanism is fragmentation [76,
77]. At large photon energies,z >∼ 0.7, the perturbative [76] and nonperturbative expansions [78] both
break down.

4.1 Photon fragmentation

The inclusive photon spectrum can be written as a sum of a direct and a fragmentation contribution [77],

dΓ

dz
=
dΓdir

dz
+
dΓfrag

dz
, (4.54)

9Author: A. Leibovich

216



where in the direct term the photon is produced in the hard scattering, and in the fragmentation term the
photon fragments from a parton produced in the initial hard scattering. The fragmentation contribution
has been well studied in Ref. [76].

Catani and Hautmann pointed out the importance of fragmentation for the photon spectrum in
quarkonium decays [77]. The fragmentation rate can be written as

dΓfrag

dz
=

∑

a=q,q̄,g

∫ 1

z

dx

x

dΓa
dx

Daγ

( z
x
,M
)
, (4.55)

where the rate to produce partona, dΓa/dx, is convoluted with the probability that the parton fragments
to a photon,Daγ , with energy fractionz/x. The rate to produce partona can again be expanded in
powers ofv [76], with the leading term being the color-singlet rate foranΥ to decay to three gluons,

dΓfrag
LO

dz
=

∫ 1

z

dx

x

dΓggg
dx

Dgγ

( z
x
,M
)
. (4.56)

At higher orders inv, there are three color-octet fragmentation contributions, where the photon can
fragment off either a quark or a gluon.

The partonic rates must be convoluted with the fragmentation functions,Daγ(z,M). TheM -
dependence of the fragmentation functions can be predictedusing perturbative QCD via Altarelli–Parisi
evolution equations. However, the solution depends on nonperturbative fragmentation function at some
input scaleΛ, which must be measured from experiment. This has been done by the ALEPH collabora-
tion for theDqγ fragmentation function [79], but theDgγ fragmentation function is unknown, so at this
point it must be modeled.

4.2 Resumming the largez contribution

The color-octet contributions to the rate are the first subleading terms in the operator product expansion.
Diagrammatically, these contributions occur for the quark-antiquark pair annihilating into a photon back-
to-back with a gluon. Thus the1S0 and3P0 color-octet contributions begin as a delta function of(1 −
z) [76]. If we look at the integrated rate near the endpoint, thecolor-octet contributions are as important
as the “leading” color-singlet piece, in the region1 − v2 <∼ z ≤ 1. Perturbative corrections to the color-
octet contributions have large kinematic logarithms, which destroy the perturbative expansion. Theαs

correction to the leading color-singlet rate was calculated numerically in Ref. [80]. It leads to small
corrections over most of phase space; however, in the endpoint region the corrections are of order the
leading contribution. Thus both higher orders inv and inαs are not suppressed in the endpoint region.
Both the nonperturbative and perturbative series break down.

This breakdown at largez is due to NRQCD not including collinear degrees of freedom. In the
endpoint region, the outgoing gluons are moving back-to-back to the photon, with large energy and small
invariant mass (i.e., a collinear jet). The correct effective field theory is a combination of NRQCD for
the heavy degrees of freedom and the soft-collinear effective theory (SCET) [81,82] for the light degrees
of freedom.

SCET is an effective field theory describing collinear fieldsinteracting with soft degrees of free-
dom. It is thus the appropriate effective field theory to use when there are energetic particles moving with
small invariant mass, such asΥ→Xγ in the endpoint region. We therefore use NRQCD to describe the
quarkonium, and SCET to describe the jet of collinear particles. The invariant mass of the jet of particles
is p2 ∼ M2

Υ(1 − z), which is small asz→1. In SCET there are three mass scales: the hard scale, which
for this process isµh ∼ MΥ, the collinear scale, which isµc ∼ MΥ

√
1 − z, and the ultrasoft scale,

µu ∼MΥ(1− z). These scales are widely separated in the endpoint region. SCET allows us to separate
the physics coming from the disparate scales.
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+ crossed diagram

=

Fig. 4.1: Matching QCD onto NRQCD and SCET. The double lines represents theΥ, while the spring with the line through it

represent a collinear gluon.

Fig. 4.2: The leading OPE: tree level matching of the time ordered product in the collinear-soft theory to a nonlocal operator in

the soft theory.

To calculate, the QCD process is matched onto operators in SCET and NRQCD. For example, the
matching for the color-octet channel is pictured in Fig. 4.1. Then to resum the kinematic logarithms, we
use the renormalization group equations in SCET, by evolving from µh to µu. So we first renormalize
the operators in SCET, and calculate the anomalous dimensions in the usual way. Then by running the
SCET operators to the ultrasoft scale, the logarithms of1 − z are summed.

The color-singlet process does not run below the collinear scale. This is because the ultrasoft
gluons cannot couple to the color-singlet jet or the incoming color-singlet quarkonium. This fact was
first pointed out by Hautmann [83]. However, there are still logarithms that are generated between
the hard and collinear scales [71, 84]. For the color-octet processes [85], at the collinear scaleµc we
integrate out collinear modes. Since there are collinear particles in the final state, we first perform an
OPE for the inclusiveΥ radiative decay rate in the endpoint region, and match onto the large energy
effective theory [86]. The result is a nonlocal OPE in which the two currents are separated along a light-
like direction. Diagrammatically this is illustrated in Fig. 4.2. This is run to the ultrasoft scale, at which
point we are left with a nonperturbative shape function, which describes the movement of the heavy
quark-antiquark pair within the meson. This function is precisely what was shown to occur in Ref. [78].
Unfortunately, this nonperturbative function is unknown,and must be modeled.

Before we proceed we need the NRQCD matrix elements. We can extract the color-singlet matrix
elements from theΥ leptonic width. The color-octet matrix elements are more difficult to determine.
NRQCD predicts that the color-octet matrix elements scale asv4 compared to the singlet matrix elements.
In Ref. [19] it was argued that an extra factor of1/2Nc should be included. By looking at the shape of
the resummed color-octet rates, it appears that these channels would give a contribution an order of
magnitude too large compared with the data in the endpoint region if they were even as small asv4/2Nc

times the color-singlet, as shown in Fig. 4.3, so we will set them to zero. This eliminates two of the three
possible color-octet matrix elements, leaving the3S1. It also eliminates the dependence at this order
on the unknown shape functions and the largest dependence onthe unknown fragmentation function,
Dgγ . We set the color-octet3S1 matrix element to bev4 suppressed compared to the color-singlet matrix
element extracted from the leptonic width, where we usev2 = 0.08. This color color-octet matrix
element does not give a large contribution in the largez region, but is important at lowz, due to the
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Fig. 4.3: The differential decay spectra in the region0.5 < z. The dashed curves are the fully resummed color-octet result

convoluted with a model for the shape function for two choices of the color-octet matrix elements. The larger curves havethe

color-octet matrix elements suppressed byv4/10, while the lower curves havev4/100. In addition we have interpolated the

fully resummed result with the next-to-leading order result in the region away from the endpoint. The dotted curves are the

next-to-leading result convoluted with the structure function for two choices of the matrix elements. The solid curve is the

tree-level color-singlet contribution.

fragmentation functionDqγ .

The CLEO collaboration measured the number of photons in inclusiveΥ(1S) radiative decays [72].
The data does not remove the efficiency or energy resolution and is the number of photons in the fiducial
region,| cos θ| < 0.7. In order to compare our theoretical prediction to the data,we integrate over the
barrel region and convolute with the efficiency that was modeled in the CLEO paper. We do not do a
bin-to-bin smearing of our prediction.

In Fig. 4.4 we compare the prediction to the data. The error bars on the data are statistical only.
The dashed line is the direct tree-level plus fragmentationresult, while the solid curve includes the re-
summation of the kinematic logarithms. For these two curveswe use theαs extracted from these data,
αs(MΥ) = 0.163, which corresponds toαs(MZ) = 0.110 [72]. The shape of the resummed result is
much closer to the data than the tree-level curve, though it is not a perfect fit. We also show the resummed
plus fragmentation result, using the PDG value ofαs(MZ), including theoretical uncertainties, denoted
by the shaded region. To obtain the darker band, we first varied the choice ofmb between4.7 GeV <
mb < 4.9 GeV and the value ofαs within the errors given in the PDG,αs(MZ) = 0.1172(20) [87]. We
also varied the collinear scale,µc fromM

√
(1 − z)/2 < µc < M

√
2(1 − z). Finally, the lighter band

also includes the variation, within the errors, of the parameters for the quark to photon fragmentation
function extracted by ALEPH [79]. The lowz prediction is dominated by the quark to photon fragmen-
tation coming from the color-octet3S1 channel. We did not assign any error to the color-octet3S1 matrix
elements. Since it is unknown, there is a very large uncertainty in the lower part of the prediction that we
decided not to show. Recently, color-octet1S0 and3P0 contributions, calculated in the weak-coupling
regime, have been included in the analysis [88]. They appearto improve the agreement with the data
in the end-point region. Also recently operator mixing between the gluon jet, considered here, and the
quark–anti-quark jet has been considered in [89].
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Fig. 4.4: The inclusive photon spectrum, compared with data[72]. The theory predictions are described in the text. The plot is

from Ref. [71].

5. Exclusive decays10

Exclusive charmonium decays have been investigated withinQCD by many authors, e.g. [90–93]. As
already argued at the beginning of Sec. 3.1 the dominant dynamical mechanism iscc̄ annihilation into
the minimal number of gluons allowed by symmetries and subsequent creation of light quark-antiquark
pairs forming the final state hadrons.

In hard exclusive reactions higher Fock-state contributions are usually suppressed by inverse pow-
ers of the hard scale,Q, appearing in the process (Q ∼ mc for exclusive charmonium decays), as
compared to the valence Fock-state contributions. Hence, higher Fock-state contributions are expected
to be negligible in most cases. It has turned out, however, that higher Fock states of the charmonium
play an important role in understanding the production (seeChapter 5) and the inclusive decays of char-
monium (see Sec. 3.1). As shown in [14] the long-distance matrix elements can there be organized into
a hierarchy according to their scaling withv, the typical velocity of thec quark in the charmonium. The
velocity expansion can also be applied to exclusive charmonium decays [94]. The Fock expansions of
the charmonium states start (in the power counting of [14]) as

|J/ψ〉 = |cc̄1(3S1)〉︸ ︷︷ ︸+ |cc̄8(3PJ) g〉︸ ︷︷ ︸+ |cc̄8(3S1) gg〉︸ ︷︷ ︸+ . . . ,

O(1) O(v) O(v2)

| ηc 〉 = |cc̄1(1S0)〉︸ ︷︷ ︸+ |cc̄8(1P1) g〉︸ ︷︷ ︸+ |cc̄8(1S0) gg〉︸ ︷︷ ︸+ . . . ,

O(1) O(v) O(v2)

| χcJ〉 = |cc̄1(3PJ)〉︸ ︷︷ ︸+ |cc̄8(3S1) g〉︸ ︷︷ ︸+ . . . , (4.57)

O(1) O(v)

10Author: P. Kroll (with contributions from C. Patrignani)
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where the subscripts at thecc̄ pair specify whether it is in a color-singlet (1) or color-octet (8) state;
O(1), O(v) andO(v2) are the orders to which the corresponding Fock states contribute, once evaluated
in a matrix element. The amplitude for a two-body decay of a charmonium state satisfies a factorization
formula, which separates the scalemc from the lower momentum scales. The decay amplitude is then
expressed as a convolution of a partonic subprocess amplitude that involves the scalemc, the charmonium
wave function for the initial state that involves scales of ordermc v and lower, and a factor that takes into
account the light hadron wave functions for the final state. This factor involves only the scaleΛQCD. In
the formal limit ofmc→∞ the dominant terms in the factorization formula involve theminimal number
of partons in the hard scattering, which is given by the valence quarks of the hadrons participating in
the considered process. Terms involving additional partons in the initial state are suppressed by powers
of v while terms involving additional partons in the final state are suppressed by powers ofΛQCD/mc.
Moreover, in this limit of an asymptotically large charm quark mass, the valence quarks of a light hadron
move collinear with it, their transverse quark momenta can be neglected. In this situation the soft parton-
hadron transition is described by a leading-twist distribution amplitude,Φ(x, µF ), for finding valence
quarks in the hadron, each carrying some fractionxi of the hadron’s momentum and for which the quark
helicities sum up to the hadronic one. The distribution amplitudes, which represent light-cone wave
functions integrated over transverse momenta up to a factorization scaleµF of ordermc [91, 92], are
the only nonperturbative input required in the calculationof decay amplitudes along these lines. The
convolution formula in such a leading-twist calculation ofa charmonium decay into a pair of hadrons
h1, h2 reads

M =

∫
[dx]N [dy]N [d3k]N ′ Φ1(x, µF )Φ2(y, µF )TH(x, y,mc, µF )Ψc(k) , (4.58)

wherex(y) represents the set of independent momentum fractions for anN -particle Fock state of a light
hadron andΨc is the charmonium wave function for anN ′-particle Fock state.k denotes the set of
momenta of the particles in that Fock state. Soft and hard physics is separated at the factorization scale
µF .

The relative strength of various contributions to specific decay processes can be easily estimated.
Typical lowest-order Feynman graphs are shown in Fig. 4.5. AP -wavecc̄ pair requires a power of the
c-quark’s relative momentumk (k ∼ mcv) from the hard scattering amplitude, which is to be combined
with a k from theP -wave charmonium spin wave function in ak2. In contrast tok itself, a term
proportional tok2 does not lead to a vanishing contribution after thek integration. Since, for dimensional
reasons,k is to be replaced byk/mc the subprocess amplitude involving aP -wavecc̄ pair, is of order
v. Combining this fact with the Fock-state expansion (4.57),one finds for the amplitude ofχcJ decays
into, say, a pairs of pseudoscalar mesons (P ) the behaviour

M(χcJ→PP ) = a1 α
2
sv + a8 α

2
s (v

√
αs) + O(v2) , (4.59)

where theai are process-typical constants. For the reactionJ/ψ→BB (B stands for baryon), on the
other hand, one has

M(J/ψ→BB) = ã1 α
3
s + ã8 α

3
sv(v

√
αs) + b̃8 α

3
s v

2αs + O(v3) . (4.60)

Or, for theηc decaying for instance into a scalar (S) and a pseudoscalar meson

M(ηc→SP ) = â1 α
2
s + â8 α

2
sv(v

√
αs) + b̂8 α

2
s (v

√
αs)

2 + O(v3) . (4.61)

Thus, one sees that in the case of theχcJ the color-octet contributions∝ a8 are not suppressed by
powers of eitherv or 1/mc as compared to the contributions from the valence Fock states [94]. For
charmonium decays

√
αs is large and does not suppress the color-octet contributionconsiderably. Hence,

the color-octet contribution, i.e. the next higher Fock state of the charmonium state, has to be included
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Fig. 4.5: Typical lowest-order Feynman graphs forJ/ψ decays into a baryon-antibaryon pair (left) andχcJ decays into a pair

of pseudoscalar mesons (right). The wavy lines represent gluons.

for a consistent analysis ofP -wave charmonium decays. The situation is different forJ/ψ decays into
baryon-antibaryon pairs orηc→SP : higher Fock state contributions first start atO(v2). Moreover, there
is no obvious enhancement of the corresponding subprocess amplitudes, they appear with at least the
same power ofαs as the valence Fock state contributions. Thus, despite of the fact thatmc is not very
large andv not small (v2 ≃ 0.3), it seems reasonable to expect small higher Fock-state contributions to
the baryonic decays of theJ/ψ.

The leading-twist formation of the light hadrons in the finalstate has implications for their helicity
configurations. As a consequence of the vector nature of QCD (and QED) time-like virtual gluons (or
photons) create light, (almost) massless quarks and antiquarks in opposite helicity states, see Fig. 4.6.
To leading-twist accuracy such partons form the valence quarks of the light hadrons and transfer their
helicities to them (see Fig. 4.6). Hence, the total hadronichelicity is zero

λ1 + λ2 = 0 . (4.62)

The conservation of hadronic helicities is a dynamical consequence of QCD (and QED) which holds
to leading-twist order. The violation of helicity conservation in a decay process signals the presence
of higher-twist, higher Fock state and/or soft, non-factorizable contributions. Such processes (e.g.
J/ψ→ρπ, ηc→ρρ) have indeed been observed experimentally with often sizeable branching ratios. For
the two-meson channels involving pseudoscalar (P ) and vector mesons (V ) they are characterized by

(−1)Jc Pc 6= (−1)J1+J2 P1P2 , (4.63)

whereJi andPi are the spin and parity of the mesoni. The amplitudes for processes of this kind are
proportional to the Levi–Civita tensor,ε, which is to be contracted in all possible ways with the available
Lorentz vectors, namely the two independent light hadron momenta,p1 and p2, and the polarization
vectors (or tensors) of the light vector mesons and the charmonium state. As an example let us consider
the processJ/ψ→V P , for which the amplitude reads

MλV ,λJ/ψ(J/ψ→V P ) =
A

M2
J/ψ

ε(p1, p2, ǫ
∗(λV ), ǫ(λJ/ψ)) , (4.64)

whereA is a constant. Now, in the rest frame of the decaying meson, the polarization vector of a helicity
zero vector meson can be expressed by a linear combination ofthe two final state momenta. The number
of independent Lorentz vectors is, therefore, insufficientto contract the Levi–Civita tensor with the
consequence of a vanishing amplitude for processes involving longitudinally polarized vector mesons.
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+(�)�(+) ++� p; +
Fig. 4.6: Helicity configurations in the creation of a lightqq pair (left) and for a leading-twist parton-proton transition (right).

Thus, hadronic helicity conservation (4.62) is violated inJ/ψ→V P decays. By the same argument
longitudinally polarized vector mesons are forbidden in the decayηc→V V . Since angular momentum
conservation requires the same helicity for both vector mesons, hadronic helicity is not conserved in the
case of transversally polarized vector mesons, too. With similar arguments the processesχc1, hc→V V
andχc2→V P are also forbidden to leading twist order. We note that hadronic helicity conservation
does also not hold inηc andχc0 decays into baryon-antibaryon pairs where, in the charmonium rest
frame, angular momentum conservation requiresλB = λB. A systematic investigation of higher-twist
contributions to these processes is still lacking despite some attempts of estimating them, for a review
see [95]. Recent progress in classifying higher-twist distribution amplitudes and understanding their
properties [96, 97] now permits such analyses. The most important question to be answered is whether
or not factorization holds for these decays to higher-twistorder. It goes without saying that besides
higher-twist effects, the leading-twist forbidden channels might be under control of other dynamical
mechanisms such as higher Fock state contributions or soft power corrections. In Sec. 5.1 a variety of
such mechanisms will be discussed.

Next, let us considerG-parity and isospin.G-parity or isospin-violating decays are not strictly
forbidden since they can proceed through electromagneticcc̄ annihilation and may receive contribu-
tions from the isospin-violating part of QCD. The latter contributions, being related to theu − d quark
mass difference, seem to be small [92].G-parity or isospin-violating decays ofC-even charmonia (e.g.
ηc, χc1, χc2→PV for non-strange final state mesons) have not been observed experimentally as yet [10].
Proceeding on the assumption that these decays are dominantly mediated bycc̄→2γ∗→PV , this is un-
derstandable. They are suppressed by a factor(αem/αs)

4 as compared to theG-parity and isospin al-
lowed decays of theC-even charmonia and their decay widths are therefore extremely small. Channels
involving strange mesons (e.g.KK∗), are also expected to be strongly suppressed by virtue ofU -spin
invariance. ForJ/ψ decays the situation is different. ManyG-parity violating (e.g.π+π−) or isospin-
violating (e.g.ωπ0) decays have been observed, the experimental branching ratios being of the order of
10−4–10−3 [10]. As compared toG-parity and isospin allowedJ/ψ decays they are typically suppressed
by factors of about10−2–10−1 in accord with what is expected for an electromagnetic decaymechanism,
see Fig. 4.7. An overview over the allowed and forbidden charmonium decays into pseudoscalar and vec-
tor mesons is given in Tab. 4.9.
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Fig. 4.7: Electromagneticψ(nS) decays into pairs of hadrons. The shaded blob indicates a time-like electromagnetic transition

form factor.

All what we have discussed so far holds for exclusive bottomonium decays as well. The situation
is even better in this case. Due to the larger mass of theb quark, corrections to the leading-twist QCD
results for bottomonium decays are probably reasonably small. Thus, the data on branching ratios can
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PP PV V V

ηc 0 (
√

) ǫ

J/ψ (
√

) ǫ (
√

)

hc 0
√

ǫ

χc0
√

0
√

χc1 0 (
√

) ǫ

χc2
√

(ǫ)
√

Table 4.9: Charmonium decays intoPP , PV andV V meson pairs. The symbols0, ǫ,
√

denote channels forbidden by angular

momentum and parity conservation, forbidden to leading-twist accuracy, and allowed, respectively. The brackets indicate that

these channels violate eitherG-parity or isospin invariance for non-strange mesons.

be expected to exhibit the pattern of leading-twist predictions. Exclusive quarkonium decays constitute
an interesting laboratory for investigating corrections to the leading-twist lowest-order approach from
various sources such as power and higher-twist correctionsas well as higher Fock-state contributions. A
systematic study of such is still lacking.

5.1 Decays ofJ/ψ andψ(2S) into two mesons11

The most dramatic unsolved problem in quarkonium physics isprobably theρ–π puzzle. In analyzing
the 2-body decays of theJ/ψ andψ(2S) into two light hadronsh1 andh2, it is convenient to consider
the following quantity:

κ[h1h2] =
B(ψ(2S)→h1h2)

B(J/ψ→h1h2)

B(J/ψ→e+e−)

B(ψ(2S)→e+e−)

̺[J/ψh1h2]

̺[ψ(2S)h1h2]
, (4.65)

where
̺[Hh1h2] =

√
1 − 2(M2

h1
+M2

h2
)/M2

H + (M2
h1

−M2
h2

)2/M4
H . (4.66)

is a phase space factor that depends on the masses of the hadronsH, h1, andh2. As will be explained
shortly, very simple theoretical considerations lead to the expectation that this quantity should be close
to 1 for all light hadronsh1 andh2:

κ[h1h2] = 1. (4.67)

This prediction was once referred to as the 12% rule because the experimental value of the ratio of the
electronic branching fractions of theψ(2S) andJ/ψ was at one time near 12%. That experimental value
is now 15 ± 2%. The last factor in (4.65) is a phase space factor that is close to 1 for hadrons whose
masses are much smaller than that of theJ/ψ. Thus the prediction (4.67) implies that the ratio of the
branching fractions of theψ(2S) andJ/ψ into h1h2 should be near 15%. All the baryon-antibaryon
decay modes that have been measured are compatible with the prediction (4.67), see Sec. 5.2. Some
two-meson decay modes are compatible with this prediction,but there are others for which it is badly
violated. The most severe violation that has been observed is in theρπ decay mode. The first hint of
this problem was seen by the Mark II collaboration in 1983 [98]. The decayJ/ψ→ρπ, with a branching
fraction of about 1.3%, is the largest 2-body hadronic decaymode of theJ/ψ. In contrast, the partial
width for ψ(2S)→ρπ is so small that this decay was not observed until very recently by the CLEO and
BES collaborations [99,100]. The branching fraction is measured to be0.46±0.09, and the ratio defined
in (4.65) isκ[ρπ] = 0.028 ± 0.006. The dramatic discrepancy between this result and the prediction in
Eq. (4.67) is theρ− π puzzle.

11Author: E. Braaten
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We proceed to explain the assumptions underlying the prediction (4.67). Because there is a
nonzero amplitude for theJ/ψ to be a purecc̄ state, the matrix element for its decay into two light
hadronsh1 andh2 can be expressed in the form

M(J/ψ→h1h2) =

∫
d3p

(2π)3
ψJ/ψ(p)A(c(p)c̄(−p)→h1h2), (4.68)

whereψJ/ψ(p) is the momentum-space wave function for the purecc̄ component of theJ/ψ. This can
be regarded as an exact formula that defines the amplitudeA(cc̄→h1h2). It relies on the fact that wave
functions satisfy integral equations, so even if there are other components of theJ/ψ wave function
besidescc̄, the iteration of the integral equation will eventually produce a purecc̄ state. The annihilation
of thecc̄ pair produces an intermediate state consisting of partons with momenta of ordermc, which is
much larger than either the momentum scalep ∼ mcv for thecc̄ wave function of theJ/ψ or the scale
ΛQCD associated with the wave functions of the light hadronsh1 andh2. If the factored expression in
(4.68) also corresponds to a separation of small momenta associated with the wave function ofJ/ψ from
small momenta associated with the wave functions ofh1 andh2, then the amplitudeA in (4.68) should
be insensitive to the value ofp. It can be approximated by its value atp = 0 up to corrections suppressed
by powers ofv andΛQCD/mc:

A(c(p)c̄(−p)→h1h2) ≈ A(c(0)c̄(0)→h1h2). (4.69)

With this approximation, the matrix element (4.68) reducesto

M(J/ψ→h1h2) ≈ ψJ/ψ(r = 0)A(c(0)c̄(0)→h1h2), (4.70)

whereψJ/ψ(r) is the coordinate-space wave function for the purecc̄ component ofJ/ψ. The decay rate
then has the factored form

Γ(J/ψ→h1h2) ≈
∣∣ψJ/ψ(r = 0)

∣∣2 |A(c(0)c̄(0)→h1h2)|2
̺[J/ψh1h2]

16πMJ/ψ
. (4.71)

The corresponding expression for the decayψ(2S)→h1h2 differs only in the mass and the wave function
factor. These factored expressions apply equally well to decays intoe+e−. Taking the ratio of decay rates
in (4.65), we obtain the predictionκ[h1h2] = 1 for any light hadronsh1 andh2. Any significant deviation
of κ[h1h2] from 1 indicates a breakdown of the approximation (4.69).

An important reference point for the prediction (4.67) is provided by the (leading twist) asymptotic
predictions of perturbative QCD [91, 92]. These predictions are most easily described using a ratioR
defined by

RJ/ψ[h1h2] =
Γ(J/ψ→h1h2)

Γ(J/ψ→e+e−)
. (4.72)

The asymptotic predictions for this ratio depend on the helicitiesλ1 andλ2 of the two hadronsh1 andh2.
If the hadrons are mesons and the decay proceeds via the annihilation processcc̄→ggg, the prediction
for the scaling behavior of the ratio is

RJ/ψ[h1(λ1)h2(λ2)] ∼
α6
s(mc)

α2
em

(
ΛQCD

mc

)4+2|λ1+λ2|
. (4.73)

If the decay proceeds via the annihilation processcc̄→γ∗, the prefactorα6
s/α

2
em is replaced byα2

s . The
scaling behavior (4.73) illustrates one of the basic qualitative features of the asymptotic QCD predic-
tions: light hadron helicity conservation. The dominant decay modes are predicted to satisfy the helicity
selection rule (4.62). In the case of the decayJ/ψ→ρπ, the helicity of the pion isλπ = 0 and the helicity
of theρ is constrained by Lorentz invariance to beλρ = ±1. Thus this decay necessarily violates the
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helicity selection rule, and its rate is predicted to be suppressed byΛ2
QCD/m

2
c relative to modes that are

compatible with the helicity selection rule. Butρπ is observed to be the largest 2-body decay mode of
theJ/ψ. This appears to be a clear violation of the asymptotic PQCD predictions. An understanding of
theρ–π puzzle may have important implications for the relevance ofasymptotic PQCD to charmonium
decays.

The dramatic failure of the prediction (4.67) in some channels indicates a breakdown of the ap-
proximation (4.69) for either theJ/ψ decay or theψ(2S) decay or both. The contribution to the am-
plitudeA from the annihilation ofcc̄ into 3 hard gluons or a virtual photon should be insensitive to the
relative momentump of thecc̄ pair. The failure of the prediction (4.67) indicates that atleast one other
dynamical mechanism must be involved. The sensitivity of the amplitude top could arise from a fluc-
tuation of the charmonium state into some component of the wave function other thancc̄. In a hadronic
basis, this fluctuation can be expressed in terms of mixing ofthe charmonium state with other hadrons.
In a parton basis, it can be expressed in terms ofcc̄ annihilation from a higher Fock state that includes
soft gluons.

Many explanations for theρπ puzzle have been proposed. The small upper bound onκ[ρπ] can
be explained either by an enhancement of the rate forJ/ψ→ρπ or by a suppression of the rate for
ψ(2S)→ρπ. The enhancement ofJ/ψ→ρπ relative toψ(2S)→ρπ could occur through mixing ofJ/ψ
with another narrow state that has a much larger branching fraction intoρπ. One such possibility is

1. mixing ofJ/ψ with a narrow glueball [101,102].

Direct searches have failed to reveal any evidence for such aglueball. The suppression ofψ(2S)→ρπ
relative toJ/ψ→ρπ could be explained if the decay is dominated by a particular component of the wave
function that is suppressed forψ(2S) relative toJ/ψ. The possibilities include

2. suppression of thecc̄ wave function at the origin for a component ofψ(2S) in which thecc̄ is in a
color-octet3S1 state [103],

3. suppression of theωφ component ofψ(2S) [104].

The suppression ofψ(2S)→ρπ relative toJ/ψ→ρπ could be explained if the amplitude is dominated
by two components of the wave function that nearly cancel in the case ofψ(2S) but not forJ/ψ. The
possibilities include

4. cancellation betweencc̄ andDD̄ components ofψ(2S) [105],

5. cancellation betweencc̄ and glueball components ofψ(2S) [105],

6. cancellation betweenS-wavecc̄ andD-wavecc̄ components ofψ(2S) [106].

This last proposal leads to the very simple and unambiguous prediction that theD-wave charmonium
stateψ(3770) should have a branching fraction intoρπ of about4 × 10−4 [106]. A recently proposed
explanation for theρ–π puzzle is a

7. cancellation between the amplitudes for the resonant processe+e−→ψ(2S)→ρπ and the direct
processe+e−→ρπ. See Sec. 2.8.5.

This proposal predicts that the observed suppression ofψ(2S)→ρπ relative toJ/ψ→ρπ is specific to
e+e− annihilation and should not occur for other charmonium production processes, such asB-meson
decay.

It is reasonable to expect that a definitive solution to theρ–π puzzle should also explain the de-
viations ofκ[h1h2] from the prediction 1 for other hadronsh1 andh2. The existing measurements of
the branching fractions into two mesons forJ/ψ andψ(2S) are shown in Table 4.10. While many of
the values ofκ[h1h2] are compatible with 1, there are modes other thanρπ for which κ is significantly
smaller than 1, such asρa2, and and there are modes for whichκ is significantly greater than 1, such as
K0
SK

0
L.

One clue to the mechanism is howκ[h1h2] depends on theJPC quantum numbers for hadrons
h1h2 with the same flavor quantum numbers asρπ. As can be seen in Table 4.10, there also seems to be
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Decay modeh1h2 B(J/ψ→h1h2) B(ψ′→h1h2) κ[h1h2]

(×104) (×104) (Eq. 4.65)

̺π 127 ± 9 0.46 ± 0.09 [99] [100] 0.028 ± 0.006

ωπ0 4.2 ± 0.6 0.22 ± 0.09 [99] [109] 0.40 ± 0.17

̺η 1.93 ± 0.23 0.23 ± 0.12 [99] [109] 0.9 ± 0.5

ωη 15.8 ± 1.6 < 0.11 [108] < 0.06

φη 6.5 ± 0.7 0.35 ± 0.11 [99] [108] 0.40 ± 0.13

̺η′(958) 1.05 ± 0.18 0.190.16
−0.11 ± 0.03 [109] 2.5 ± 0.9

ωη′(958) 1.67 ± 0.25 < 0.81 [108] < 4.3

φη′(958) 3.3 ± 0.4 0.33 ± 0.13 ± 0.07 [108] 0.71 ± 0.33

K∗(892)∓K± 50 ± 4 0.26 ± 0.11 [99] [107] 0.039 ± 0.017

K̄∗(892)0K0+c.c. 42 ± 4 1.55 ± 0.25 [99] [107] 0.28 ± 0.05

π+π− 1.47 ± 0.23 0.8 ± 0.5 4.3 ± 2.7

K+K− 2.37 ± 0.31 1.0 ± 0.7 3.2 ± 2.3

K0
SK

0
L 1.46 ± 0.26 0.52 ± 0.07 2.7 ± 0.6

π±b1(1235)∓ 30 ± 5 3.9 ± 1.6 (incl. [99]) 1.0 ± 0.4

π0b1(1235)
0 23 ± 6 4.0+0.9

−0.8 ± 0.6 [99] 1.3 ± 0.5

K±K1(1270)
∓ < 30 10.0 ± 2.8 > 1.7

K±K1(1400)
∓ 38 ± 14 < 3.1 < 0.8

ωf0(980)→ωππ 1.1 ± 0.4

φf0(980)→φππ 2.5 ± 0.7 0.60 ± 0.22 1.7 ± 0.8

ωf0(1710)→ωKK̄ 4.8 ± 1.1

φf0(1710)→φKK̄ 3.6 ± 0.6

ωf1(1420) 6.8 ± 2.4

φf1(1285) 2.6 ± 0.5

ωf2(1270) 43 ± 6 2.1 ± 0.6 [111] 0.34 ± 0.11

̺a2(1320) 109 ± 22 2.6 ± 0.9 [111] 0.17 ± 0.07

K∗(892)0K̄∗
2 (1430)0 + c.c. 67 ± 26 1.9 ± 0.5 [111] 0.19 ± 0.09

φf ′2(1525) 12.3 ± 2.1 0.44 ± 0.16 [111] 0.22 ± 0.09

Table 4.10: Comparison ofJ/ψ andψ′ branching ratios to VP, PP, PA, VS, VV and VT mesons. Unless specified data are from

PDG [10]. Where specified we have included in the averages recent data onψ(2S) decays from BES [107] [100] [108] [109]

and CLEO [99], the latter derived from reported ratios of branching ratios using values in PDG [10].
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suppression in the vector–tensor (VT) channelρa2, but there seems to be no significant suppression in the
axial vector-pseudoscalar (AP) channelb1π or in the pseudoscalar-pseudoscalar (PP) channelπ+π−. The
absence of any suppression in the channelπ+π− is to be expected, because it proceeds predominantly
throughcc̄ annihilation into a single photon, and therefore the approximation (4.70) should hold.

Another clue to the suppression mechanism is the pattern ofκ[h1h2] for different radial excitations
of mesons with the sameJPC quantum numbers. An example is the AP decay modesK±K∓

1 for differ-
entK1 resonances. The modeK±K1(1400)

∓ has been observed inJ/ψ decays but not inψ(2S) decays.
The modeK±K1(1270)

∓ has been observed inψ(2S) decays but not inJ/ψ decays. The lower bound
on κ for K±K1(1270)

∓ is significantly greater than the upper bound onκ for K±K1(1400)
∓. This

demonstrates that whetherκ is suppressed or enhanced relative to the prediction (4.67)is not determined
solely by theJPC quantum numbers of the mesons.

The suppression pattern in a given channel as a function of the flavor quantum numbers should also
provide important clues to the suppression mechanism. The channel for which the most measurements
are available is the VP channel. The decay amplitude forJ /ψ→V P can be resolved into 3 terms with
distinct flavor structures:

• a flavor-connected amplitudeg with quark structure(qiq̄j)(qj q̄i),

• a flavor-disconnected amplitudeh with quark structure(qiq̄i)(qj q̄j),

• an electromagnetic amplitudee with quark structureQik(qiq̄j)(qj q̄k) whereQ is the light quark
charge matrix.

For example, the amplitude forJ /ψ→ρπ is proportional tog + e. A quantitative analysis should also
take into account SU(3) symmetry breaking from the strange quark mass and UA(1) symmetry breaking
from the triangle anomaly. In the case ofJ/ψ, there are enough precise measurements of VP decays to
completely determine the flavor decomposition of the amplitude [112, 113]. The conclusion is that|e|
and|h| are comparable in magnitude and about an order of magnitude smaller than|g|.

The analogous flavor decomposition forψ(2S)→V P expresses the decay amplitudes as a linear
combination of amplitudesg′, h′, ande′ with distinct flavor structures. The same reasoning that ledto the
predictionκ[h1h2] = 0 implies that these amplitudesg′, h′ ande′ should differ from the corresponding
amplitudesg1, h1 ande for J/ψ by the factor

(
Mψ(2S)Γ(ψ(2S)→e+e−)

MJ/ψΓ(J/ψ→e+e−)

)1/2

≈ 0.70. (4.74)

However, the measurementκ[ρπ] ≈ 0.028 implies |g′ + e′| ≈ 0.12|g + e|. Since|g| ≫ |e|, this requires
|g′| to be suppressed relative to0.70|g|. A mechanism for such a suppression was proposed in Ref. [103].
If g′ was so strongly suppressed that it was small compared to|e′|, it would make the rate forψ(2S)→ρπ
comparable to electromagnetic processes such asψ(2S)→ωπ0. The stronger suppression ofψ(2S)→ρπ
that is observed requires thatg′ ande′ be comparable in magnitude and to have phases such that thereis
a further cancellation in the sumg′ + e′.

The CLEO collaboration has recently presented the first evidence for two-body decays of the
Υ(1S) [114]. They observed signals with a statistical significance of greater than5σ for decays into
φf ′2(1525) andK̄K1(1400). The decay ofΥ(1S) into K̄K1(1270) is observed to be suppressed relative
to K̄K1(1400), which is the same pattern observed inJ/ψ decays. The CLEO collaboration also set
upper limits on other decay modes, the strongest of which isB(Υ(1S)→ρπ) < 4 × 10−6.

5.2 Decays ofJ/ψ andψ(2S) into baryon-antibaryon

As we already discussed these decays seem to be dominated by hard physics where the charm and
anticharm quark annihilate into gluons at short distances.In a leading-order calculation of decay widths
for theBB channels contributions from higher charmonium Fock statescan be neglected since they only
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produceO(v2) corrections, see Eq. (4.60); contributions from higher baryon Fock states are suppressed
by powers of1/mc. For consistency, the masses of theJ/ψ andψ(2S) are to be replaced by2mc (except
in phase space factors) since the energy for the binding of acc̄ pair in a charmonium state is anO(v2)
effect. The only soft physics information on the charmoniumstate needed in a calculation to lowest order
in v is its decay constant. The corresponding electronic decay widths

Γ(J/ψ→e+e−) =
4π

3

e2c α
2
em f

2
J/ψ

MJ/ψ
, (4.75)

provide their values:fJ/ψ = 409MeV, fψ(2S) = 282MeV. The other soft physics information required
is the leading-twist baryon distribution amplitude. As canbe shown [115] the proton is described by
one independent distribution amplitude,Φ p

123(x), to leading-twist accuracy. The set of subscripts1, 2, 3
refers to the quark configurationu+ u− d+ of a proton with positive helicity. The distribution amplitudes
for other valence quark configurations in the proton are obtained by permutations of the subscripts. Since
flavor SU(3) is a good symmetry, only mildly broken by quark mass effects, it is reasonable to assume
that the other members of the lowest-lying baryon octet are also described by only one independent
distribution amplitude, which, up to flavor symmetry breaking effects, is the same as the proton one.

To start with and for orientation, we present the leading-twist result for the width of the decays of
transversely polarizedJ/ψs, as for instance are produced ine+e− annihilations, into proton-antiproton
pairs. The width, evaluated from the asymptotic form of the baryon wave functionΦB

AS = 120x1 x2 x3,
reads

Γ(J/ψ→pp̄) =
56 210

35
π5 αs(mc)

6 ̺[J/ψ pp̄]

MJ/ψ

(
fJ/ψ f

2
p

mc
4

)2

I2
AS , (4.76)

where

IAS = 6

∫
[dx]3 [dy]3

x1y3

[x1(1 − y1) + (1 − x1)y1][x3(1 − y3) + (1 − x3)y3]
. (4.77)

The normalization parameterfp represents the proton’s light-cone wave function for zero spatial separa-
tion of the quarks. Strictly speaking, it is defined by [116]

fp(µF )

8
√
nc!

Φ p
123(x, µF ) =

∫ µF

[d2k⊥]3Ψ
p
123(x, k⊥) , (4.78)

with ∫
[dx]3Φ

p
123(x, µF ) = 1 . (4.79)

Both the distribution amplitude andfp are subject to evolution [116]. A typical value forfp is ≃ 6 ×
10−3 GeV2 [92,117]. Evaluating the branching ratio from (4.76), (4.77), one obtains

B(J/ψ→pp̄) = 1.5 × 10−3
( αs

0.4

)3
(

1.5GeV

mc

)7 ( fp

6 × 10−3 GeV2

)4

, (4.80)

which is in quite good agreement with experiment, see Tab. 4.11. The predictions for the branching ratio
are more robust than that from theJ/ψ→pp̄ decay widths since the totalJ/ψ width is dominated by
the decays into light hadrons. Hence, according to (4.12) and (4.75), the branching ratios approximately
scale as1/m7

c andα3
s .

In previous calculations [92,118] of theJ/ψ→pp̄ decay width, distribution amplitudes have been
employed that are strongly concentrated in the end-point regions where one of the momentum fractions
is small. The use of such distribution amplitudes has been heavily criticized [119]. Due to their prop-
erties the bulk of the amplitude for the subprocesscc̄→3g∗→3(qq) is accumulated in the soft end-point
regions where the use of perturbative QCD is inconsistent. Moreover, such distribution amplitudes lead
to extremely strong contributions to the decay amplitude and require compensation by small values of
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αs, typically in the range of0.2–0.3. Such values are unrealistically small with regard to the characteris-
tic scales available in charmonium decays. For an average gluon virtuality of about1GeV2 one would
expectαs to be rather0.4.

Recent theoretical [97,120] and phenomenological [117] studies provide evidence that the proton
distribution amplitude is close to the asymptotic form for baryons: the end-point concentrated forms seem
to be obsolete. In a recent analysis of theJ/ψ andψ(2S) decays into baryon-antibaryon pairs [121] use
is made of the phenomenological proton distribution amplitude proposed in [117]

Φ p
123(x, µ0) = ΦB

AS

1

2
(1 + 3x1) , (4.81)

which is valid at the factorization scaleµ0 = 1GeV. This distribution amplitude goes along with the
normalization parameterfp(µ0) = 6.64 × 10−3 GeV2. In [121] the distribution amplitude (4.81) has
been suitably generalized to the cases of hyperons and decuplet baryons by allowing for flavor symmetry
breaking due to the effect of the strange quark mass. Insteadof the collinear approximation as used
in [92, 118] or in (4.76), the modified perturbative approach[122] is applied in [121]. In this approach
quark transverse momenta are retained and Sudakov suppressions, comprising those gluonic radiative
corrections not included in the evolution of the distribution amplitude, are taken into account. The ad-
vantage of the modified perturbative approach is the strong suppression of the soft end-point regions
where perturbative QCD cannot be applied. If distribution amplitudes close to the asymptotic form are
employed the difference between a calculation on the basis of the collinear approximation and one within
the modified perturbative approach is, however, not substantial given that theJ/ψ→BB amplitude is
anyhow not very sensitive to the end-point regions. This is in marked contrast to the case of the proton’s
electromagnetic form factor [123]. On the other hand, a disadvantage of the modified perturbative ap-
proach is that the full baryon light-cone wave function is needed and not just the distribution amplitude.
In [121] the transverse momentum dependence of the baryon wave functions has been parameterized by
a simple Gaussian

∝ exp
[
−a2

B

∑
k2
⊥i/xi

]
, (4.82)

where a value of0.75GeV−1 has been adopted for the transverse size parameteraB . For the decuplet
baryons a somewhat larger value has been used (0.85GeV−1). Calculating the subprocess amplitude
from the Feynman graphs shown in Fig. 4.5 and working out the convolution of subprocess amplitude
and baryon wave functions, one obtains the widthsΓ3g for theJ/ψ decays intoBB pairs mediated by
the hard annihilation processcc̄→3g∗→3(qq). The results are listed and compared to experimental data
in Tab. 4.11. In addition to the three-gluon contribution there is also an isospin symmtetry violating
electromagnetic one generated by the subprocesscc̄→γ∗→3(qq̄), see Fig. 4.7. According to [121] this
contribution is probably small, of the order of a few percentonly. An important ingredient in this estimate
of the size of the electromagnetic contribution is the agreement of the experimental widths forJ/ψ
decays intonn̄ andpp̄ within the errors [10]. The contributions from thecc̄→g∗g∗γ∗→3(qq̄) to the
baryon-antibaryon channels amount to less than1% of the three-gluon contribution and can be neglected.

The widths for the corresponding decays of theψ(2S) are easily obtained within the perturbative
approach by rescaling theJ/ψ ones by the ratio of the electronicψ(2S) andJ/ψ decay widths, the15%
rule, i.e. Eq. (4.65) withκ[BB] = 1, holds strictly in the approach put forward in [121]. The results
obtained that way are also quoted in Tab. 4.11. Good agreement between theory and experiment [10] is
observed. Predictions of the absolute value of a decay widthare subject to many uncertainties, see (4.76)
while ratios of any twoBB decay widths are robust since most of the uncertainties cancel to a large
extent. It is to be emphasized that theψ(2S) andJ/ψ decay widths do not scale as(MJ/ψ/Mψ(2S))

8 ≃
1/4 as suggested in [91] since the subprocess amplitude in a calculation to lowest order in the charm
quark velocity (see (4.60)) has to be calculated with2mc and not with the bound state mass.

Bottomonium decays intoBB pairs can be calculated along the same lines. The hard scale is
now provided by theb-quark mass. Hence, relativistic and higher-twist corrections are expected to be
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channel pp Σ0Σ0 ΛΛ Ξ−Ξ+ ∆++∆−− Σ∗−Σ∗+

B3g(J/ψ) 1.91 1.24 1.29 0.69 0.72 0.45

Bexp [10] 2.16 ± 0.08 1.27 ± 0.17 1.30 ± 0.12 0.90 ± 0.20 1.10 ± 0.29 1.03 ± 0.13

B3g(ψ(2S)) 2.50 1.79 1.79 1.11 1.07 0.80

Bexp [10] 2.07 ± 0.31 1.2 ± 0.6 1.81 ± 0.34 0.94 ± 0.31 1.28 ± 0.35 1.10 ± 0.40

Table 4.11: Results forJ/ψ andψ(2S) branching ratios forBB channels in units of10−3 and10−4, respectively. The three-

gluon contributions, taken from [121], are evaluated frommc = 1.5 GeV, and the one-loopαs with ΛQCD = 210 MeV. Unless

specified data are taken from Ref. [10]. For theJ/ψ→pp̄ we have included the recent BES measurement [124] in the average.

The theoretical branching ratios are evaluated usingΓ(J/ψ) = 91.0 ± 3.2 keV [10].

smaller than in the charmonium case. But, as it turns out, thepredicted decay widths for the baryonic
channels are very small. Approximately, i.e. ignoring the fact that thek⊥-dependent suppression of the
three-gluon contribution is perhaps a bit different in the two cases, one finds the following rescaling
formula

Γ(Υ→BB) =
̺[ΥBB]

̺[J/ψBB]

Γ(Υ→e+e−)

Γ(J/ψ→e+e−)

×
(
ec
eb

)2 (αs(mb)

αs(mc)

)6 (mb

mc

)8

Γ(J/ψ→BB) . (4.83)

Usingmb = 4.5GeV one obtains, for instance, a value of0.02 eV for theΥ→pp̄ decay width, which
value corresponds to a branching ratio of0.3 × 10−7 well below the present experimental upper bound
[10].

It goes without saying that the hard contributions,Γ3g, to theJ/ψ andψ(2S) decays intoBB
pairs respect the helicity sum rule (4.62), i.e. the amplitude for the production of baryon and antibaryon in
equal helicities states vanishes. Measurements of the angular distribution ine+e−→J/ψ, ψ(2S)→B8B8

dΓ

d cos ϑ
∝ 1 + αB8 cos2 ϑ , (4.84)

whereB8 is any member of the lowest-lying baryon octet andϑ the c.m.s. production angle, allow for a
test of this prediction. In the formal limit of an infinitely heavy charm quarkαB8 = 1 as a consequence
of hadronic helicity conservation [91]. The available data[124–128], listed in Tab. 4.12, tell us that
only a fraction of about10% of the total number ofB8B8 pairs are produced with the same helicity of
baryon and antibaryon. This observation is in fair agreement with hadronic helicity conservation. The
production ofB8B8 pairs with equal helicities has been modeled as a constituent quark [129,130] and/or
hadron mass effect [131], both the effects are part of theO(v2) and higher-twist/power corrections. Also
electromagnetic effects inαB have been investigated. For results we refer to Tab. 4.12.

5.3 Hadronic two-body decays of theηc
Such decays of theηc have been observed in experiment only for theBB andV V channels, upper bounds
exist for a few others likea0(980)π. Decays intoPP andPV have not been observed, they are either
strictly forbidden or strongly suppressed, see Tab. 4.9. Asnoted at the beginning of this section theBB
andV V channels are forbidden to leading-twist accuracy since hadronic helicity conservation (4.62) is
in conflict with angular momentum conservation for these processes. In contrast to the expectation from
the leading-twist approximation the measured branching ratios are rather large (10−3–10−2). We repeat,

231



αB8(J/ψ) pp ΛΛ Σ0Σ0

Predicted: [131] 0.46 0.32 0.31

[129] (no e.m. corr) 0.69 0.51 0.43

[129] (incl. e.m. corr) 0.70

Experiment:J/ψ 0.66 ± 0.05 0.65 ± 0.19 0.26 ± 0.30

ψ(2S) 0.68 ± 0.14

Table 4.12: Experimental and theoretical results for the parameterαB8
in J/ψ, ψ(2S)→B8B8 as defined in Eq. (4.84).

Experimental values obtained averaging data from BES [124], DM2 [125], MARK-II [126], E760 [127] and E835 [128].

it is worthwhile to explore the role of higher-twist baryon and vector meson wave functions in the decays
of theηc [96,97].

In [104] a mixing approach for the explanation of theseηc decays has been advocated. As is
well-known theUA(1) anomaly leads to mixing among the pseudoscalar mesonsη − η′ − ηc [132,133].
This mixing can adequately be treated in the quark-flavor mixing scheme [134] where one starts from
the quark-flavor basis and assumes that the basis states and their decay constants follow the same pattern
of mixing with common mixing angles. This assumption is supported by an analysis of theγ − η and
γ−η′ transition form factors at large momentum transfer [135]. The quark-flavor basis states are defined
by the flavor content of their valence Fock states

ηq→ (uū+ dd̄)/
√

2 , ηs→ ss̄ , ηc0 → cc̄ . (4.85)

The admixture of the light quarks to theηc, which we need here in this work, is controlled by a mixing
angleθc [134]

|ηc〉 = |ηc0〉 − θc√
1 + y2/2

[
|ηq〉 +

y√
2
|ηs〉

]
. (4.86)

The ratio of the basis decay constantsfq andfs is denoted byy

y = fq/fs . (4.87)

According to [134], its value amounts to 0.81 whileθc = −1◦ ± 0.1◦. The light-quark admixture
to the ηc (4.86) is somewhat smaller than estimates given in [132] butslightly larger than quoted in
[136]. In combination with the strong vertexqq→V V this small light-quark component of theηc suffices
to account for theV V decays. In the spirit of this dynamical mechanism (see Fig. 4.8) the invariant
amplitude,A, for theηc→V V decays can be parameterized as

A(ηc→V V ) = Cmix
V V σV V Fmix(s = M2

ηc) . (4.88)

It is related to the decay width by

Γ(ηc→V V ) =
1

32πSV V

̺[ηcV V ]3

Mηc

|A(ηc→V V )|2 . (4.89)

The statistical factor for the decay into a pair of identicalparticles is denoted bySV V . The mixing factor
Cmix
V V embodies the mixing of theηc with the basis statesηq andηs (4.86). These factors are quoted in

Tab. 4.13. Flavor symmetry breaking effects in the transitionsη i→V V (i = q, s) are absorbed in the
factorσV V . As a simple model for it one may take the square of the vector meson’s decay constants as a
representative of SU(3) violations in these transitions (fρ = 216MeV, fω = 195MeV, fφ = 237MeV,
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V V Cmix
V V Rth Rexp

ωω 1 0.63 < 0.37 [137]

< 0.75 [138]

K∗0K
∗0

(1 + y2)/2 0.61 0.47 ± 0.09 [138]

0.55 ± 0.27 [137]

φφ y2 0.13 0.93 ± 0.33 [137]

0.35 ± 0.10 [138]

0.30 ± 0.10 [139]

0.21 ± 0.14 [140]

Table 4.13: Mixing factors as well as experimental and theoretical ratios of decay widths forηc→V 0V 0. The ratios are quoted

with respect to theρ0ρ0 channel (Cmix
ρ0ρ0 = 1). Experimental ratios are calculated taking into account the common systematics

fK∗ = 214MeV). In order to have a dimensionless quantity,f2
V is scaled by the squared vector meson

mass

σV V =

(
fV
MV

)2

. (4.90)

Ratios of decay widths are free of the unknown transition form factorFmix. With respect to theρ0ρ0

channel one finds for the other uncharged vector mesons channels

Γ(ηc→V 0V 0)

Γ(ηc→ρ0ρ0)
=

2

SV 0V 0

(
Cmix
V 0V 0

)2
(
σV 0V 0

σρ0ρ0

)2 (̺[ηcV 0V 0]

̺[ηcρ0ρ0]

)3

. (4.91)

The theoretical and experimental results on the ratios are listed in Tab. 4.13. Reasonable agreement be-
tween theory and experiment can be seen although the errors are large. Assuming a monopole behaviour
for the transition form factorFmix and fitting its strength to theρρ data, one obtains a value that is in
accord with the concept of mixing. q

�q
h1
h2

Fig. 4.8: The mixing mechanism for charmonium decays into light hadrons.

The mixing approach can also be applied to theηc decays into baryon-antibaryon pairs. It seems
that at least thepp̄ channel for which the decay width has been measured, is also controlled by the mixing
mechanism [104].

5.4 The decays of theχcJ and the role of the color-octet contribution

The color-singlet contribution toχcJ decays into pairs of pseudoscalar or vector mesons is well-known,
it has been calculated several times [90,92,95]. The convolution of wave functions and hard subprocess
amplitudes, which are to be calculated from Feynman graphs as shown in Fig. 4.5, leads to a decay width
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for theπ+π− channel as (J = 0, 2)

Γ(χcJ→π+π−) = 2
π2

35

̺[χcJ ππ]

MχcJ

f4
π

m7
c

|R ′
χcJ

(0)|2 α4
s (mc)

×
∣∣aJ + bJ B

π
2 (mc) + cJ B

π
2 (mc)

2
∣∣2 , (4.92)

where the parametersaJ , bJ and cJ are analytically calculable real numbers in the leading-twist ap-
proximation; they represent the convolution of distribution amplitudes an subprocess amplitude. The
parametera0, for instance, reads

a0 = 27π2/2 − 36 . (4.93)

The representation (4.92) also holds in the modified perturbative approach but the parameters are then
complex valued. The constantBπ

2 (µ0) is the first coefficient of the expansion of the leading-twistpion

distribution amplitude upon Gegenbauer polynomialsC
3/2
n [116]

Φπ = ΦM
AS


 1 +

∑

n=2,4,···
Bπ
n(µF )C3/2

n (2x− 1)


 , (4.94)

whereΦM
AS is the asymptotic form of a meson distribution amplitude

ΦM
AS = 6x(1 − x) , (4.95)

and

Bn(µF ) =

(
ln(µ2

F /Λ
2
QCD)

ln(µ2
0/Λ

2
QCD)

)γn
Bn(µ0) . (4.96)

In Eq. (4.92) terms of order higher than 2 in the expansion areneglected and the factorization scale
dependence of the Gegenbauer coefficientB2 is controlled byγ2 = −50/81. As the starting scale of
the evolution,µ0, a value of1GeV is taken. Finally,fπ (= 132MeV) is the pion decay constant and
R ′
χcJ (0) (= 0.22GeV5/2 [33,141]) denotes the derivative of the nonrelativistic radial cc̄ wave functions

at the origin (in coordinate space). As usual a normalization factorfπ/(2
√

6) is pulled out from the
distribution amplitude.

The distribution amplitude of the pion is fairly well-knownby now from analyses of theπ0 −
γ transition form factor. It is close to the asymptotic form ofa meson distribution amplitude [142].
Deviations from that form are difficult to estimate since they strongly depend on details of the analysis
such as whether or not NLO, higher-twist corrections or tranverse degrees of freedom are taken into
account [142, 143]. But in any case the Gegenbauer coefficient Bπ

2 seems to be small in magnitude.
Combining the results from different analyses of theπ0 − γ transition form factor, one may conclude
that|Bπ

2 | <∼ 0.1 atµ0 = 1GeV. Taking firstBπ
2 = 0 in (4.92), one evaluates from (4.92) the branching

ratio

B(χc0(2)→π+π−) ≃ 0.31 (0.10) × 10−3
( αs

0.4

)2
(

1.5GeV

mc

)3

. (4.97)

The majority of the widths of theχc0 andχc2 come from decays into light hadrons. The contribution
coming from the decay of a color-singletcc̄ into real gluons is given by [33]

Γ(χcJ→l.h.) ∝ |R′
χcJ

(0)|2 α2
s

mc
4
. (4.98)

Therefore, the branching ratios approximately scale as given in (4.97) and not as in (4.92). Thecc̄ wave
functionR′

χcJ (0) almost cancel in the ratio. Otherwise its well-known scaling properties [144] would
have to be taken into account as well.
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The variation of the branching ratio with the Gegenbauer coefficient Bπ
2 is displayed in Fig. 4.9.

One can conclude that, stretching all parameters (Bπ
2 ,αs,mc) to the extreme, the predictions forB(χc0(2)

→ π+π−) from the color-singlet contribution to leading-twist accuracy stay a factor 3-6 below the data.
Results of similar magnitude are found within the modified perturbative approach.

�0:15 �0:10 �0:05 0:00 0:05 0:1000:2
0:40:6
0:8

B2(�0)
10�3 �B(
� 0!�+
�� )

Fig. 4.9: Dependence of the leading-twist color-singlet contribution to theχc0→π+π− branching ratio on the expansion

parameterBπ2 of the pion distribution amplitude at the scaleµ0 = 1GeV. The evolution ofBπ2 is evaluated fromΛQCD =

200 MeV.

Thus, there is obviously room for the color-octet contributions (see (4.59)), i.e. from the subpro-
cesscc̄g→2(qq). A first attempt to include the color-octet contribution hasbeen undertaken in [94]. This
calculation, performed within the modified perturbative approach [122], is based on a very rough model
for the color-octetχcJ wave function, the new ingredient of this calculation. Despite this the authors
of Ref. [94] were able to show that the combined color-singlet and -octet contributions are likely large
enough to account for the data [10, 66], see Tab. 4.14. The calculation of theχcJ→π+π− decay width
can be generalized to other pseudoscalar meson channels with results of similar quality as for theππ
channels. For theη′η′ channel an additional two-gluon Fock component of theη′ is to be taken into
account whose leading-twist distribution amplitude has recently been extracted from a NLO analysis of
theη − γ andη′ − γ transition form factor [145,146]. For theηη channel the two-gluon contribution is
probably negligible.

The color-singlet contribution to the decaysχcJ→pp̄ (J = 1, 2) has been investigated by many
authors [92, 95, 118, 150]. Employing the proton distribution amplitude (4.81) or a similar one, one
again finds results that are clearly below experiment, whichagain signals the lack of the color-octet
contributions. An analysis of theχc1(2) decays into the octet and decuplet baryons along the same lines
as for the pseudoscalar meson channels [94] has been carriedthrough by Wong [147]. The branching
ratios have been evaluated from the baryon wave functions (4.81), (4.82) and the same color-octetχcJ
wave function as in [94]. Some of the results obtained in [147] are shown and compared to experiment in
Tab. 4.14. As can be seen from the table the results for thepp̄ channels are in excellent agreement with
experiment while the branching ratios forΛΛ channels are much smaller than experiment [148] although
the errors are large. A peculiar fact has to be noted: the experimentalΛΛ branching ratios are larger than
the proton-antiproton ones although there is agreement within two standard deviations.

The present analyses of theχcJ decays suffer from the rough treatment of the color-octet charmo-
nium wave function. As we mentioned before a reanalysis of the decays into thePP andBB channels
as well as an extension to theV V ones is required. Our knowledge of the color-octet wave function
has been improved recently due to the intense analyses of inclusive processes involving charmonia,
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process theory experiment

B(χc0→ π+ π− ) 3.0 [94] 4.9 ± 0.6

B(χc2→ π+ π− ) 1.8 [94] 1.77 ± 0.27

B(χc0→K+K−) 2.4 [94] 6.0 ± 0.9

B(χc2→K+K−) 1.4 [94] 0.94 ± 0.21

B(χc0→ η η ) 2.0 [94] 2.1 ± 1.1

B(χc2→ η η ) 1.3 [94] < 1.5

B(χc0→ p p̄ ) − 22.4 ± 2.7

B(χc1→ p p̄ ) 6.4 [147] 7.2 ± 1.3

B(χc2→ p p̄ ) 7.7 [147] 6.8 ± 0.7

B(χc0→ΛΛ ) − 47 ± 16

B(χc1→ΛΛ ) 3.8 [147] 26 ± 12

B(χc2→ΛΛ ) 3.5 [147] 34 ± 17

Table 4.14: Comparison of theoretical and experimental branching ratios for variousχcJ decays into pairs of light hadrons.

The theoretical values have been computed within the modified perturbative approach, color-singlet and -octet contributions

are taken into account (Bπ2 = Bη2 = BK1 = 0, BK2 = −0.1, baryon wave functions (4.81), (4.82)). The branching ratios

are quoted in units of10−3 for the mesonic channels and10−5 for the baryonic ones. Data taken from [10]. The values

listed for pp̄ branching rates do not include the most recent values
(
27.4+4.2

−4.0 ± 4.5
)
· 10−5,

(
5.7+1.7

−1.5 ± 0.9
)
· 10−5 and(

6.9+2.5
−2.2 ± 1.1

)
· 10−5 measured by BES [149] forχc0, χc1 andχc2 respectively.

e.g. [151]. This new information may be used to ameliorate the analysis of theχcJ→PP,BB decays
and, perhaps, to reach a satisfactory quantitative understanding of these processes. We finally want to
remark that the color-octet contribution does not only playan important role in theχcJ decays intoPP
andBB pairs but potentially also in their two-photon decays [30,33,152] (see also Sec. 3.).

The leading-twist forbiddenχc0→BB decays have sizeable experimental branching ratios, see
Tab. 4.14. There is no reliable theoretical interpretationof these decays as yet. The only proposition [153]
is the use of a diquark model, a variant of the leading-twist approach in which baryons are viewed as
being composed of quarks and quasi-elementary diquarks. With vector diquarks as constituents one may
overcome the helicity sum rule (4.62). The diquark model in its present form, however, contends with
difficulties. Large momentum transfer data on the Pauli formfactor of the proton as well as a helicity
correlation parameter for Compton scattering off protons are in severe conflict with predictions from the
diquark model.

5.5 Radiative decays of charmonia into light hadrons

First let us consider the processJ/ψ→γπ0. The apparently leading contribution to it is generated by
the subprocesscc̄→γ g∗g∗→γqq̄, which, in principle, leads to a decay width of orderα4

s . However, due
to the pion’s flavor content∝ uū − dd̄ this contribution exactly cancels to zero in the limit of massless
quarks. A VDM contributionJ/ψ→ρπ followed by aρ − γ conversion [95] seems to dominate this
process. Indeed, an estimate of the VDM contribution leads to a branching ratio of3.3 × 10−5, which
compares favorably with the experimental result of(3.9 ± 1.3) × 10−5 [10]. Analogue estimates of the
γη andγη′ branching ratios lead to similar values, about1 × 10−5, which fall short of the experimental
results by two orders of magnitude. The solution of this discrepancy is a gluonic contribution, which
occurs as a consequence of the UA(1) anomaly; it formally presents a power correction. According to
Novikov et al. [154], the photon is emitted by thec quark with a subsequent annihilation of thecc̄ pair

236



into lighter quarks through the effect of the anomaly. The creation of the corresponding light quarks is
controlled by the gluonic matrix element〈0|αsGG̃ |η(′)〉 whereG is the gluon field strength tensor and
G̃ its dual. Photon emission from the light quarks is negligible as can be seen from the smallness of the
γπ width. This mechanism leads to the following width for the radiativeJ/ψ decay intoη(′) [154]

Γ(J/ψ→γη(′)) =
25

5238
πe2cα

3
em ̺[J/ψγη

(′)]

(
MJ/ψ

mc
2

)4 |〈 0 |αs
4π GG̃ | η(′) 〉|2

Γ(J/ψ→e+e−)
. (4.99)

In the quark-flavor mixing scheme the gluonic matrix elementfor theη is given by [155]

〈 0 |αs

4π
GG̃| η 〉 = − sin θ8

√
2 + y2 fq a

2 . (4.100)

For theη′ matrix elementsin θ8 is to be replaced bycos θ8. The angleθ8 controls the mixing of the octet
decay constants. In [134] the various mixing parameters have been determined; their values amount to:

θ8 = −21.2◦ ; fq = 1.07fπ ; a2 = 0.265GeV2 ; φ = 39.3◦ . (4.101)

The latter angle is the mixing angle in the quark-flavor basis. The parametery has been defined in Eq.
(4.87). Evaluating the decay width or rather the branching ratio from these parameter values, one obtains

B(J/ψ→γη) = 3.7 × 10−4

(
1.5GeV

mc

)7

. (4.102)

The comparison with the experimental value of(8.6±0.8) ·10−4 [10] reveals that the order of magnitude
is correctly predicted. As happens frequently in exclusivecharmonium decays the charm-quark mass
appears to a high power in the theoretical estimates of branching ratios with the consequence of large
uncertainties in the predicted values. With regard to the fact that the totalJ/ψ decay width is dominated
by the decays into light hadrons (4.12), the power ofmc in (4.102) is approximately seven. The mass of
theJ/ψ appears in (4.99) through a pole saturation of a QCD sum rule [154]; it should not be replaced
by 2mc.

While the calculation of the individual decay widths is not easy, ratios of theη andη′ widths can
be reliably predicted fromη − η′ mixing. Using the quark-flavor mixing scheme again, one findsfrom
(4.99) and (4.100) the following ratios for radiativeJ/ψ decays [134]

B(J/ψ→γη′)
B(J/ψ→γη)

= cot2 θ8

(
̺[J/ψγη′]
̺[J/ψγη]

)3

. (4.103)

The extension to theηc is also possible. With (4.86) one obtains

B(J/ψ→γη′)
B(J/ψ→γηc)

= θ2
c cos2 θ8

(
̺[J/ψγη′]
̺[J/ψγηc]

)3

. (4.104)

This approach leads to the following numerical results:

B(J/ψ→γη′)
B(J/ψ→γη)

= 5.39 , Exp : 5.0 ± 0.6 [10] ,

B(J/ψ→γη′)
B(J/ψ→γηc)

= 0.48 , Exp : 0.33 ± 0.1 [10] . (4.105)

Due to the large uncertainties in the angleθc the prediction for the second ratio has an error of about
20%.

It is tempting to extend the anomaly dominance to the case of the radiativeΥ decays. One obtains

B(Υ→γη′)
B(Υ→γη)

= 6.51 ,
B(Υ→γη′)
B(Υ→γηc)

= 3.5 × 10−4 . (4.106)
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Comparison with experiment is not yet possible, only upper bounds exist for the individual branching
ratios. Doubts have, however, been raised by Ma [156] on the validity of this approach for theΥ de-
cays. Generalizing the result for theJ/ψ case (4.99) appropriately, one finds a too large branching ratio,
namely≃ 8.3 × 10−5, as compared to the experimental upper limit of≤ 1.6 × 10−5 [10]. The estimate
advocated for by Ma, is based on the assumption of scale independence of the gluonic matrix element.
With regard to the well separated scalesmc andmb this assumption is suspicious. Nonetheless, the in-
vestigation of theΥ→γη(′) decays is to be addressed further. Of interest would also be an investigation
of the radiativehc decays into pseudoscalar mesons. It is likely that these decays are under control of
the same dynamical mechanism as the correspondingJ/ψ decays. Results analogue to (4.103), (4.104)
would then hold. Instead of the decays into pseudoscalar mesons one may also explore radiative quarko-
nium decays into scalar mesons. As is well-known scalar mesons may have sizeable glue-glue Fock
components [157], they may even be glueballs although they likely have sizeable admixtures of light
quarks [158, 159]. It would be interesting to unravel the dynamics mediating these decays. For first
attempts see for instance [159,160].

The decaysJ/ψ→ρη(′) can be treated analogously to the radiative decays. Since inthese processes
G-parity is not conserved, they proceed throughcc̄→γ∗. On account of the flavor content of theρmeson,
the γ∗→ρη(′) transition only probes theηq component of theη(′) if OZI-suppressed contributions are
neglected. Hence,

B(J/ψ→ρη′)
B(J/ψ→ρη)

= tan2 φ

(
̺[J/ψρη′]
̺[J/ψρη]

)3

, (4.107)

theρ − ηq form factor cancels in the ratio. Eq. (4.107) leads to0.52 for the ratio of the decay widths
while the experimental value is0.54 ± 0.21 [10].

Finally, we want to mention the radiativeJ/ψ decay into a proton-antiproton pair. Recently, an
enhancement near2Mp in the invariant mass spectrum ofpp̄ pairs has been observed whileJ/ψ→π0pp̄
behaves regular near thepp̄ threshold [161]. The combination of both the results hints at a peculiar be-
haviour of thepp̄ pair in an isospin-zero state. The enhancement observed inJ/ψ→γpp̄ parallels similar
anomalies near thepp̄ threshold. They have been reported by Belle [162] for the decaysB+→K+pp̄ and
B

0→D0pp̄. An anomalous threshold behaviour is also seen in the proton’s time-like form factor [163],
in the charged pion spectrum from̄pd→π−π0p andπ+π−n reactions [164] and in the real part of the
elastic proton-antiproton forward amplitude [165].

Frequently these anomalies have been associated with narrow pp̄ bound states. Indeed, an analysis
of the BES provides evidence for anS-wave bound state with a mass of1859+3

−10 (stat)+5
−25 (syst) MeV

and a total width less than30 MeV [161]. A P -wave bound state instead of anS-wave one cannot be
excluded from the BES data. This BES result is very close to findings from an analysis of̄pd reactions
[166] (a bound state mass of1870MeV and a width of10MeV) and from a proton-antiproton forward
dispersion relation [167] (mass:1852MeV, width: 35MeV). In the CERN WA56 experiment [168],
on the other hand, a narrow peak (mass2.02GeV) has been observed in thepp̄ invariant mass spectrum
of the reactionπ−p→pfπ

−[pp̄] wherepf is a fast forward going proton. Puzzling is, however, the fact
that this peak is not seen inJ/ψ→γpp̄ [161] while there is no indication of a threshold enhancement
in the WA56 measurement. Several authors [169] have pointedout that the dynamics of the low-energy
pp̄ system such as pion exchange or the physics inherent in the effective range expansion, provides an
important contribution to the threshold enhancement. An appealing mechanism has been suggested by
Rosner [170]. He assumes that the partonic subprocess in theprocessJ/ψ→γpp̄ is cc̄→γgg followed
by a nonperturbativegg→(pp̄)S transition where the subscript indicates app̄ pair in a resonantS-state.
Rosner further assumes that the correspondingB decays, for instanceB+→K+pp̄, receives a substantial
contribution associated with the subprocessb̄→s̄gg and the same nonperturbativegg→(pp̄)S transition
as forJ/ψ→γpp̄. Producing anη′ through this mechanism instead of the proton-antiproton pair leads to
similar contributions except that now a different gluonic matrix element occurs, see (4.99). In ratios of

238



these processes most details cancel and, according to Rosner, one arrives at

B(B+→K+(pp̄)S)|gg
B(B+→K+η′)|gg

=
̺[B+K+(pp̄)S ]

̺[B+K+η′]

(
̺[J/ψγη′]

̺[J/ψγ(pp̄)S ]

)3 B(J/ψ→γ(pp̄)S)

B(J/ψ→γη′)
. (4.108)

The gg subscript at theB-meson matrix elements is meant as a hint that there might be other non-
negligible contributions to theB decays than those from the subprocessb̄→s̄gg. This mechanism relates
the threshold enhancement inB+→K+pp̄ to that inJ/ψ→γpp̄. Using the experimental information
on the latter process, Rosner found that this mechanism provides a substantial fraction of the first one.
It is to be stressed that the ratio ofB+(0) decays intoK+(0)η′ andK+(0)η are not in conflict with this
interpretation.

6. Electromagnetic transitions12

For quarkonium states,Q1Q̄2, above the ground state but below threshold for strong decayinto a pair
of heavy flavored mesons, electromagnetic transitions are often significant decay modes. In fact, the
first charmonium states not directly produced ine+e− collisions, theχJc states, were discovered in pho-
tonic transitions of theψ′ resonance. Even today, such transitions continue to be usedto observe new
quarkonium states [171].

6.1 Theoretical framework

6.11 Effective Lagrangian

The theory of electromagnetic transitions between these quarkonium states is straightforward. Much
of the terminology and techniques are familiar from the study of EM transitions in atomic and nuclear
systems. The photon fieldAµ

em couples to charged quarks through the electromagnetic current:

jµ ≡
∑

i=u,d,s

jiµ +
∑

i=c,b,t

jiµ . (4.109)

The heavy valence quarks (c, b, t) can be described by the usual effective action:

LNRQCD = ψ†
{
iD0 +

D2

2m
+ cF g

σ ·B
2m

+ cD g
[D·,E]

8m2
+ icS g

σ · [D×,E]

8m2
+ . . .

}
ψ , (4.110)

where theE andB fields are the chromoelectric and chromomagnetic fields. Corrections to the leading
NR behaviour are determined by the expansion in the quark andantiquark velocities. For photon mo-
mentum small compared to the heavy quark masses, the form of the EM interaction (in Coulomb gauge)
is determined in the same way as the NRQCD action itself [13,14,42,172], the leading order terms are:

j ·Aem = eQψ
†
{
{D·,Aem}

2m
+ (1 + κQ)

σ · Bem

2m
+ . . .

}
ψ . (4.111)

The first term of Eq. (4.111) produces electric and the secondmagnetic transitions. The coefficient
κQ is a possible anomalous magnetic moment for the heavy quark.It is a perturbative quantity at the level
of NRQCD, but may get nonperturbative contributions in going to lower energy effective field theories,
once the scaleΛQCD has been integrated out. Since we may assume that potential models are an attempt
to mimic such theories, we will interpret in this last way thequantityκQ that appears there and will be
used in the following.

For quarkonium systems, light quarks (u, d, s) only contribute to internal quark loops, described
perturbatively at short distance and as virtual pairs of heavy flavor mesons at large distance. In the

12Author: E. Eichten
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SU(3) limit the total contribution from light quarks vanishes since its EM current has no SU(3) singlet
part. Hence, to leading order in SU(3) breaking these contributions can be ignored. We return to these
corrections in Sec. 6.5.

6.12 Transition amplitudes

Within aQ̄2Q1 quarkonium system, the electromagnetic transition amplitude is determined by the matrix
element of the EM current,〈f |jµem|i〉, between an initial quarkonium state,i, and a final statef . Including
the emission of a photon of momentumk and polarizationǫγ , the general form of the transition amplitude
is the sum of two terms

M(i→ f) = [M(1)(i→ f) + M(2)(i→ f)] · ǫγ(k), (4.112)

where in the termM(1) the photon is emitted off the quarkQ1 with massm1 and chargee1,

M(1)(i→ f) =
e1

2m1

∫
d3x〈i|Q†

1(x)(D, exp (ix · k) + (1 + κQ1)σ × k exp (ix · k))Q1(x)|f〉,
(4.113)

and in the corresponding termM(2) the photon is emitted off the antiquark̄Q2 with massm2 and charge
−e2.

Electromagnetic transition amplitudes can be computed from first principles in Lattice QCD [173].
Preliminary studies [174] have even included electromagnetic interactions directly into Lattice QCD
simulations. However, these transitions for quarkonium systems have not yet been computed. Various
relations between transitions also arise from QCD sum rules[175].

Although other calculational models, e.g. using the MIT bagmodel [176], have been explored,
only potential model approaches provide the detailed predictions for the strength of individual transition
amplitudes needed to compare with experiments. The remainder of this section will focus on the issues
within potential model approaches.

Within nonrelativistic (NR) potential models, a quarkonium state is characterized by a radial quan-
tum number,n, orbital angular momentum,l, total spin,s, and total angular momentum,J . In the NR
limit the spin dependence decouples from the spatial dependence. The spatial wave function for a NR
state,ψ(x), can be expressed in terms of a radial wave function,unl(r) and an orbital angular momentum
dependence by:

ψ(x) = Ylm(θ, φ)
unl(r)

r
. (4.114)

The spatial dependence of EM transition amplitudes reducesto expectation values of various functions of
quark position and momentum between the initial and final state wave functions. Expanding Eq. (4.113)
in powers of photon momentum generates the electric and magnetic multipole moments. This is also
an expansion in powers of velocity. The leading order transition amplitudes are electric dipole (E1) or
magnetic dipole (M1).

6.13 Electric transitions

Electric transitions do not change quark spin. The lowest NRorder transition is the electric dipole (E1)
transition. These transitions have∆l = ±1 and∆s = 0. To compute the E1 transition amplitudes
exp (ix · k) can be replaced by1 in electric transition term in Eq. (4.113). Separating out the overall
center of mass motion of the system, the quark momentum operator, iD/mQ, can be replaced by the
commutator,[h,x], of the bound state Hamiltonian,h, with the quark position operator,x. Finally, the
Hamiltonian acting on the initial or final state is simply themass of that state. To leading NR order,
this is equal to the momentum of the final photonk = (M2

i −M2
f )/(2Mi). The E1 radiative transition
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amplitude between initial state (n2s+1
J ), i, and final state (n′2s

′+1
J ′), f , is [177]:

Me(i→ f)µ = δs,s′(−1)s+J+J ′+1+M ′
k
√

(2J + 1)(2J ′ + 1)(2l + 1)(2l′ + 1)
(

J ′ 1 J
−M ′ µ M

)(
l′ 1 l
0 0 0

){
l sa J
J ′ 1 l′

}
〈eQ〉 Eif , (4.115)

where〈eQ〉 = (e1m2 − e2m1)/(m1 +m2) and the overlap integralEif is

Eif =

∫ ∞

0
dr unℓ(r)run′ℓ′(r). (4.116)

If the full photon momentum dependence in Eq. (4.113) is retained (even through this is formally a
higher order relativistic corrections); the overlap integral E for m1 = m2 ande1 = −e2 = eQ is given
by

Eif =
3

k

∫ ∞

0
dr unℓ(r)un′ℓ′(r)

[
kr

2
j0

(
kr

2

)
− j1

(
kr

2

)]
+ O(k/m). (4.117)

The spin averaged decay rate is given by

Γ(i
E1−→ f + γ) =

4αe2Q
3

(2J ′ + 1)SE
ifk

3|Eif |2, (4.118)

where the statistical factorSE
if = SE

fi is

SE
if = max (ℓ, ℓ′)

{
J 1 J ′

ℓ′ s ℓ

}2

. (4.119)

.

6.14 Magnetic transitions

Magnetic transitions flip the quark spin. The M1 transitionshave∆l = 0 and the amplitude is given by:

Mm(i→ f)µ = δℓ,ℓ′(−1)l+J
′+J+l+µ+M ′

3
√

(2J + 1)(2J ′ + 1)(2s + 1)(2s′ + 1)
∑

ν,σ

kσ

(
1 1 1
−µ σ ν

)(
J ′ J 1

−M ′ M ν

){
s l J
J ′ 1 s′

}{
1 1/2 1/2

1/2 s s′

}

[
e1
m1

+ (−1)s+s
′ e2
m2

]
Mif , (4.120)

where for equal mass quarks the overlap integralM is given by

Mif = (1 + κQ)

∫ ∞

0
dr unℓ(r)u

′
n′ℓ(r) j0

(
kr

2

)
+ O(k/m) . (4.121)

The spin-flip radiative transition rate between an initial state (n2s+1ℓJ ), i, and a final state (n′2s
ℓ+1SJ ′),

f , is:

Γ(i
M1−→ f + γ) =

4αe2Q
3m2

Q

(2J ′ + 1)k3SM
if |Mif |2, (4.122)

where the statistical factorSM
if = SM

fi is

SM
if = 6(2s + 1)(2s′ + 1)

{
J 1 J ′

s′ ℓ s

}2{
1 1

2
1
2

1
2 s′ s

}2

. (4.123)

For l = 0 transitions,SM
if = 1.
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6.15 Relativistic corrections

The leading relativistic corrections for electric transitions have been considered by a number of authors
[178–186]. A general form was derived by Grotch, Owen and Sebastian [184]. For example, for the
equal mass quark-antiquark̄cc andb̄b systems the E1 transition amplitude is〈f |X0 + X1|i〉,

X0 = eQr,

X1 = −i keQ
2mQ

(
1

10

(
{r2,p} − 1

2
[r, [r·,p]]

)
− κQ

2
(r× S)

)
, (4.124)

whereκQ is the quark anomalous magnetic moment andp is the relative momentum. The decay rate
then has the general form:

ΓE1 = ΓE1
NR(1 +R1 +R2 +R3), (4.125)

whereR1 are corrections due to the modification of the nonrelativistic wave functions,R2 originates
from the relativistic modification of the transition operator andR3 are the finite size corrections (arising
from the plane wave expansion for the emitted photon). For the13PJ → 13S1 E1 transition:

R1 = 2EJ1 + (EJ1 )2,

R2 =
kκQ
2mQ

[
J(J + 1)

2
− 2

]
, (4.126)

R3 = − 1

10
(Mi −Mf )

2E2 +
k

8mQ
E3,

where

E1 =

∫ ∞

0
dr r

[
u

(0)
10 (r)u

(1)J
11 (r) + u

(1)
10 (r)u

(0)
11 (r)

]

Eif
,

E2 =

∫ ∞

0
dr r3 u

(0)
10 (r)u

(0)
11 (r)

Eif
, (4.127)

E3 =

∫ ∞

0
dr r

[
u

(0)
10 (r)

(
2r

d

dr
u

(0)
11 (r) − u

(0)
11 (r)

)
−
(

2r
d

dr
u

(0)
10 (r) − u

(0)
10 (r)

)
u

(0)
11 (r)

]

Eif
,

andu(1)(r) is the first order relativistic correction to the NR (reduced) radial wave function,u(0)(r).

The corrections for M1 transitions are more complicated anddepend explicitly on the structure of
the nonrelativistic potential. Assuming that the potential can be decomposed into three termsV (r) =
Vp(r) + (1 − η)Vv(r) + ηVs(r), i.e. a perturbative partVp(r) and a (nonperturbative) confining part,
which is a linear combination of a Lorentz vectorVv(r) and a scalarVs(r) term, the expression|Mif |2
in Eq. (4.121) is replaced by [183]|I1 + I2 + I3 + I4|2, where forS wave transitions in̄QQ systems:

I1 =

∫ ∞

0
dr u

(0)
n′0(r)u

(0)
n0 (r)

[
(1 + κQ)j0

(
kr

2

)
+
k(1 + 2κQ)

4mQ

]
,

I2 =

∫ ∞

0
dr u

(0)
n′0(r)u

(0)
n0 (r)

[
−(1 + κQ)

p2

2m2
Q

− p2

3mQ

]
, (4.128)

I3 =

∫ ∞

0
dr u

(0)
n′0(r)u

(0)
n0 (r)

[
κQr

6mQ

∂(Vp + (1 − η)Vv)

∂r

]
,

I4 =

∫ ∞

0
dr u

(0)
n′0(r)u

(0)
n0 (r)

[
−ηVs
mQ

j0

(
kr

2

)]
.
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Fig. 4.10: E1 transitions in the narrow spin tripletb̄b states. For eachS-P transition indicated there are three individual

transitions (one for eachPJ state); while for transitions involving any other pair of orbital angular momenta (P -D,D-F , F -G,

...) there are six individual transitions (∆J = 0,±1).

Further details of these relativistic corrections can beenfound at the original papers of Feinberg and
Sucher [178–180], Zambetakis and Byers [182] and Grotch andSebastian [183,184]. General treatments
of relativistic corrections for all quarkonium states can be found in recent works [185,186].

6.2 E1 transitions

Since the discovery of theJ/ψ andψ′ resonances in November 1974, E1 transitions have played an
important theoretical and experimental role in quarkoniumphysics. Initial theoretical papers on charmo-
nium [187,188] predicted the1P states in thēcc system and suggested that the triplet1P states could be
observed through the E1 transitions from theψ′ resonance. In fact, explicit calculations of the2S → 1P
and1P → 1S E1 transition amplitudesEif by the Cornell group [187] agree within 25% with present
experimental values [189].

Today there is a wealth of theoretical predictions and experimental data on E1 transitions. Many
E1 transitions have been observed in thec̄c, b̄b and more are expected. For example, Fig. 4.10 shows
the E1 transitions from narrow spin triplet states in theb̄b system. Transitions occur between two states
differing in L by one and J by zero or one; thus for theb̄b system there are a total of 99 E1 transitions, 30
of which are theoretically accessible ine+e− collisions from theΥ(2S) andΥ(3S) resonances.

6.21 Model predictions

The theoretical models used to calculate the E1 transitionscan be classified by the following two consid-
erations: (1) What nonrelativistic potential was used? and(2) Which relativistic corrections (as shown
in Eq. (4.125)) were included in the calculations?

An early choice for the potential was the Cornell model [177,187, 190–192]. Here the exchange
interaction was the time component of a vector with a Coulombshort range part−K/r plus a linear
r/a2 long range confining part. The Coulomb part was modified to agree with perturbative QCD at short
distance by Buchmüller and Tye [141,193]. Other simple forms for the potential, logarithmic [144,194]
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Transition k SE
if Γ(i→ f)(NR) Eif (NR) Eif (RA) Eif (RB)

i
E1−→ f ( MeV) ( keV) ( GeV−1) ( GeV−1) ( GeV−1)

13P0(3.415) 13S1(3.097) 304 1
9 120 1.724 2.121 1.720

13P1(3.511) 13S1(3.097) 389 1
9 241 1.684 1.896 1.767

11P1(3.526) 11S0(2.979) 504 1
3 482 1.615 1.742 1.742

13P2(3.556) 13S1(3.097) 430 1
9 315 1.661 1.596 1.689

23S1(3.686) 13P0(3.415) 261 1
9 47.0 −2.350 −2.296 −1.775

21S0(3.638) 11P1(3.526) 110 1
3 35.1 −2.469 −2.126 −2.126

23S1(3.686) 13P1(3.511) 171 1
9 42.8 −2.432 −2.305 −1.782

23S1(3.686) 13P2(3.556) 127 1
9 30.1 −2.460 −2.362 −1.901

13D1(3.770) 13P0(3.415) 338 2
9 299 2.841 2.718 2.802

13D1(3.770) 13P1(3.511) 250 1
18 99.0 2.957 2.799 2.969

13D1(3.770) 13P2(3.556) 208 1
450 3.88 3.002 3.016 3.348

13D2(3.831) 13P1(3.511) 307 1
10 313 2.886 2.593 2.593

13D2(3.831) 13P2(3.556) 265 1
50 69.5 2.940 2.781 2.991

11D2(3.838) 11P1(3.526) 299 2
15 389 2.896 2.610 2.610

13D3(3.872) 13P2(3.556) 303 2
25 402 2.892 2.508 2.402

Table 4.15: E1 transition rates for low-lyinḡcc states. The measured masses are used for observed states. The mass values used

for the3D2, 1D2 and3D3 states are suggested by the coupled channel calculations ofRef. [207]. The E1 rates are shown for

the (NR) model described in the text. The variation of results forEif with inclusion of relativistic corrections is shown for two

models of Ref. [186] with scalar confinement (RA) and a mixture of vector and scalar confining terms (RB).

and power law [195,196], were also proposed.

In the NRQCD limit the quark-antiquark interaction is spin independent, but including relativistic
corrections introduces dependencies on the Lorentz structure of the potential. Of particular importance
is the vector versus scalar nature of the long-range confining interaction. Many modern theoretical
calculations assume a long range scalar confining potential[197] or a linear combination of the form
ηVS(r) + (1 − η)VV (r) [181, 186, 198]. Moxhay and Rosner [199] assumed an additional long range
tensor force.

The second consideration is the extent of the inclusion of the relativistic corrections. Some cal-
culations are essentially nonrelativistic. These calculations often include some finite size effects (R3
of Eq. (4.125)) by retaining the form forEif given in Eq. (4.117) [177, 187, 190–192, 200]. Other
models also include relativistic corrections to the wave functions (R1 of Eq. (4.125)) either perturba-
tively or nonperturbatively. The relativistic quark modelof Godfrey and Isgur [201] is an example in
this class. Gupta, Radford and Repko computed the relativistic corrections using only the gluon ex-
change interactions of QCD perturbation theory [202–204].Many models include the full relativistic
corrections [181,184,185,199,205,206].

Differences in theoretical assumptions and experimental input for the various potential model cal-
culations of E1 transitions make it difficult to draw sharp conclusions from the level of agreement of
a particular model and experimental data. However, it is known that there is usually very little model
variation in the NR predictions (lowest order) if the modelsare fit to the same states [200]. The only ex-
ceptions are transitions where the overlap integralEif exhibits large dynamical cancellations. Therefore,
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Transition k SE
if Γ(i→ f)(NR) Eif (NR) Eif (RA) Eif (RB)

i
E1−→ f ( MeV) ( keV) ( GeV−1) ( GeV−1) ( GeV−1)

13P0(9.860) 13S1(9.460) 392 1
9 22.2 1.013 1.205 1.178

13P1(9.893) 13S1(9.460) 423 1
9 27.8 1.010 1.175 1.163

13P2(9.913) 13S1(9.460) 442 1
9 31.6 1.007 1.124 1.137

23S1(10.023) 13P2(9.913) 110 1
9 2.04 −1.597 −1.800 −1.778

23S1(10.023) 13P1(9.893) 130 1
9 2.00 −1.595 −1.781 −1.759

23S1(10.023) 13P0(9.860) 162 1
9 1.29 −1.590 −1.803 −1.781

13D1(10.151) 13P2(9.913) 236 1
450 0.564 1.896 2.104 2.104

13D1(10.151) 13P1(9.893) 255 1
18 10.7 1.890 2.050 2.050

13D1(10.151) 13P0(9.860) 287 2
9 20.1 1.880 2.106 2.106

13D2(10.157) 13P2(9.913) 241 1
50 5.46 1.894 2.048 2.048

13D2(10.157) 13P1(9.893) 261 1
10 20.5 1.888 1.999 1.999

13D3(10.160) 13P2(9.913) 244 2
25 22.6 1.893 1.979 1.979

23P0(10.232) 13D1(10.151) 81 2
9 1.13 −1.723 −1.740 −1.740

23P0(10.232) 23S1(10.023) 207 1
9 9.17 1.697 1.872 1.855

23P0(10.232) 13S1(9.460) 743 1
9 10.9 0.272 0.214 0.239

23P1(10.255) 13D2(10.157) 98 1
10 1.49 −1.720 −1.751 −1.751

23P1(10.255) 13D1(10.151) 104 1
18 0.593 −1.718 −1.721 −1.721

23P1(10.255) 23S1(10.023) 229 1
9 12.4 1.688 1.837 1.831

23P1(10.255) 13S1(9.460) 764 1
9 12.0 0.274 0.228 0.216

23P2(10.268) 13D3(10.160) 108 2
25 2.25 −1.717 −1.763 −1.763

23P2(10.268) 13D2(10.157) 111 1
50 0.434 −1.717 −1.737 −1.737

23P2(10.268) 13D1(10.151) 117 1
450 0.034 −1.715 −1.766 −1.766

23P2(10.268) 23S1(10.023) 242 1
9 14.5 1.682 1.792 1.797

23P2(10.268) 13S1(9.460) 776 1
9 12.7 0.274 0.207 0.218

33S1(10.355) 23P2(10.268) 86 1
9 2.40 −2.493 −2.663 −2.644

33S1(10.355) 23P1(10.255) 100 1
9 2.20 −2.489 −2.607 −2.586

33S1(10.355) 23P0(10.232) 122 1
9 1.35 −2.479 −2.608 −2.582

33S1(10.355) 13P2(9.913) 433 1
9 0.015 0.016 0.063 0.045

33S1(10.355) 13P1(9.893) 452 1
9 0.008 0.011 0.063 0.045

33S1(10.355) 13P0(9.860) 483 1
9 0.001 0.004 0.063 0.045

Table 4.16: E1 transition rates for low-lying spin tripletb̄b states.
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Transition k SE
if Γ(i→ f)(NR) Eif (NR) Eif (RA) Eif (RB)

i
E1−→ f ( MeV) ( keV) ( GeV−1) ( GeV−1) ( GeV−1)

11P1(9.900) 11S0(9.400) 487 1
3 41.8 1.001 1.149 1.149

21S0(9.990) 11P1(9.900) 90 1
3 1.99 −1.600 −1.743 −1.743

11D2(10.157) 11P1(9.900) 254 2
15 25.3 1.891 2.002 2.002

21P1(10.260) 21S0(9.990) 266 1
3 19.0 1.671 1.817 1.817

21P1(10.260) 11D2(10.157) 102 2
15 2.29 −1.719 −1.782 −1.782

31S0(10.328) 21P1(10.260) 68 1
3 2.10 −2.498 −2.571 −2.571

31S0(10.328) 11P1(9.900) 419 1
3 0.007 0.010 0.064 0.064

Table 4.17: E1 transition rates for low-lying spin singletb̄b states.

to compare the variations in results due to the inclusion of relativistic corrections from a common base,
three models for E1 radiative transitions are presented, which are fit with the same input masses. First a
reference Cornell model [191] (NR), with parameters (a andK) adjusted to fit the COG positions of the
1S, 1P and 2S states in each of thec̄c andb̄b systems [208]. Here E1 transitions are computed withEif
given in Eq. (4.117), i.e. with only finite size relativisticcorrections included. Second, a recent model
by Ebert, Faustov and Galkin [186] with full relativistic corrections in two cases: (RA)η = 1 (scalar
confinement) and (RB)η = −1 (a fitted mixture of scalar and vector confinement).

The results forEif are shown for thēcc narrow states in Table 4.15. The size of the relativistic
corrections toEif shown in Table 4.15 vary as much as±25%. This variation is perfectly consistent with
naive expectations forv2/c2 corrections. McClary and Byers [181] first emphasized that because of the
node in the radial wave function of the2S state the overlapE2S,1P is particularly sensitive to relativistic
corrections in thēcc system. The significant leptonic width for theΨ(3770) resonance implies that there
is a sizeable S-D mixing between the23S1 and13D1 states. This mixing arises both from the usual
relativistic correction terms and coupling to strong decaychannels and will affect theΨ(3686) → 13PJ
andΨ(3770) → 13PJ E1 transitions rates (See Sec. 6.23). For the1D states there may be additional
large effects on rates associated with this coupling to nearby strong decay channels. (See Sec. 6.5.)

Results for narrow̄bb states accessible from theΥ(3S) orΥ(2S) resonances are shown for spin-
triplets in Table 4.16 and for the spin-singlets in Table 4.17. The typical size of the relativistic corrections
for Eif are approximately half as large as in the correspondingc̄c transition. This is again as expected,
since〈v2/c2〉 is smaller in thēbb system. There is a notable exception for the overlapE3S,1P. In the
NR limit this overlap is less than 5% of any otherS-P overlap. This dynamical accident makes these
transition rates very sensitive to the details of wave functions and relativistic corrections, which arenot
well under control theoretically.

Finally, for completeness, radiative transitions involving b̄b states not accessible from the3S states
are shown in Table 4.18. Only the NR rates are shown. One observes large dynamical cancellations for
the overlapE3P,1D and to a lesser extent in the overlapsE3P,1S, E2D,1P andE3P,2S.

6.22 Comparison with experiment:S andP states13

There is now extensive data on electromagnetic transitionsamong heavy quarkonium states. Figure 4.11
shows the inclusive photon spectra from thec̄c and b̄b 23S1 decays measured with the CLEO detector
[209]. This section provides a snapshot of the current status of variousS-P transitions. New data come

13Authors: E. Eichten, T. Ferguson
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Transition k SE
if Eif Γ(i→ f)

i
E1−→ f ( MeV) ( GeV−1) ( keV)

13F2(10.370) 13D1(10.151) 217 3
25 2.681 28.5

13F3(10.370) 13D2(10.157) 211 8
105 2.684 27.8

13F4(10.370) 13D3(10.160) 208 3
49 2.686 30.0

23D1(10.441) 13F2(10.370) 71 3
25 −1.904 0.833

23D1(10.441) 23P0(10.232) 207 2
9 2.487 13.1

23D1(10.441) 13P0(9.860) 565 2
9 0.288 3.60

23D2(10.446) 13F3(10.370) 76 8
105 −1.903 0.907

23D3(10.450) 13F4(10.370) 80 3
49 −1.902 1.09

23D3(10.450) 23P2(10.268) 180 2
25 2.506 15.8

23D3(10.450) 13P2(9.913) 524 2
25 0.278 4.80

33P0(10.498) 23D1(10.441) 57 2
9 −2.584 0.884

33P0(10.498) 33S1(10.355) 142 1
9 2.308 5.47

33P0(10.498) 13D1(10.151) 341 2
9 −0.047 0.063

33P0(10.498) 23S1(10.023) 464 1
9 0.351 4.44

33P0(10.498) 13S1(9.460) 986 1
9 0.137 6.46

33P1(10.516) 23D2(10.446) 70 1
10 −2.579 1.22

33P1(10.516) 33S1(10.355) 160 1
9 2.295 7.71

33P1(10.516) 13D2(10.157) 353 1
10 −0.050 0.060

33P1(10.516) 23S1(10.023) 481 1
9 0.355 5.06

33P1(10.516) 13S1(9.460) 1003 1
9 0.137 6.86

13G3(10.520) 13F2(10.498) 22 4
49 3.812 0.068

13G4(10.520) 13F3(10.498) 22 5
84 3.812 0.069

13G5(10.520) 13F4(10.498) 22 4
81 3.812 0.074

33P2(10.529) 23D3(10.450) 79 2
25 −2.576 1.96

33P2(10.529) 33S1(10.355) 172 1
9 2.284 9.63

33P2(10.529) 13D3(10.160) 363 2
25 −0.053 0.082

33P2(10.529) 23S1(10.023) 494 1
9 0.358 5.54

33P2(10.529) 13S1(9.460) 1014 1
9 0.138 7.16

23F2(10.530) 23D1(10.441) 89 3
25 3.337 3.02

23F3(10.530) 23D2(10.446) 84 8
105 3.340 2.69

23F4(10.530) 23D3(10.450) 80 3
49 3.342 2.62

23F2(10.530) 13G3(10.520) 10 4
49 −2.262 0.003

23F3(10.530) 13G4(10.520) 10 5
84 −2.262 0.003

23F4(10.530) 13G5(10.520) 10 4
81 −2.262 0.003

Table 4.18: E1 transition rates for the remaining spin triplet b̄b states. For each(n′ andℓ′) only the final stateJ ′ with the

largest rate is shown. The transition rates for spin-singlet b̄b states differ from the corresponding spin triplet rates by the ratio

of statistical factorsSE(s = 0)/SE(s = 1): 3, 2/3, 9/8 and 16/15 forS-P , P -D,D-F andF -G transitions respectively.
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Fig. 4.11: Inclusive photon spectrum from23S1 decays in thēcc (top) andb̄b (bottom) systems measured with the CLEO

detector. The data correspond to about 1.5Mψ(2S) and 9MΥ(2S) decays. From Skwarnicki [209].

mainly from the CLEO experiment at CESR.

In the NR limit the overlapEnS,n′PJ
= |〈n′PJ |r|nS〉| is independent ofJ . Experimentally, it is

useful to define averages overJ by

EnS,n′P(avg) =

√
B(nS→γn′PJ) Γtot(nS)

D
∑

J(2J + 1)Eγ(nS→n′PJ)3
(4.129)

EnP,n′S(avg) =

√
B(nPJ→γn′S) Γtot(nPJ)

D
∑

J Eγ(nPJ→n′S)3

whereD = 4/3α eb
2SE

3PJ ,3S1
. These quantities reduce to the usual overlaps in the NR limit. In order to

see the relativistic corrections (which vary withJ) it is also useful to define ratios,EnS,n′PJ
/EnS,n′P(avg).

Given the total width of the initial state these overlaps canbe determined directly from experimental
branching ratios. The experimental results for thec̄c and b̄b states are shown in Table 4.19. These
results are extracted from the world average results forB(χc(1PJ )→γJ/ψ) andB(ψ(2S)→γχc(1PJ )).
Also shown are recent results from CLEO-c forB(ψ(2S)→γχc(1PJ )) transitions [210]. Results for
B(Υ(3S)→γχb(2PJ )) andB(Υ(2S)→γχb(1PJ ) are taken from Ref. [10]. The E1 transitions show
clear evidence ofJ dependence and, hence, relativisitic corrections inS state transitions. The largest
relativistic effects are in the23S1 to 13PJ c̄c transitions.

With their largeΥ(3S) data sample and excellent CsI electromagnetic calorimeter, the CLEO III
experiment has been able to measure the E1 photon transitions from theΥ(3S) to theχb(2PJ ) states, and
the subsequent photon decays of those states to theΥ(2S) andΥ(1S). They identify exclusiveγγℓ+ℓ−

events, which are consistent with photon transitions through theχb(2PJ ) states to theΥ(2S) orΥ(1S),
followed by the leptonic decay of theΥ. This provides a very clean signal with little background. Tables
4.20 and 4.21 give a summary of their preliminary results [211] on the product branching ratios, along
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Transition |Eavg| EJ/Eavg

i
E1−→ f ( GeV−1) J = 0 J = 1 J = 2

c̄c

13PJ 13S1 1.87 ± 0.07 0.92 ± 0.05 0.99 ± 0.06 1.04 ± 0.03

23S1 13PJ 1.78 ± 0.07 0.94 ± 0.04 1.01 ± 0.05 1.07 ± 0.05

1.94 ± 0.07 0.90 ± 0.02 0.97 ± 0.03 1.19 ± 0.04

b̄b

33S1 23PJ 2.75 ± 0.21 0.92 ± 0.06 1.06 ± 0.05 1.02 ± 0.06

23S1 13PJ 1.94 ± 0.18 0.92 ± 0.06 1.09 ± 0.05 0.98 ± 0.06

Table 4.19: Measured E1 overlap integrals forS-P transitions. Transition rates use branching ratios and total widths from

PDG04 world averages [10] except for second set of values forthe c̄c transition23S1 → 13PJ , which uses branching ratios

from recent results of CLEO-c [210].

with comparisons with the previous CLEO II [212] and CUSB [213] measurements. Then, by using the
world average values for theΥ(3S)→ χb(2PJ ) + γ andΥ leptonic branching ratios, theχb(2PJ ) → Υ +
γ branching ratios can be obtained.

Parameter (units) Ref. J = 2 J = 1 J = 0
B(γγℓ+ℓ−) (10−4) [211] 2.73 ± 0.15 ± 0.24 5.84 ± 0.17 ± 0.41 0.17 ± 0.06 ± 0.02

[212] 2.49 ± 0.47 ± 0.31 5.11 ± 0.60 ± 0.63 < 0.60
[213] 2.74 ± 0.33 ± 0.18 3.30 ± 0.33 ± 0.19 0.40 ± 0.17 ± 0.03

B(Υ(3S)→ γγΥ(2S)) (%) [211] 2.20 ± 0.12 ± 0.31 4.69 ± 0.14 ± 0.62 0.14 ± 0.05 ± 0.02

B(χb(2PJ ) → γΥ(2S)) (%) [211] 19.3 ± 1.1 ± 3.1 41.5 ± 1.2 ± 5.9 2.59 ± 0.92 ± 0.51

Table 4.20: CLEO III preliminary results [211] forΥ(3S)→ γ χb(2PJ ) → γγ Υ(2S)→ γγℓ+ℓ−, along with comparisons

with CLEO II [212] and CUSB [213].

For the similar transitions through theχb(1PJ ) states:Υ(3S)→ γχb(1PJ ), χb(1PJ ) → γΥ(1S),
the photon lines for the different J states cannot be resolved, due to the finite crystal energy resolution.
The J = 0 branching ratio is expected to be small, given the large hadronic width of this state. So CLEO
III gives a combined product branching ratio, summed over the J = 1 and J = 2 states. The results are
shown in Table 4.22.

We can extract the|E1P,3S| matrix element from the photon transitions via theχb(1P ) states:

E1P,3S(avg) =

√
B(3S→γ1P, 1P→γ1S) Γtot(3S)

D
∑

J(2J + 1)Eγ(1PJ→1S)3B(1PJ→γ1S)
. (4.130)

This formula assumes that the matrix element is spin independent. TakingB(3S→γ1P, 1P→γ1S) from
Table 4.22 and the world average values for the other quantities from PDG04 [10], we obtain:

E1P,3S(avg) = (0.050 ± 0.006)GeV−1 .

The error here includes the statistical and systematic uncertainties on all quantities added in quadrature.
The averaging is only overJ = 1 andJ = 2.

Results for the values ofE(avg) in the b̄b P system are compared to various potential model
predictions in Table 4.23. We also include results forE3S,2P andE2S,1P from Table 4.19 extracted from
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Parameter (units) Ref. J = 2 J = 1 J = 0
B(γγℓ+ℓ−) (10−4) [211] 1.93 ± 0.12 ± 0.17 3.19 ± 0.13 ± 0.18 < 0.16

[212] 2.51 ± 0.47 ± 0.32 3.24 ± 0.56 ± 0.41 < 0.32
[213] 1.98 ± 0.28 ± 0.12 2.34 ± 0.28 ± 0.14 0.13 ± 0.10 ± 0.03

B(Υ(3S)→ γγΥ(1S)) (%) [211] 0.79 ± 0.05 ± 0.07 1.31 ± 0.05 ± 0.08 < 0.08

B(χb(2PJ ) → γΥ(1S)) (%) [211] 7.0 ± 0.4 ± 0.8 11.6 ± 0.4 ± 0.9 < 1.44

Table 4.21: CLEO III preliminary results [211] forΥ(3S)→ γ χb(2PJ ) → γγ Υ(1S)→ γγℓ+ℓ−, along with comparisons

with CLEO II [212] and CUSB [213].

Parameter Ref. J = 1 and 2 Combined
B(γγℓ+ℓ−) (10−4) [211] 0.520 ± 0.054 ± 0.052

B(Υ(3S)→ γγΥ(1S)) (%) [211] 0.241 ± 0.022 ± 0.021
[213] 0.12 ± 0.04 ± 0.01

Table 4.22: CLEO III preliminary results [211] forΥ(3S)→ γ χb(1PJ ) → γγ Υ(1S)→ γγℓ+ℓ−, along with comparisons

with the CUSB experiment [213]. The values are summed over the J = 1 and J = 2 transitions.

|E3S,2P| |E2S,1P| |E3S,1P| |E2P,1S|
|E2P,2S|

GeV−1 GeV−1 GeV−1

DATA 2.7 ± 0.2 1.9 ± 0.2 0.050 ± 0.006 0.096 ± 0.005
World Average CLEO-III [211]

Model NR rel NR rel NR rel NR rel
NR 2.5 1.6 0.014 0.16
RA 2.6 1.8 0.063 0.12
RB 2.6 1.8 0.045 0.12
Kwong, Rosner [200] 2.7 1.6 0.023 0.13
Fulcher [214] 2.6 1.6 0.023 0.13
Büchmuller et al. [141,193] 2.7 1.6 0.010 0.12
Moxhay, Rosner [199] 2.7 2.7 1.6 1.6 0.024 0.044 0.13 0.15
Gupta et al. [204] 2.6 1.6 0.040 0.11
Gupta et al. [202,203] 2.6 1.6 0.010 0.12
Fulcher [215] 2.6 1.6 0.018 0.11
Danghighian et al. [206] 2.8 2.5 1.7 1.3 0.024 0.037 0.13 0.10
McClary, Byers [181] 2.6 2.5 1.7 1.6 0.15 0.13
Eichten et al. [191] 2.6 1.7 0.110 0.15
Grotch et al. [184] 2.7 2.5 1.7 1.5 0.011 0.061 0.13 0.19

Table 4.23: Comparison of average E1 matrix elements and their ratios predicted by different potential models with measure-

ments fromb̄b data. “NR” denotes nonrelativistic calculations and “rel”refers to models with relativistic corrections. The

first set of model entries are the reference models considered here. The second set is a selection of other models taken from

Ref. [211].
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the world average results forB(Υ(3S)→γχb(2PJ )) andB(Υ(2S)→γχb(1PJ ) [10]. While most of the
potential models have no trouble reproducing the large matrix elements,E3S,2P, E2S,1P, which show also
little model dependence, only a few models predictE3S,1P in agreement with measurements. Clearly, the
latter transition is highly sensitive to the underlying description of b̄b states as discussed above.

The branching ratios given in the Tables 4.20-4.22 can also be used to measure the ratios of various
E1 matrix elements, which can then be compared to different potential model predictions. First, the ratio
of the matrix elements for the decay of the sameχb(2PJ ) state to differentΥ states can be found using:

E2PJ,1S

E2PJ,2S
=

√
B(3S → γ2PJ , 2PJ → γ1S)

B(3S → γ2PJ , 2PJ → γ2S)

(
Eγ(2PJ → 2S)

Eγ(2PJ → 1S)

)3

(4.131)

With this method, the following values are obtained:

E2P2,1S

E2P2,2S
= 0.105 ± 0.004 ± 0.006,

E2P1,1S

E2P1,2S
= 0.087 ± 0.002 ± 0.005, (4.132)

E2P2,1S

E2P2,2S
/
E2P1,1S

E2P1,2S
= 1.21 ± 0.06,

E2P1,2,1S

E2P1,2,2S
= 0.096 ± 0.002 ± 0.005. (4.133)

To compare to potential model predictions, the last number above is an average over the J = 1 and J =
2 values. In the nonrelativistic limit, the E1 matrix elements should not depend on J. Since the values
for the J = 1 and J = 2 matrix elements differ by 3.5 standard deviations, there appears to be evidence
for relativistic effects in thēbb system in both theS andP states transitions. Again these results are
compared to various potential model predictions in Table 4.23. Predictions for the ratio|E2P,1S|/|E2P,2S|
are very model dependent, but somewhat higher than the experimental values.

Overall, the comparison of the measured matrix elements andthe predictions of various potential
models shows that the recent theoretical calculations thatincorporate relativistic effects are better at
reproducing the data [209,211].

6.23 D states

In the c̄c system, the13D1 and13D3 states are aboveDD̄ threshold and have open flavor strong decays.
TheJ = 2 states13D2 and11D2 are below (or at) theD∗D̄ + DD̄∗ threshold and are expected to be
narrow. In all cases, the coupling to real and virtual strongdecay channels is likely to significantly alter
the potential model radiative transition rates shown in Table 4.15. (We will discuss this further in Sec. 6.5
below.) One effect of these couplings is that theψ(3770) state will not be a pure13D1 state but will have
a sizeable mixing component with the23S1 state:

ψ(3770) = cos(φ)|13D1〉 + sin(φ)|23S1〉 . (4.134)

Using the measured leptonic width of theψ(3770) and resolving a two-fold ambiguity in favor of the
value of the mixing angle favored by Cornell coupled channelcalculations [191], Rosner finds [106]
φ = (12 ± 2)◦. Employing the NR results of Table 4.15, the ratios of E1 transitions to variousχc states
are:

Γ(ψ(3770) → γχc1)

Γ(ψ(3770) → γχc0)
= 1.32

(
−

√
3

2 + tan(φ)√
3 + tan(φ)

)2

,

Γ(ψ(3770) → γχc2)

Γ(ψ(3770) → γχc0)
= 1.30

( √
3

10 + tan(φ)√
3 + tan(φ)

)2

. (4.135)

Measuring these branching ratios is experimentally challenging. [The only existing data is contained in
an unpublished Ph. D. thesis based on MARK III data [216].] CLEO-c may be able to determine some
of these branching ratios in the near future.
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Fig. 4.12: Allowed M1 transitions in the narrow̄cc. The1P transition rates are unobservably small (≈ 1eV ).

In the b̄b system CLEO III [171] has presented evidence for the production of Υ(1D) states
in the four-photon cascade (see Fig. 4.10),Υ(3S)→γχb(2P ), χb(2P )→γΥ(1D), Υ(1D)→γχb(1P ),
χb(1P )→γΥ(1S), followed by theΥ(1S) annihilation intoe+e− or µ+µ−.

In addition to the four-photon cascade via theΥ(1D) states, they observe events with the four-
photon cascade via theΥ(2S) state: Υ(3S) → γχb(2P ), χb(2P ) → γΥ(2S), Υ(2S) → γχb(1P ),
χb(1P ) → γΥ(1S), Υ(1S)→l+l− The product branching ratio for this entire decay sequence (including
Υ(1S)→l+l−) is predicted to be3.84 · 10−5 [217], thus comparable to the predictedΥ(1D) production
rate. In the four-photon cascade via theΥ(1D) the second highest energy photon is due to the third
transition, while in these cascades the second highest energy photon is due to the second photon transition
(see Fig. 4.10). This allows the discrimination of theΥ(1D) signal from theΥ(2S) background events.

CLEO III [171] finds their data are dominated by the production of oneΥ(1D) state consistent
with theJ = 2 assignment and a mass(10161.1±0.6±1.6) MeV, which is consistent with the predictions
from potential models and lattice QCD calculations.

The signal product branching ratio obtained isB(γγγγl+l−)Υ(1D) = (2.5 ± 0.5 ± 0.5) · 10−5.
The first error is statistical, while the second one is systematic. The significance of the signal is 10.2
standard deviations. This branching ratio is consistent with the theoretically estimated rates. Godfrey
and Rosner [217], summing overΥ(1D1,2,3) contributions, obtained3.76 × 10−5; while the predicted
rate [200,217] for theΥ(1D2) state alone is2.6 × 10−5.

Forming the ratio ofΥ(1D) to Υ(2S) four-photon cascades would allow the measurement in a
fairly model independent way of the estimate of the total width of theΥ(1D) state, if the individual
Υ(2PJ ) andΥ(1PJ ′) transitions could be resolved.

6.3 M1 transitions

For M1 transitions, the leading order NRQCD prediction for the overlapMif is independent of the
potential model. The spin independence and orthogonality of states guarantee that the spatial overlap
matrix is one for states within the same multiplet and zero for allowed transitions between multiplets,
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Transition k Γ(i→ f)(NR) Mif (NR)

i
M1−→ f ( MeV) (eV )

c̄c

13S1(3.097) 11S0(2.979) 115 1, 960 0.998

23S1(3.686) 21S0(3.638) 48 140 0.999

21S0(3.638) 13S1(3.097) 501 538 0.033

23S1(3.686) 11S0(2.979) 639 926 0.053

b̄b

13S1(9.460) 11S0(9.400) 60 8.953 1.000

21S0(9.990) 13S1(9.460) 516 2.832 0.013

23S1(10.023) 21S0(9.990) 33 1.509 1.000

23S1(10.023) 11S0(9.400) 604 2.809 0.018

31S0(10.328) 23S1(10.023) 300 0.620 0.014

31S0(10.328) 13S1(9.460) 831 3.757 0.007

33S1(10.355) 31S0(10.328) 27 0.826 1.000

33S1(10.355) 21S0(9.990) 359 0.707 0.019

33S1(10.355) 11S0(9.400) 911 2.435 0.009

Table 4.24: M1 transition rates forS wave quarkonium states using the NR model described in text.Finite size corrections are

included in the calculation ofM (see Eq. (4.121)) andκQ = 0.

which have different radial quantum numbers.

Including relativistic corrections, e.g. finite size corrections, will spoil these exact results and
induce a small overlap between states with different radialquantum numbers. Suchn 6= n′ transitions
are denoted hindered.

6.31 Model predictions

Within the (NR) model used for the E1 transitions (i.e. a nonrelativistic treatment except for finite size
corrections andκQ = 0) the M1 transition rates and overlap matrix elementsM for c̄c and b̄b S states
are shown in Table 4.24.

Numerous papers have considered these M1 transitions including full relativistic corrections [182,
184–186, 201, 217, 218]. There are several sources of uncertainty that contribute making M1 transitions
particularly complicated to calculate. In addition to the usual issues associated with the form of the
long range potential there is the unknown value for the anomalous magnetic moment for the quark (κQ).
Furthermore, the results depend explicitly on the quark masses and on other details of the potential (see
Eqs. 4.128). For the models (RA) and (RB) used for the E1 transitions, κQ = −1. The theoretical
uncertainty in the value ofκQ will eventually be reduced by lattice calculations in quarkonium systems.

6.32 Comparison with experiment

M1 transitions have only been observed in thec̄c system. The allowed transitions in thec̄c system below
threshold are shown in Fig. 4.12. The transitions within the1P system are tiny (≈ 1 eV). Only the
J/ψ → ηc andψ ′ → ηc are observed experimentally [10].
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Type TransitionIn,n′

Model parameters (n, n′) [c̄c] (n, n′) [b̄b]

η κQ (1, 1) (2, 1) (1, 1) (2, 1) (3, 1) (3, 2)

Cornell [191] NR 0 0.84 0.028 0.92 0.017 0.007 0.018

GOS84 [184] 0 0 0.86 0.075 0.88 0.058 - -

0 −1 0.58 0.054 0.081 0.007 - -

1 0 0.65 0.127 0.91 0.048 - -

1 −1 0.39 0.029 0.049 0.021 - -

EFG02 [186] 0 0 0.84 0.036 0.91 0.018 0.013 0.016

1 0 1.06 0.027 1.08 0.011 0.009 0.007

−1 −1 0.62 0.045 0.75 0.025 0.026 0.017

Lahde02 [185] NEX 0 0.87 0.011 0.92 0.020 0.009 0.016

1 0 0.67 0.049 0.88 0.032 0.014 0.037

EXP 0.66 ± 0.10 0.042 ± 0.004 < 0.045 < 0.020 < 0.080

Ref [10] [10] [210] [209] [219] [209]

Table 4.25: Comparison of M1 transition overlaps with experiment for various models. The transition overlapI ≡
M(13S1)

2mQ
Mif is from nS spin triplet to the n’S spin singletS states in thēcc andb̄b systems. The experimental upper bounds

are90% cl.

For theb̄b system CLEO [219] sees no evidence for the hindered M1 transition Υ(3S) → ηb(1S).
The90% cl upper bound on the branching ratio varies from4−6×10−4 depending on the mass splitting.
For the expected splitting≈ 910 MeV the bound is5.3 × 10−4 [219]. This rules out a number of older
models [182, 201]. A comparison of the experimental resultswith a variety of more modern models is
shown in Table 4.25. For each model the assumptions for the mixture of scalar and vector confinement
and the value ofκQ is exhibited explicitly. For the model of Lahde [185] the results are also shown
without including the exchange term (NEX). This (NEX) pieceneglects the time ordering of photon
emission and potential interaction, which vanishes in the NR limit. Generally models with a scalar
confining interaction and/or a sizable negative anomalous quark magnetic moment are favored.

6.4 Higher order corrections

6.41 Higher multipole contributions

In lowest order, only the E1 amplitude contributes toχc states radiative transitions. In higher order in
v2/c2 a M2 amplitude contributes forJ = 1, 2 and an E3 amplitudes is also possible for theJ = 2
state. To orderv2/c2 these M2 and E3 corrections to the dominant E1 term can contribute to angular
distributions but cannot contribute to total decay rates. This comes from the orthogonality of terms in
the multipole expansion.

It was originally suggested by Karl, Meshkov and Rosner [220] that these corrections can be
studied by measuring the angular correlations between the two photons in the transitionψ ′ → χc+γ →
J/ψ + 2γ. These effects can also be studied forχc states directly produced in hadron collisions,B
decays or̄pp annihilation by measuring the combined angular distributions of the photon and thel+l−

pair produced in the subsequentJ/ψ decay. The details of these correlations have been calculated by
Sebastian, Grotch and Ridener [221].
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χcJ → J/ψ + γ

J theory [221] E835 [222] PDG04 [10]

2 a2 ≈ −
√

5
3

k
4mc

(1 + κc) −0.093+0.039
−0.041 ± 0.006 −0.13 ± 0.05

2 a3 ≈ 0 0.020+0.055
−0.044 ± 0.009 0.011+0.041

−0.033

1 a2 ≈ − k
4mc

(1 + κc) 0.002 ± 0.032 ± 0.004 −0.002+0.008
−0.017

ψ ′ → χcJ + γ

J theory [221] BES [223]

2 a2 ≈ −
√

3
2
√

10
k
mc

[(1 + κc)(1 +
√

2
5 X) − i15X]/[1 − 1

5
√

2
X] −0.051+0.054

−0.036

2 a3 ≈ −12
√

2
175

k
mc
X[1 + 3

8Y ]/[1 − 1
5
√

2
X] −0.027+0.043

−0.029

1 a2 ≈ − k
4mc

[(1 + κc)(1 + 2
√

2
5 X) + i 3

10X]/[1 + 1√
2
X]

Table 4.26: M2 and E3 multipole amplitudes for radiative transitions involvingχc states. The values of X and Y are model

dependent and are defined in the text. NoteX = 0 if no S-D mixing.

For the photon transition from aχcJ state there areJ + 1 normalized helicity amplitudes,Aν .
Defining |a| =

√
E12 +M22 + E32, a1 = E1/|a|, a2 = M2/|a| and a3 = E3/|a| the relation

between helicity and multipole amplitudes is:

Aν =
∑

ℓ

aℓ

(
2ℓ+ 1

2J + 1

) 1
2

〈ℓ, 1; 1, ν − 1|J, ν〉 . (4.136)

Allowing for an anomalous magnetic momentκc and mixing between the2S and1D states the
theoretical predictions for

ψ ′ → χcJ + γ and χcJ → J/ψ + γ

are shown in Table 4.26 along with a comparison with present experimental results. TheS-D mixing
parameter isE2S,1PX = − tanφ E1D,1P whereφ is defined in Eq. (4.134). In the notation of Eq. (4.127)

the other model dependent parameter is defined byE1D,1PY =

∫
dr r

(
r
du

(0)
12

dr
− u

(0)
12

)
u

(0)
11 .

As can be seen from Table 4.26 a nonzero E3 amplitude in theψ ′ → χc2 + γ decay is evidence
for S-D mixing in theψ ′. Also note that the M2 term is sensitive to a possible anomalous magnetic
moment,κc, for the charm quark. The recent BES results [223] for the M2 and E3 contributions do
not differ significantly from zero. Additional high statistics studies of these angular distributions will
be necessary to determine the size of S-D mixing and shed light on the magnitude of the charm quark
magnetic moment.

6.5 Coupling to virtual decay channels

When light quark loops are included in the description of quarkonium systems, the physical quarkonium
states are not pure potential-model eigenstates and the effects of coupling to real and virtual heavy-light
meson pairs must be included. Our command of quantum chromodynamics is inadequate to derive a re-
alistic description of the interactions that communicate between thēQQ andQ̄q+ q̄Q sectors. However,
the physical picture is that wave functions corresponding to physical states are now linear combina-
tions of potential-model̄QQ eigenstates plus admixtures of open heavy-flavor-meson pairs. The open
heavy-flavor pieces have the spatial structure of bound states of heavy-flavor mesons: they are virtual
contributions for states below threshold. [See Sec. 3.3.3 for more details.]
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Transition kγ width kγ width kγ width

( MeV) (keV) ( MeV) (keV) ( MeV) (keV)

P state

S state χc2 χc1 χc0

J/ψ 429 300→287 390 228→216 303 113→107

[exp] 430 ± 40 290 ± 50 119 ± 16

ψ′ 129 23→23 172 33→32 261 36→38

[exp] 25.9 ± 2.1 25.5 ± 2.2 26.2 ± 2.6

P state

D state χc2 χc1 χc0

13D1(3770) 208 3 .2→3.9 251 183→59 338 254→225

13D1(3815) 250 5 .5→6.8 293 128→120 379 344→371

13D2(3815) 251 50→40 293 230→191

13D2(3831) 266 59→45 308 264→212

13D2(3872) 303 85→45 344 362→207

13D3(3815) 251 199→179

13D3(3868) 303 329→286

13D3(3872) 304 341→299

Table 4.27: Calculated and observed rates for E1 radiative transitions among charmonium levels from Ref. [207]. Valuesin

italics result if the influence of open-charm channels is not included. Measured rates are shown for comparison. Experimental

values are calculated from world averages [10], except forB(ψ′→γ3PJ ) whose values are taken from the recent CLEO-c

measurement [210].
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Far below heavy flavor threshold, the nonrelativistic potential model is a good approximation
to the dynamics of thēQQ system. For excited states above the first few levels, the coupling of Q̄Q
to heavy-flavor-meson pairs modifies wave functions, masses, and transition rates. In particular, this
modifies electromagnetic transition rates considered in the previous subsections. In addition to these
contributions, which involved photon coupling to a heavy (anti)quark, the contributions of light quark
currents can no longer be neglected. The mass differences among theQ̄u, Q̄d andQ̄s mesons, induce
large SU(3) symmetry breaking effects. This destroys the cancellation among the light quark EM current
contributions.

To compute the E1 radiative transition rates, we must take into account both the standard(Q̄Q)
→ (Q̄Q)γ transitions and the transitions between (virtual) decay channels in the initial and final states.
This second set of transitions contains light quark contributions for states near threshold. Recently,
the effects of configuration mixing on radiative decay ratesin the c̄c system were reexamined [207]
within the Cornell coupled-channel formalism. A full outline of the calculational procedure appears in
Refs. [177,191]. (In particular, see Sec. IV.B of Ref. [191].)

Expectations for E1 transition rates among spin-triplet levels are shown in Table 4.27. Both the
rates calculated between single-channel potential-modeleigenstates (in italics) and the rates that result
from the Cornell coupled-channel model are shown, to indicate the influence of the open-charm channels.

The 13D1 transition rates at the mass ofψ(3770) and at the predicted 13D1 centroid,3815 MeV,
are shown. For theψ(3770), with its total width of about24 MeV, the13D1(3770)→χc0 γ(338) transi-
tion might someday be observable with a branching fraction of 1%. For the 13D2 and 13D3 levels, the
radiative decay rates were calculated at the predicted 13D1 centroid,3815 MeV, at the mass calculated
for the states (3831 MeV and3868 MeV, respectively), and at the mass ofX(3872). The model repro-
duces the trends of transitions to and from theχc states in broad outline. For these low-lying states, the
mixing through open-charm channels results in a mild reduction of the rates.

This study was done in the Cornell coupled channel model. It would be useful to do a similarly
detailed study of these effects in other models.

6.6 Bc states

Quarkonium systems with unequal quark and antiquark masses, i.e.Bc mesons, are theoretical interest-
ing, but are not easily accessible ine+e− collisions. They can be produced in significant numbers in
hadron collisions (see Chapter 5, Sec. 8). CDF has reported the discovery of the ground stateBc meson
via its semileptonic weak decay [224]. Theoretical calculations for E1 and M1 radiative transitions have
been presented by a number of authors [186, 192, 225, 226] even though the whole excitation spectrum
remains to be observed experimentally.

7. Hadronic transitions14

7.1 Theoretical approaches

Hadronic transitions (HTs)

Φi→Φf + h (4.137)

are important decay modes of heavy quarkonia [Φi, Φf andh stand for the initial-, final-state quarkonia
and the emitted light hadron(s)]. For instance, the branching ratio ofψ′→J/ψ+ π+ π is approximately
50%. In thecc̄ andbb̄ systems, the typical mass differenceMΦi −MΦf is around a few hundred MeV, so
that the typical momentum ofh is low. In the single-channel picture, the light hadron(s)h are converted
from the gluons emitted by the heavy quarkQ or antiquarkQ̄ in the transition. The typical momentum
of the emitted gluons is too low for perturbative QCD to be reliable. Certain nonperturbative approaches

14Authors: D. Z. Besson, A. Deandrea, F. A. Harris, Y.-P. Kuang, S. L. Olsen
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are thus needed for studying HTs. In the following, we brieflyreview two feasible approaches: namely,
theQCD multipole expansion(QCDME) and theChiral Lagrangian for Heavy Mesons.

A. QCD Multipole expansion

HeavyQQ̄ bound states can be calculated by solving the Schrödinger equation with a given poten-
tial model. Forcc̄ andbb̄ quarkonia, the typical radius isa =

√
〈r2〉 ∼ O(10−1) fm. With such a small

radius, the idea of QCDME can be applied to the soft gluon emissions in HTs. QCDME is an expansion
in powers of x · ∇ operating on the gluon field, wherex is the separation betweenQ andQ̄ in the
quarkonium. For a gluon with a typical momentumk ∼ few hundred MeV, the expansion parameter
is actually ak ∼ O(10−1), ensuring convergence15. Note that the convergence of QCDME does not
depend on the value of the QCD coupling constant.

QCDME has been studied by many authors [227–231]. The gauge invariant formulation is given in
Ref. [230]. Letψ(x) andAaµ(x) be the quark and gluon fields. Following Refs. [230,231], we introduce

Ψ(x, t) ≡ U−1(x, t)ψ(x),
λa
2
Aa′µ (x, t) ≡ U−1(x, t)

λa
2
Aaµ(x)U(x, t) − i

gs
U−1(x, t)∂µU(x, t),

(4.138)
with

U(x, t) = P exp

[
igs

∫ x

X

λa
2
Aa(x′, t) · dx′

]
, (4.139)

in whichP is the path-ordering operation, the path is along the straight-line connecting the two ends, and
X ≡ (x1 + x2)/2 is the c.o.m. coordinate ofQ andQ̄. It is shown in Ref. [230] that, in the Lagrangian,
Ψ(x, t) serves as thedressed(constituent) quark field. Now we make the multipole expansion [230]

Aa′0 (x, t) = Aa′0 (X, t) − (x−X) ·Ea(fX, t) + · · · , Aa′(X, t) = −1

2
(x−X) ×Ba(X, t) + · · · ,

(4.140)
whereEa andBa are color-electric and color-magnetic fields, respectively. The Hamiltonian is then
[230]

Heff
QCD = H

(0)
QCD +H

(1)
QCD, (4.141)

with H(0)
QCD the sum of the kinetic and potential energies of the heavy quarks, and

H
(1)
QCD = H1 +H2, H1 ≡ QaA

a
0(X, t), H2 ≡ −da ·Ea(X, t)−ma ·Ba(X, t)+ · · · , (4.142)

in whichQa, da, andma are the color charge, color-electric dipole moment, and color-magnetic dipole
moment of theQQ̄ system, respectively. Eq. (4.141) is regarded as an effective Hamiltonian [230].
Considering that the heavy quark may have an anomalous magnetic moment, we takegE and gM to
denote the effective coupling constants for the electric and magnetic multipole gluon emissions (MGE),
respectively.

We shall takeH(0)
QCD as the zeroth order Hamiltonian, and takeH(1)

QCD as a perturbation. This is

different from the ordinary perturbation theory sinceH(0)
QCD is not a free field Hamiltonian. The general

formula for theS matrix element in this expansion has been given in Ref. [231], which is

〈f |S|i〉 = −i2πδ(Ef + ωf − Ei)

〈
f

∣∣∣∣H2
1

Ei −H
(0)
QCD + i∂0 −H1

· · · 1

Ei −H
(0)
QCD + i∂0 −H1

H2

∣∣∣∣i
〉
,

(4.143)

15We know from classical electrodynamics that the coefficientof the(ak)l term in the multipole expansion contains a factor
1

(2l + 1)!!
. Hence the expansion actually works better than what might be expected by simply estimating the size of(ak)l.
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whereωf is the energy of the emitted gluons. Explicit evaluations oftheS matrix elements in various
cases will be presented in Sec. 7.2.

B. Chiral Lagrangian for heavy mesons

In the effective Lagrangian approach one can construct a heavy meson multiplet field analogous
to the one introduced for heavy-light mesons. Symmetry-breaking terms can be easily added to the for-
malism as we shall see in the following. As in the single heavyquark case, an effective Lagrangian
describing the low-momentum interactions of heavy quarkonia with light mesons can be written down.
The heavy quarkonium multiplets are described by a simple trace formalism [232]. ParityP and charge
conjugationC, which determine selection rules for electromagnetic and hadronic transitions are exactly
conserved quantum numbers for quarkonium, together withJ . If spin-dependent interactions are ne-
glected, it is natural to describe the spin singletm 1lJ and the spin tripletm 3lJ by means of a single
multiplet J(m, l). For the casel = 0, when the triplets = 1 collapses into a single state with total
angular momentumJ = 1, this is readily realized:

J =
(1 + v/ )

2
[Hµγ

µ − ηγ5]
(1 − v/ )

2
. (4.144)

Herevµ denotes the four velocity associated to the multipletJ ; Hµ and η are the spin 1 and spin 0
components respectively; the radial quantum number has been omitted. The expressions for the general
waveJµ1...µl can be found in Appendix C of Ref. [233].

For illustrative purpouses let us start by considering radiative transitions, whose analysis can be
easily carried out in terms of the multiplet field introducedabove. The Lagrangian for radiative decays
is:

L =
∑

m,n

δ(m,n)〈J(m) Jµ(n)〉vνFµν + h.c., (4.145)

where a sum over velocities is understood,Fµν is the electromagnetic tensor, the indicesm and n
represent the radial quantum numbers,J(m) stands for the multiplet with radial numberm andδ(m,n)
is a dimensional parameter (the inverse of a mass), to be fixedfrom experimental data and which also
depends on the heavy flavour. The Lagrangian (4.145) conserves parity and charge conjugation and is
invariant under the spin transformation. It reproduces theelectric dipole selection rules∆ℓ = ±1 and
∆s = 0. It is straightforward to obtain the corresponding radiative widths:

Γ(3PJ→ 3S1γ) =
δ2

3π
k3MS1

MPJ

, (4.146)

Γ(3S1→ 3PJγ) =
(2J + 1)

9π
δ2k3MS1

MPJ

, (4.147)

Γ(1P1→ 1S0γ) =
δ2

3π
k3MS

MP
, (4.148)

wherek is the photon momentum. Once the radial numbersn andm have been fixed, the Lagrangian
(4.145) describes four no spin-flip transitions with a single parameter; this allows three independent
predictions. The previous decay widths can be compared withthose of the electric transitions of Sec. 6.13
and in particular with formula (4.118). The ratio of the masses in the previous widths should be put to one
in the nonrelativistic limit and the free parameterδ of the effective Lagrangian encodes the information
of the overlap integral of equation (4.116).

The effective heavy-meson description of quarkonium does not seem to present special advan-
tages to describe heavy quarkonium annihilation. In the following we shall concentrate on quarkonium
hadronic transitions.
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The heavy quark spin symmetry leads to general relations forthe differential decay rates in
hadronic transitions among quarkonium states that essentially reproduce the results of a QCD double
multipole expansion for gluonic emission. Further use of chiral symmetry leads to differential pion de-
cay distributions valid in the soft regime [234, 235]. At thelowest order in the chiral expansion for the
emitted pseudoscalars we find a selection rule allowing onlyfor even (odd) number of emitted pseu-
doscalars for transitions between quarkonium states of orbital angular momenta different by even (odd)
units. Such a rule can be violated by higher chiral terms, by chiral breaking, and by terms breaking
the heavy quark spin symmetry. Specialization to a number ofhadronic transitions reproduces (by ele-
mentary tensor construction) the known results from the expansion in gluon multipoles, giving a simple
explanation for the vanishing of certain coefficients, which would otherwise be allowed in the chiral
expansion. In certain cases, such as for instance3P0→ 3P2ππ, 3P1→ 3P2ππ, or D-S transitions
via 2π, the final angular and mass distributions are uniquely predicted from heavy quark spin and the
lowest-order chiral expansion.

An important class of hadronic transitions between heavy-quarkonium states is provided by the
decays with emission of two pions, for example:

ψ′ → J/ψ ππ . (4.149)

To describe these processes one can use the chiral symmetry for the pions and the heavy-quark spin
symmetry for the heavy states. The first of these is expected to hold when the pions have small energies.
We notice that the velocity superselection rule applies atq2 = q2max, when the energy transfer to the pion
is maximal. Therefore, we expect these approximations to bevalid in the whole energy range only if
q2max is small.

Nonetheless a number of interesting properties of these transitions can be derived on the basis
of the heavy quark symmetry alone. Therefore, before deriving the pion couplings by means of chiral
symmetry, we discuss the implications of the heavy quark spin symmetry in hadronic transitions.

As an example, we consider transitions of the type3S1→ 3S1 + h and 1S0→ 1S0 + h, whereh
can be light hadrons, photons, etc. By imposing the heavy quark spin symmetry, one is led to describe
these processes by an interaction Lagrangian:

LSS′ = 〈J ′J̄〉ΠSS′ + h.c. , (4.150)

where the dependence upon the pion field is contained in the as-yet-unspecified operatorΠSS′ . It
is immediate to derive fromLSS′ the averaged modulus square matrix elements for the transitions
3S1→3S1 + h and 1S0→1S0 + h with an arbitrary fixed number of pions in the light final stateh.
We obtain:

|M(3S1→3S1 + h)|2av. = |M(1S0→1S0 + h)|2av. = 4MSMS′ |ΠSS′,h|2, (4.151)

whereMS andM ′
S are the average masses of the twoS-wave multiplets;ΠSS′,h is the appropriate tensor

for the emission of the light particlesh, to be calculated from the operatorΠSS′ . By denoting withdΓ
the generic differential decay rate, we have:

dΓ(3S1→3S1 + h) = dΓ(1S0→1S0 + h) . (4.152)

This is the prototype of a series of relations, which can be derived for hadronic transitions as a
consequence of the spin independence of the interaction terms. In all the known cases they coincide with
those calculated in the context of a QCD double multipole expansion. We note, however, that we do not
even need to specify the nature of the operatorΠ, which may depend on light fields different from the
pseudoscalar mesons (e.g. the photon, or a light hadron, etc), provided that the interaction term we are
building is invariant under parity, charge conjugation, and the other symmetries relevant to the transition
considered.
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A useful symmetry that can be used in processes involving light quarks is the chiral symmetry. It is
possible to build up an effective Lagrangian, which allows to study transitions among quarkonium states
with emissions of soft light pseudoscalars, considered as the Goldstone bosons of the spontaneously
broken chiral symmetry.

The light mesons are described as pseudo-Goldstone bosons,included in the matrixΣ = ξ2,
where we use the standard notation of chiral perturbation theory. Frequently occurring quantities are the
functions ofξ and its derivativesAµ andVµ given by :

Vµ =
1

2

(
ξ†∂µξ + ξ∂µξ

†
)

and Aµ =
1

2

(
ξ†∂µξ − ξ∂µξ

†
)
. (4.153)

The octet of vector resonances (ρ, etc.) can be introduced as the gauge multiplet associated with the
hidden group SU(3)H (see Ref. [236]), designated asρµ in the following.

By imposing the heavy quark spin symmetry, parity and chargeconjugation invariance, and by as-
suming that the pseudoscalar meson coupling are described by the lowest order (at most two derivatives)
chiral invariant operators, we can establish the followingselection rules for hadronic transitions:

even number of emitted pseudoscalars ↔ ∆l = 0, 2, 4, ...

odd number of emitted pseudoscalars ↔ ∆l = 1, 3, 5, ... (4.154)

In fact the spin independent operator describing∆l = 0, 2, 4, ... transitions has charge conjugation
C = +1. On the other hand, the lowest order, chiral invariant termswith positive charge conjugation
are:

〈AµAν〉, 〈(Vµ − ρµ)(Vν − ρν)〉, (4.155)

whose expansion contains an even number of pseudoscalar mesons. Spin independence of the interaction,
on the other hand, requires that the∆l = 1, 3, 5, ... transitions are described byC = −1 operators. At
the lowest order we can form just one chiral invariant term withC = −1:

〈Aµ(Vν − ρν)〉, (4.156)

whose expansion contains an odd number(≥ 3)of pseudoscalar mesons.

This selection rule is violated at higher orders of the chiral expansion or by allowing for terms that
explicitly break the heavy quark or the chiral symmetries.

To further characterize the hadronic transitions respecting chiral symmetry, we consider below
explicit expressions for the most general operatorsΠll′ . For simplicity, we limit ourselves to those
contributing to two or three pion emissions:

ΠSS′ = ASS′〈AρAρ〉 +BSS′〈(v · A)2〉,
Πµ
PS = DPS ǫ

µνρσvν〈Aρ(Vσ − ρσ)〉,
Πµν
PP ′ = APP ′〈AρAρ〉gµν +BPP ′〈(v · A)2〉gµν + CPP ′〈AµAν〉,

Πµν
DS = CDS〈AµAν〉. (4.157)

The constantsAll′ , Bll′ , Cll′ andDll′ are arbitrary parameters of dimension(mass)−1, to be fixed
from experiment. One can easily derive amplitudes, decay rates and distributions for the correspond-
ing hadronic transitions.

For instance, the amplitude for the decay (4.149) is given by:

M(3S1→3S1 + ππ) =
4i
√
MSMS′

f2
π

ǫ′ · ǫ∗ (ASS′p1 · p2 +BSS′v · p1v · p2) (4.158)
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whereǫ andǫ′ are the polarisation vectors of quarkonium states;p1, p2 are the momenta of the two pions.
It is well known that the use of chiral symmetry arguments leads to a general amplitude for the process
in question, which contains a third independent term given by:

CSS′
4i
√
MSMS′

f2
π

(
ǫ′ · p1ǫ

∗ · p2 + ǫ′ · p2ǫ
∗ · p1

)
. (4.159)

In the nonrelativistic limit in QCDME, Yan [230] findsCSS′ = 0. It is interesting to note that, within
the present formalism, this result is an immediate consequence of the chiral and heavy quark spin sym-
metries. However, these symmetries are not exact and corrections to the symmetry limit are expected.

In the chiral Lagrangian (CL) approach, theπ0 − η − η′ mixings can be derived, which should be
taken into account in predicting single pseudoscalar mesontransitions of heavy quarkonia (cf. Sec. 7.2).
Let us define

m̂ ≡




mu 0 0
0 md 0
0 0 ms


 . (4.160)

The Lagrangian that gives mass to the pseudoscalar octet (massless in the chiral limit) and causesπ0 − η
mixing is

Lm = λ0〈m̂(Σ + Σ†)〉, (4.161)

and that giving rise to the mixing ofη′ with π0 andη is

Lηη′ =
ifπ
4
λ̃〈m̂(Σ − Σ†)〉η′, (4.162)

whereλ̂ is a parameter with the dimension of a mass. At first order in the mixing angles the physical
states̃π0, η̃, andη̃′ determined from the above Lagrangians are:

π̃0 = π0 + ǫη + ǫ′η′, η̃ = η − ǫπ0 + θη′, η̃′ = η′ − θη − ǫ′π0, (4.163)

in which the mixing angles are

ǫ =
(md −mu)

√
3

4(ms −
mu +md

2
)
, ǫ′ =

λ̃(md −mu)√
2(m2

η′ −m2
π0)

, θ =

√
2

3

λ̃

(
ms −

mu +md

2

)

m2
η′ −m2

η

. (4.164)

7.2 Predictions for hadronic transitions in the single-channel approach

In this section, we give the predictions for HTs in the single-channel approach. In this approach, the
amplitude of HT is diagrammatically shown in Fig. 4.13 in which there are two complicated vertices:
namely, the MGE vertex of the heavy quarks and the vertex of hadronization (H) describing the conver-
sion of the emitted gluons into light hadrons. In the following, we shall treat them separately.

Let us first consider the HT processesn3
iS1→n3

fS1 + π + π. To lowest order, these are double
electric-dipole transitions (E1E1). The transition amplitude can be obtained from theS matrix element
(4.143). After some algebra, we obtain [230,231,237]

ME1E1 = i
g2
E

6

∑

KLK′L′

〈Φfh|x ·E|KL〉
〈
KL

∣∣∣∣
1

Ei −H
(0)
QCD − iD0

∣∣∣∣K
′L′
〉
〈K ′L′|x ·E|Φi〉, (4.165)

where(D0)bc ≡ δbc∂0−gsfabcAa0, and|KL〉 is the intermediate state with principal quantum numberK
and orbital angular momentumL. According to the angular momentum selection rule,L = L′ = 1. The
intermediate states in the HT are the states after the emission of the first gluon and before the emission
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Fig. 4.13: Diagram for a typical hadronic transition in the single-channel QCDME approach.

of the second gluon (cf. Fig. 4.13), i.e. they are states witha gluon and a color-octetQQ̄. These are the
so-called hybrid states. It is difficult to calculate these states from the first principles of QCD. So we shall
take a reasonable model for it. The model shouldreasonably reflect the main properties of the hybrid
statesand shouldcontain as few free parameters as possiblein order not to affect the predictive power
of the theory. The quark confining string (QCS) model [238] satisfies these requirements16 Explicit
calculations with the QCS are given in Ref. [237]; the transition amplitude (4.165) then becomes

ME1E1 = i
g2
E

6

∑

KL

〈Φf |xk|KL〉〈KL|xl|Φi〉
Ei − EKL

〈ππ|EakEal |0〉, (4.166)

We see that, in this approach, the transition amplitude contains two factors: namely, the heavy quark
MGE factor (the summation) and the H factor〈ππ|EakEal |0〉. The first factor can be calculated for a given
potential model. Let us now consider the second factor. Its scale is the light hadron mass scale, which is
very low (highly nonperturbative), and there is, therefore, no currently reliable way of calculating it from
the first principles of QCD. Thus we take a phenomenological approach based on PCAC and the soft
pion technique in Ref. [240]. From the standard tensor reduction, this H factor can be written as [237]

g2
E

6
〈πα(q1)πβ(q2)|EakEal |0〉 =

δαβ√
(2ω1)(2ω2)

[
C1δklq

µ
1 q2µ + C2

(
q1kq2l + q1lq2k −

2

3
δklq1 · q2

)]
,

(4.167)
whereC1 andC2 are two unknown constants. For a givenππ invariant massMππ, theC1 term is
isotropic (S-wave), while theC2 term is angular dependent (D-wave). In the nonrelativistic single-
channel (NRSC) approach, orbital angular momentum conservation leads to the conclusion that the MGE
factor is proportional toδkl. Thus only theC1 term contributes to theS-state toS-state transitions17. In
this case, then3

iS1→n3
fS1 + π + π transition rate can be expressed as [237]

Γ(n3
iS1→n3

fS1 π π) = |C1|2G|f111
2010|2, (4.168)

whereG is a phase-space factor given in Ref. [237] and

f
LPiPf
nilinf lf

≡
∑

K

∫
Rf (r)r

PfR∗
KL(r)r2dr

∫
R∗
KL(r′)r′PiRi(r′)r′2dr′

Mi − EKL
, (4.169)

withRi,Rf , andRKL the radial wave functions of the initial, final, and intermediate states, respectively.

There is only one overall unknown constantC1 left in this transition amplitude, which can be
determined by taking the well-measured HT rateΓ(ψ′→J/ψππ). The updated experimental values

16Another possible model satisfying the requirements is the MIT bag model for the hybrid states, which can also lead to
reasonable predictions [239].

17This is consistent with the CL approach in the nonrelativistic limit (v = 0) [cf. (4.158)].
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are [10]

Γtot(ψ
′) = 281± 17 keV, B(ψ′→J/ψπ+π−) = (31.7± 1.1)%, B(ψ′→J/ψπ0π0) = (18.8± 1.2)%.

(4.170)
Given these, we can then predict all theS-state toS-stateππ transitions rates in theΥ system. Let

Cornell BGT Expt.
|C1|2 83.4 × 10−6 67.8 × 10−6

Γ(Υ′→Υππ) (keV) 8.6 7.8 12.0 ± 1.8
Γ(Υ′′→Υππ) (keV) 0.44 1.2 1.72 ± 0.35
Γ(Υ′′→Υ′ππ) (keV) 0.78 0.53 1.26 ± 0.40

Table 4.28: The values of|C1|2 and the predictedππ transition rates (in keV) determined for theΥ system using the Cornell

model and the BGT model. The corresponding updated experimental values of the transition rates [10] are also listed for

comparison.ππ stands for the sum over all theπ+π− andπ0π0 channels.

us take the Cornell [177, 191] and the Buchmüller–Grunberg–Tye (BGT) [141, 193] potential models
as examples to show the extracted|C1| values and the predicted rates in theΥ system. The results are
listed in Table 4.2818 in which the experimental errors are dominated by the uncertainty of the total
width. We see that the BGT model predicted ratiosΓ(Υ′′→Υππ)/Γ(Υ′→Υππ) ≈ 1.2/7.8 = 0.15 and
Γ(Υ′′→Υ′ππ)/Γ(Υ′→Υππ) ≈ 0.53/7.8 = 0.07 are close to the corresponding experimental values
1.72/12.0=0.14 and 1.26/12.0=0.11. However, the predicted absolute partial widths are smaller than the
experimental values by roughly a factor of(50 − 75)%. Moreover, when theMππ distributions are
considered, the situation will be more complicated. We shall deal with these issues in Sec. 7.3.

Note that the phase space factorG in Υ′′→Υππ is much larger than that inΥ′→Υππ, G(Υ′′→
Υππ)/ G(Υ′→Υππ) = 33 [237]. One may naively expect thatΓ(Υ′′→Υππ) > Γ(Υ′→Υππ). How-
ever, we see from Table 4.28 that the measuredΓ(Υ′′→Υππ)/Γ(Υ′→Υππ) ≈ 0.14. The reason why
the predicted ratio is close to the experimental value is that the contributions from various intermediate
states to the overlap integrals in the summation inf111

3010 [cf. (4.169)]drastically canceleach other due to
the fact that theΥ′′ wave function contains two nodes. This ischaracteristicof such intermediate state
models (QCS or bag model).

The decaysn3
iS1→n3

fS1 + η are dominated by E1M2 transitions. We can predict the ratios
R′ ≡ Γ(Υ′→Υη)/Γ(ψ′→J/ψη) andR′′ ≡ Γ(Υ′′→Υη)/Γ(ψ′→J/ψη):

R′ =

(∣∣∣∣
f111
2010(bb̄)

mb

∣∣∣∣
2

|q(bb̄)|3
)

(∣∣∣∣
f111
2010(cc̄)

mc

∣∣∣∣
2

|q(cc̄)|3
) , R′′ =

(∣∣∣∣
f111
3010(bb̄)

mb

∣∣∣∣
2

|q(bb̄)|3
)

(∣∣∣∣
f111
2010(cc̄)

mc

∣∣∣∣
2

|q(cc̄)|3
) , (4.171)

whereq is the momentum ofη. The BGT model predictsR′ = 0.0025, R′′ = 0.0013. Recently BES
has obtained an accurate measurement ofΓ(ψ′→J/ψη) andΓ(ψ′→J/ψ π0) [241] (see Sec. 7.6A). With
the new BES data and the bounds onΓ(Υ′→Υη) andΓ(Υ′′→Υη) [10], the experimental bounds are
R′|exp < 0.0098, R′′|exp < 0.0065 [241]. The predictions are consistent with these bounds.

An interesting prediction in the CL approach is the prediction for the ratio

R =
Γ(ψ′→J/ψ π0)

Γ(ψ′→J/ψ η)
, (4.172)

18The updated results listed in Table 4.28 are roughly larger than those in Ref. [237] by a factor of 1.3 since the updated input
dataΓ(ψ′→J/ψππ) is larger than the old experimental value used in Ref. [237] by the same factor of 1.3.
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which provides a measure of the light-quark mass ratior = (md − mu)/(ms − (mu + md)/2). This
belongs to the class of hadronic transitions, which violateheavy quark spin symmetry (HQSS) [235]. For
heavy mesons, there are only two types of operators that break HQSS. In the parent’s rest frame, the most
general spin symmetry breaking term is of the forma ·σ, whereσ are the Pauli matrices. In an arbitrary
frame one observes that anyΓ-matrix sandwiched between two projectors(1 + v/ )/2, or (1 − v/ )/2 can
be expressed in terms ofσµν sandwiched between the same projectors:

1 + v/
2

1
1 + v/

2
=

1 + v/
2

,
1 + v/

2
γ5

1 + v/
2

= 0,
1 + v/

2
γµ

1 + v/
2

= vµ
1 + v/

2
,

1 + v/
2

γµγ5
1 + v/

2
=

1

2
ǫµναβv

ν 1 + v/
2

σαβ
1 + v/

2
,
1 + v/

2
γ5σµν

1 + v/
2

= − i

2
ǫµναβ

1 + v/
2

σαβ
1 + v/

2
;

there are analogous relations with(1 + v/ )/2→(1 − v/ )/2. We use hereǫ0123 = +1. Let us define

σ(±)
µν =

1 ± v/
2

σµν
1 ± v/

2
. (4.173)

In the parent’s rest frame,σ(±)
µν reduce to Pauli matrices. From the previous identities it follows that

the most general spin symmetry breaking terms are of the formGµν1 σ
(+)
µν , or Gµν2 σ

(−)
µν , with Gµνi two

arbitrary antisymmetric tensors. One expects that any insertion of the operatorσ(±)
µν gives a suppression

factor1/mQ.

Using partial conservation of axial-vector current, Ioffeand Shifman [242] give the prediction

R =
27

16

[
pπ

pη

]3 [ md −mu

ms − (mu +md)/2

]2

. (4.174)

The new BES experiment (see Sec. 7.6A) [241] provides a new precision value ofR. With the con-
ventional values of the current quark masses, the prediction of (4.174) is smaller than the BES value by
about a factor of 3 [241]. So (4.174) should be regarded as an order of magnitude estimate.

The calculation ofR in the CL approach is straightforward. The most general spinbreaking
Lagrangian for the processesψ′→J/ψπ0, η is

L = iǫµνρλ
[
〈J ′σµν J̄〉 − 〈J̄σµνJ ′〉

]
vρ ∂λ

[
iA

4
〈m̂(Σ − Σ†)〉 +Bη′

]
+ h.c. . (4.175)

The couplingsA andB have dimension(mass)−1; theB term contributes to the ratio (4.172) via the
mixing π0 − η′ andη − η′. There are no terms with the insertion of twoσ terms; the two P and C
conserving candidatesǫµνρλ

[
〈J ′σµτ J̄σ ν

τ 〉 + 〈J̄σµτJ ′σ ν
τ 〉
]
vρ∂λ〈m̂(Σ−Σ†)〉 andǫµνρλ

[
〈J ′σµν J̄σρλ〉

+ 〈J̄σµνJ ′σρλ〉
]
〈m̂(Σ − Σ†)〉 both vanish.

Using the Lagrangian (4.175) and taking into account the mixings (4.163) and (4.164), we can
calculate the ratio (4.172)

R =
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16

[
pπ

pη

]3 [ md −mu

ms − (mu +md)/2

]2
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λ̂fπ
m2
η′ −m2

η




2

. (4.176)

If we neglect theπ0 − η′ andη− η′ mixings, (4.176) reduces to the simple result (4.174). So far B/A in
(4.176) is not determined yet. Taking theη − η′ mixing angleθP ≈ −20◦ [10] and using the new BES
data onR [241], one can determineB/A from (4.176):B/A = −1.42 ± 0.12 or−3.11 ± 0.15 [241].

The ππ transitions betweenP -wave quarkonia,23PJi→13PJf + π + π, have been studied in
Ref. [237]. The obtained transition ratesΓ(23PJi→13PJfππ) are of the order of10−1 − 10−2 keV
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[237]. The relations between differentΓ(23PJi→13PJfππ) reflect the symmetry in the E1E1 multipole
expansion [230], so that experimental tests of these relations are of special interest.

In the CL approach, the single pseudoscalar meson transitions between heavy quarkonia states
such as

3PJ ′→ 3PJπ
0 and 3PJη (4.177)

are chiral-breaking but spin conserving [235], which are important for transitions forbidden in the SU(3)
× SU(3) symmetry limit.

To first order in the chiral breaking mass matrix we consider the quantities:

〈m̂(Σ + Σ†)〉 and 〈m̂(Σ − Σ†)〉. (4.178)

The first quantity is parity even, while the second is parity odd; both haveC = +1.

The only term spin-conserving and of leading order in the current quark masses contributing to
the transition (4.177) is

〈JµJ̄ν〉vρǫµνρσ∂σ
[
α
ifπ
4

〈m̂(Σ − Σ†)〉 + βfπη
′
]
, (4.179)

whereα andβ are coupling constants of dimensions(mass)−2. The direct coupling toη′ contributes
through the mixing (4.163). The spin symmetry of the heavy sector gives relations among the modulus
square matrix elements of the transitions between the twoP -wave states. In particular we find that

|M|2(3P0→3P0π) = |M|2(3P2→3P0π) = 0, (4.180)

and that all non-vanishing matrix elements can be expressedin terms of3P0→3P1π:

|M|2(3P1→3P1π) =
1

4
|M|2(3P0→3P1π), |M|2(3P1→3P2π) =

5

12
|M|2(3P0→3P1π),

|M|2(3P2→3P2π) =
3

4
|M|2(3P0→3P1π), |M|2(1P1→1P1π) = |M|2(3P0→3P1π), (4.181)

whereπ stays forπ0 or η. The relations (4.181) can be generalized for any spin-conserving transition
betweenl = 1 multiplets, leading to the same results as the QCD double multipole expansion [230].
Predictions for widths can be easily obtained from (4.179).

Now we consider theππ transitions ofD-wave quarkonia. Theoretical studies of HTs ofD-wave
quarkonia have been carried out by several authors in different approaches leading to quite different pre-
dictions [237,243–248]. We briefly review the approach in Refs. [247,248], and compare the predictions
with recent experimental results.

Since theψ(3770) (or ψ′′) lies above theDD̄ threshold, it is believed that it decays mainly into
DD̄ [10]. Experimental observations show that the directly measurede+e−→ψ(3770) cross section and
the e+e−→ψ(3770)→DD̄ cross section are different [249], suggesting considerable non-DD̄ decay
modes ofψ(3770). ψ(3770)→J/ψ ππ is one possibility.

If ψ(3770) is regarded as a pure1D state, the predicted leptonic width will be smaller than the
experimental value by an order of magnitude. Theψ(3770) is often regarded as a mixture of the1D and
2S states [247, 248, 250]:ψ′ = |2S〉 cos θ + |1D〉 sin θ, ψ(3770) = −|2S〉 sin θ + |1D〉 cos θ. θ can
be determined by fitting the ratio of the leptonic widths ofψ′ andψ(3770). The determination ofθ in
the Cornell potential model [177, 191] and the improved QCD motivated potential model by Chen and
Kuang (CK) [251] (which leads to more successful phenomenological results) are:θ = −10◦ (Cornell)
and θ = −12◦ (CK).

The rate of this E1E1 transition is [247]

Γ(ψ(3770)→J/ψππ) = |C1|2
[

sin2 θ G(ψ′) |f111
2010(ψ

′)|2 +
4

15

∣∣∣∣
C2

C1

∣∣∣∣
2

cos2 θ H(ψ′′) |f111
1210(ψ

′′)|2
]
.

(4.182)
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Since there is no available data to determineC2, we take an approximation to estimateC2. In Ref. [237],
it is assumed that〈ππ|EakEal |0〉 ∝ 〈gg|EakEal |0〉, i.e. that the factor describing the conversion of the two
gluons intoππ is approximately independent of the pion momenta in the HTs under consideration. In
this approximation, we obtain [237]

C2 ≈ 3C1. (4.183)

So it is possible thatC2/C1 ∼ O(1).

Γ(ψ(3770)→J/ψπ+π−) (keV)
Cornell CK

C2 ≈ 3C1 139 [(0.59 ± 0.07)%] 147 [(0.62 ± 0.07)%]
C2 ≈ C1 26 [(0.11 ± 0.01)%] 32 [(0.14 ± 0.02)%]

Table 4.29: The predicted transition rateΓ(ψ(3770)→J/ψ π+π−) (in keV) in the Cornell model and the CK model with the

updated input data (4.170). The corresponding branching ratios are listed in the brackets using the total width ofψ(3770) given

in Ref. [10].

For comparison, we list the predicted rateΓ(ψ(3770)→J/ψ π+π−) with C2/C1 = 3 andC2/C1

= 1 in Table 4.29.19 Note thatS-D mixing only affects a few percent of the rate, so that the rateis
essentiallyΓ(ψ(2D)→J/ψ π+π−).

Recently, BES has measured the rateΓ(ψ(3770)→J/ψ + π+ + π−) based on 27.7 pb−1 data of
ψ(3770). The result isΓ(ψ(3770)→J/ψ + π+ + π−) = 80 ± 32 ± 21 keV [252] (see Eq. (4.191)
in Sec. 7.6C). Eq. (4.182) is in agreement with the central value of the BES result withC2/C1 ≈ 2.
Considering the large error in the BES experiment,C2/C1 can still be in the range0.8 ≤ C2/C1 ≤ 2.8.
We expect more precise future measurements to give a better determination ofC2/C1.

For the Υ system, the state mixings are much smaller [253]. Neglecting such mixings, the
predicted rate ofΥ(13D1)→Υππ in the Cornell model withC2/C1 = 3 was Γ(Υ(13D1)→Υππ)
≈ 24 keV [237]. Taking the central valueC2/C1 ≈ 2 determined from BES data, the prediction
is Γ(Υ(13D1)→Υππ) ≈ 11 keV. Considering the above range ofC2/C1, we predict 1.8 keV≤
Γ(Υ(13D1) → Υππ) ≤ 21 keV.

HTs are useful processes to investigate thehc [or ψ(11P1)] andhb [or Υ(11P1)] states.hc and
hb are of special interest since the difference between the mass of the11P1 state and the centre-of-
gravity of the13PJ states gives useful information about the spin-dependent interactions betweenQ
and Q̄. The possibilities to detecthc and hb at e+e− colliders, in 3S1→π0 1P1, 1P1→ππ 3S1, and
1P1→π0 3S1 transitions have been studied in Refs. [229, 237, 248, 255, 256]; hc could also be detected
at theB factories [257], depending on the value for theB→hcK branching ratio. So far, thehb has
not been experimentally found, while thehc has probably been observed, based on recent preliminary
results presented by CLEO [258] and E835 [259]. CLEO has observed significant excess of events in
ψ(2S)→π0hc→π0γηc, in both exclusive and inclusiveηc decays. E835 has a significant excess of events
in p̄p→hc→ηcγ→3γ. The mass of the CLEO and E835 candidates are compatible, andvery close to the
centre-of-gravity. For more details we refer to Chapter 3.

7.3 Nonrelativistic coupled-channel approach to hadronictransitions

Since a heavy quarkoniumΦ lying above the threshold can decay into a pair of heavy flavormesonsDD̄
[D stands forD mesons (forcc̄) andB mesons (forbb̄)], there must existΦ-D-D̄ couplings as shown in
Fig. 4.14.

A complete theory should include not only the part describing Φ, but also the part corresponding
to theDD̄ sector as well. Such a theory is the so-called coupled-channel (CC) theory.

19The values listed in Table 4.29 are larger than those given inRefs. [247,248] since the updated input data values are larger.
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Fig. 4.14: Coupling of the heavy quarkoniumΦ to its decay channelDD̄.

It is hard to study theΦ-D-D̄ vertex from the first principles of QCD, since it is the vertexof
three bound states. There are various models describing CC effects; the two well-accepted models are
the Cornell CC model (CCCM) [177, 191, 260] and the unitary quark model (UQM) [253]. TheΦ-D-D̄
vertex in the UQM is taken to be the3P0 quark-pair-creation (QPC) mechanism [261]. The parameters
in the UQM are carefully adjusted so that the model gives a better fit to thecc̄ andbb̄ spectra, leptonic
widths, etc. It is shown that the QPC model gives acceptable results even for OZI-allowed productions
of light mesons [261,262], which is relevant in the calculation of the HT amplitudes in the CC theory.

The formulation of the theory of HTs in the framework of the UQM was given in Ref. [263]. The
Feynman diagrams forn3

iS1→n3
fS1ππ are shown in Fig. 4.15. We see that there are more channels of

ππ transitions in this theory than in the single-channel theory. Figs. 4.15(a)−4.15(d) are based on the
QCDME mechanism; we designate this the MGE part. Figures 4.15(e) and 4.15(f) are based on a newππ
transition mechanism via QPC; we designate this the QPC part. Figure 4.15(a) is similar to Fig. 4.13 but
with state mixings, so the single-channel amplitude mentioned in Sec. 7.2 is only a part of Fig. 4.15(a).

Theory Expt.
cos ϑ = −1 cos ϑ = −0.676

Γ(Υ′→Υππ) (keV) 14 13 12.0 ± 1.8
Γ(Υ′′→Υππ) (keV) 1.1 1.0 1.72 ± 0.35
Γ(Υ′′→Υ′ππ) (keV) 0.1 0.3 1.26 ± 0.40

Table 4.30:Γ(Υ′→Υππ), Γ(Υ′′→Υππ), andΓ(Υ′′→Υ′ππ) predicted in CC theory, withcosϑ = −1 and -0.676, together

with the updated experimental values [10].ππ stands for the sum over all theπ+π− andπ0π0 channels.

Since state mixings and the QPC vertices are all different inthe cc̄ and thebb̄ systems, the pre-
dictions for theΥ HT rates by taking the input (4.170) will be different from those in the single-channel
theory. Such predictions were studied in Ref. [263]. Note that for a given QPC model, the QPC part
is fixed, while the MGE part still contains an unknown parameter C1 after taking the approximation
C2 ≈ 3C1. Since there is interference between the MGE and the QPC parts, the phase ofC1 is impor-
tant; explicitly,C1 = |C1| eiϑ. The data of the HT rate andMππ distribution inψ′→J/ψ ππ can be taken
as inputs to determineC1 andϑ [263]. Considering the error bars in theMππ distribution,ϑ is restricted
in the range−1 ≤ cos ϑ ≤ −0.676 [263]. The predicted transition rates in theΥ system are listed in
Table 4.30 together with the experimental results for comparison. We see that the obtainedΓ(Υ′→Υππ)
is in good agreement with the experiment, and the results ofΓ(Υ′′→Υππ) andΓ(Υ′′→Υ′ππ) are in
agreement with the experiment at the level of2σ and2.4σ, respectively.

Next we look at the predictedMππ distributions. It is pointed out in Ref. [265] that there is atiny
difference between the measuredMππ distributions inψ′→J/ψππ andΥ′→Υππ. In the single-channel
theory, the formulas for these twoMππ distributions are the same. In the CC theory, onceC1 andϑ are
determined, theMππ distribution ofΥ′→Υππ is uniquely determined. It is shown in Ref. [263] that the
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Fig. 4.15: Diagrams for hadronic transitions in the CC approach. Quoted from Ref. [263].

prediction fits the experiment [265] very well

However, the situation of theMππ distributions ofΥ′′→Υπ+π− and Υ′′→Υ′π+π− are more
complicated. Comparison of the CC predictions with the CLEOexperiment will be shown in Sec. 7.5E.

7.4 Application of the QCD multipole expansion to radiativedecays of theJ/ψ

In the above sections, QCDME is applied to various HTs in which Φi and Φf are composed of the
same heavy quarks. In this case, the dressed (constituent) quark fieldΨ(x, t) needs not actually to be
quantized. Now we generalize QCDME theory to processes including changes of heavy quark flavor and
heavy quark pair annihilation or creation, for which the quantization ofΨ(x, t) is needed. This has been
studied in Ref. [231] with the electroweak interactions included as well.

An example of application of such a theory isJ/ψ→γη (see Sec 5.5 for a discussion in the
framework of Ref. [154]). This process has been studied in the framework of perturbative QCD and
the nonrelativistic quark model in Ref. [264], but the predicted rate is significantly smaller than the
experimental value. Theη momentum in this process isqη = 1.5 GeV. If η is converted from two
emitted gluons from the heavy quark, the typical gluon momentum is thenk ∼ qη/2 ∼ 750 MeV. At
this momentum scale perturbative QCD does not work well but QCDME works [231]. The Feynman
diagrams for this process in the QCDME approach are shown in Fig. 4.16, in which the intermediate
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Fig. 4.16: Feynman diagrams for the radiative decay processJ/ψ→γ + η.

states marked between two vertical dotted lines are all treated as bound states. In this sense this approach
is nonperturbative.

Since this process is dominated by E1M2 transition; the transition rate depends on the pseudoscalar
nonet mixing angleθP . Taking the valueθP ≈ −20◦ determined from theη→γγ andη′→γγ rates [10],
we obtain [231]

Γ(J/ψ→γη) = 0.041

(
αM
αE

)
keV, B(J/ψ→γη) = (4.7 ± 0.2) × 10−4

(
αM
αE

)
. (4.184)

With the reasonable valueαM/αE = 1.8, the predicted branching ratio can agree with the experimental
valueBexp(J/ψ→γη) = (8.6 ± 0.8) × 10−4 [10]. To avoid the uncertainties fromαM/αE andθP , we
take the ratio ofΓ(J/ψ→γη) to another E1M2 transition rateΓ(ψ′→J/ψη). The theoretical prediction
is [231]

Rη ≡
Γ(J/ψ→γη)

Γ(ψ′→J/ψη)
= 0.012. (4.185)

In Rη, uncertainties in the H factors cancel, soRη offers a direct test of the MGE mechanism. (4.185) is
in agreement with the experimental valueRη|exp = 0.009 ± 0.003 [10] at the1σ level.

This approach can also be applied toJ/ψ→γη′. With θP ≈ −20◦, we obtain

Rη′ ≡
Γ(J/ψ→γη′)
Γ(ψ′→J/ψη)

=

∣∣∣∣
q(J/ψ→γη′)
q(J/ψ→γη))

∣∣∣∣
3∣∣∣∣
m2
η′(

√
2 cos θP + sin θP )

m2
η(cos θP −

√
2 sin θP )

∣∣∣∣
2

Rη = 0.044. (4.186)

This is also in agreement with the experimental valueRη′ |exp = 0.044 ± 0.010 [10].

We would like to mention that this approach is not suitable for Υ→γη since the typical gluon
momentum in this process isk ∼ qη/2 ∼ 2.4 GeV, appropriate for perturbative QCD, but not for
QCDME.

7.5 Hadronic transition experiments in thebb̄ system

A. Experimental analysis of hadronic transitions - bottomonium

We see from Eq. (4.166) that, in the framework of QCDME, the transition amplitude contains
an MGE factor and a H factor. Selection rules, as well as the limited phase space, restrict the possible
transitions. A summary of the rich spectroscopy afforded bybottomonia is shown in Fig. 4.17

The principal experimental observables here are the partial widths for the transitions between
bottomonia and the Dalitz plot variables: theππ andΥπ invariant mass spectra, and the angular distribu-
tions between final-state particles. To measure the transition Υ′′→Υππ, for example, in electron-positron
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Fig. 4.17: Allowed photon, dipion, and omega transitions allowed within thebb̄ system.

annihilation data (whereΥ′′ is produced at rest, and polarized along the beam axis), one can use the con-
straint that theΥ energy can be inferred directly from the measurement of the pion four-momenta to
calculate the mass recoiling against the dipion system. As with theγγ cascades, one differentiates the
“exclusive” case in which theΥ decays to a clean, background-free topology, such asµ+µ− or e+e−,
from the “inclusive” case in which all events are accepted, and one calculates the mass recoiling against
all oppositely-signed dipion pairs. In the former case, one, therefore, selects events consistent with the
cascade:Υ′′→Υππ, Υ→l+l−, allowing one to isolate a very clean sample, but at the expense of lower
overall efficiency owing to the small (∼ 2%) dileptonic BR’s of the final stateΥ’s.

B. Branching ratios and partial widths

The CLEO-II mass spectra recoiling against charged dipions, for data taken at theΥ′ [266], are
shown in Figs. 4.18 and 4.19, and illustrate the trade-off between the higher statistical power of the
inclusive data sample vs. the better signal-to-noise of theexclusive data sample.20
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Fig. 4.18: Mass recoiling against two oppositely charged tracks, assumed to be pions, for data taken at theΥ′ resonance.

Branching ratios are calculated based directly on the number of events found in each peak. Predic-
tions for the partial widths in the nonrelativistic single-channel and coupled-channel theories are shown
in Table 4.28 and Table 4.30. In addition to CLEO, the tabulated branching ratios forΥ′→Υππ also
include measurements made by the ARGUS [265], CLEO-I [267],CUSB-I [268], and Crystal Ball [269]
collaborations. The CLEO-II collaboration are also able toderive estimates for the transition rates for
Υ′′→Υ′ + X by performing a hand scan of the events it reconstructs inΥ′′→Υ′ + X, Υ′→Υπ+π−,

20Because of the poor signal-to-noise ratio, theΥ′′→Υπ0π0 transitions cannot be studied inclusively.
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Fig. 4.19: Mass recoiling against two oppositely charged tracks, assumed to be pions, for data taken at theΥ′ resonance, with

the additional restriction that there be exactly four charged tracks in the event, and that the two most energetic charged tracks

be consistent withe+e− or µ+µ−.

Υ→l+l−, and using the unitarity constraint that the sum of the dipion transitions plus the radiative tran-
sitions must saturate the overallΥ′′→Υ′ +X decay rate to determine X. These values have been com-
piled along with the direct observation of theΥ′′→Υ′π0π0 andΥ′′→Υ′π+π− transitions. According to
isospin symmetry, theπ+π− transition rate is expected to be twice that of theπ0π0 transition, modulo
the ratios of available phase space (π0π0/π+π−) (1.36 forΥ′′→Υ′π0π0 and 1.02 forΥ′′→Υπ0π0). The
measurements to date are generally consistent with this expectation, with the exception ofΥ′′→Υ′π+π−.
Curiously, despite an inability to match the dipion mass distributions for theΥ′′→Υππ transitions (Secs.
7.2 and 7.3), the QCDME approach gives a better match for thispartial width than forΥ′′→Υ′ππ.

C. Angular distributions

In the nonrelativistic limit, orbital angular momentum andspin are separately conserved. The spin
of a bottomonium resonance produced ate+e− colliders lies along the beam axis. InΥ(nS)→Υπ+π−,
the orbital angular momentum between the pions, or the orbital angular momentum between the dipion
system andΥ is a useful observable in addition to the polarization ofΥ. Predictions for the populations
of the allowed angular momentum states have been made for both theψ system as well as theΥ system
[240,270]. All measurements to date (e.g., by verifying in exclusive events that the angular distribution of
the leptons relative to the beam axis followsdN/d(cosθ) ∼ 1+cos2θ) from ARGUS, CLEO, and CUSB
give strong evidence that the daughterΥ is indeed polarized along the beam axis in the dipion transitions,
and are consistent with anS-wave decay. The other allowed amplitude is a possibleD-wave contribution
in the dipion system [cf. Eq. (4.167)]. Convincing evidencefor a largeD-wave component of the dipion
system has not yet been presented, although it has received some theoretical attention [271–273], and
suggestions for non-S-wave anisotropy are found in both theΥ′′→Υπ+π− [266] andΥ′→Υπ+π− data
[265,274], both of which show∼ 2σ indications of aD-wave contribution at the few percent level [266].
Mapping out the ratio ofD- to S-wave amplitudes as a function of dipion mass in theΥ′′ system is a
project requiring substantially more statistics than havebeen accumulated to date; expectations are that
aD-wave amplitude would be more observable at low values of invariant mass, corresponding to higher
energy release in theΥ′′ decay. Such an analysis is currently underway at CLEO and should mature
within the next year.

D. Single pion transitions

For dipion transitions Yan [230], collaborating with Kuang[237], and their work later extended by
Zhou and Kuang [263], estimated the magnitude of the second piece of the product matrix element, the
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hadronization term of the transition amplitude. An immediate consequence of the multipole approach
is the expected suppression of the caseX = η relative toX = ππ. The former system has the wrong
quantum numbers for twoE1 gluons, and proceeds in lowest order as eitherE1 ·M2 or M1 ·M1 in
QCDME. Since the mass dependence of the chromomagnetic transitions goes asm−4 (m = quark mass),
QCDME, therefore predicts that the ratio forB(Υ′→Υη)/B(Υ′→Υππ) should be substantially smaller
than the ratioB(ψ′→ψη)/B(ψ′→ψππ). By contrast, if the ratio ofπ+π− to η transitions were governed
by phase space alone, theη transition would be about 15% of theπ+π− transition forΥ′→Υ. The most
recent CLEO analysis yielded an upper limit:B(Υ′→Υη) < 0.0028, in qualitative agreement with the
rule given above.

The isospin-violating decayψ(2S)→π0ψ(1S) and the M1 transitionψ(2S)→ηψ(1S) have been
observed in the charmonium sector; searches for the corresponding transitions in the bottomonium sector
have resulted only in the upper limit:Υ′→Υπ0 <0.11%. The typically poorer energy resolution in
neutral particle measurements, coupled with small predicted branching fractions, makes observation of
such decays difficult.

E. Dipion mass spectra

The dipion mass spectra are calculated directly from the pion four-momenta. As stated before, the
invariant mass spectra are expected to peak at high mass values. This is, in fact, what is observed for
the transitionΥ′→Υπ+π−, as shown in Fig. 4.20, and entirely consistent with an exhaustive study of
this process by the ARGUS collaboration [265]. Also shown inFig. 4.20 are theπ0π0 mass spectra for
Υ′′→Υπ0π0 andΥ′′→Υ′π0π0.

4.5

3.0

1.5

0
0.25 0.45 0.65 0.850.275 0.295 0.315 0.335

50

40

30

20

10

0

0.27 0.35 0.43 0.51 0.590.3 0.4 0.5 0.6

80

60

40

20

0

30

20

10

0

(3S)      (1S)   + I(3S)      (2S)   + I

(2S)      (1S)   + I

d 
  /

dm
   

  (
ke

V
/G

eV
)

m(         )(GeV)I+

Crystal Ball
   1980

Exclusive
Inclusive

Moxhay

Yan

Exclusive
Inclusive

Yan

2130303-001

Moxhay

Exclusive
Inclusive

Yan

IJ/ +

Fig. 4.20: Left:π+π− recoil mass spectra from CLEO-II using data taken at the peakof theΥ′′ for a) exclusive transitions, and
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mass [266].

The current data show peaking at high mass for theΥ′′→Υ′π+π− andΥ′→Υππ transitions, con-
sistent with the expectation for S→S transitions (and also consistent with charmonium results). This is
the process for which the multipole expansion model, owing to the smallness of the expansion parameter,
claims to have the greatest predictive power. However, theπ0π0 andπ+π− invariant mass distributions
in theΥ′′→Υπ+π− transition show a “double bump” structure that disagrees with the gluon field multi-
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pole expansion model as well as with the expectation that thematrix element for a transition with these
quantum numbers should approach zero at threshold. This is perhaps an indication that the average value
of Q2 is too large to make predictions reliably using the multipole model. It may also be an indication
that a low-mass 0++ scalar (e.g. theσ) may be contributing to the intermediate state.

There have been various attempts to explain the double-peaked shape. Ref. [272,275,276] assumed
the existence of a four-quark stateΥ1, which enhances the low-Mππ region. So far such a resonance is
not found experimentally. Ref. [277] assumed a large QPC part in theΥ′′→Υππ amplitude whose inter-
ference with the MGE part may form a double-peaked shape. However, the systematic calculation shown
in Sec. 7.3 does not support this assumption. Recently, another attempt considering certain models for a
σ meson resonance around 500 MeV in the final stateππ interactions [278,279] have been proposed. By
adjusting the free parameters in the models, the CLEO data ontheMππ distributions can be fitted. How-
ever, the model need to be tested in other processes. Therefore, the HTΥ′′→Υππ is still an interesting
process needing further investigation.

F. Three-pion transitions

With their largeΥ′′ data sample in hand, the CLEO collaboration is able to probe beyond the
now-familiar dipion transitions. Of particular interest areω-mediated transitions, which have been long-
suggested as a possible path to theηb, via: Υ′′→ηbω. In QCDME, by color conservation, this must
correspond to three E1 gluon emissions. Although direct decaysΥ′′→ηbω were not found, CLEO has
observed significant production ofΥ via Υ′′→χ′

b(2P )γ, χ′
b(2P )→Υω, as shown in Figs. 4.21 and 4.22.

   20

   15

   10

    5 

0
0.68 0.72 0.76 0.80 0.84 0.88

E
ve

nt
s 

/ 0
.0

25
 G

eV

1160903-006

M(   +        0) (GeV)I

Fig. 4.21: Invariant mass of three pions in events consistent with Υ′′→χ′
bγ; χ′

b→Υπ+π−π0.

What is actually observed are two recoil mass peaks, corresponding to decays from theχ′
b(2P)
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matrix element should be largely independent of the spin of the parent 2P, consistent with observation.
The measured branching fractions (B(χ′

b(J = 2)→Υω) = (1.0±0.3±0.1)% andB(χ′
b(J = 1)→Υω) =

(1.6 ± 0.3 ± 0.24)% are unexpectedly large, given the limited phase space for these decays.

G. Hadronic transitions from theΥ(4S)

Observation of hadronic transitions from theΥ(4S), interesting on its own merits, would provide
essential information on theΥ(4S) wave function. Since theΥ(4S) resonance is above the threshold for
BB̄ production, measurement of the dipion transitions, with partial widths a factor10−4 smaller than
the dominant strong decays to open bottom, require data samples of order108 Υ(4S) events. The BaBar
and Belle experiments now have accumulated samples of 100MΥ(4S) events and may produce the first
signals for such dipion transitions soon. CLEO have produced the most recent results on these transitions,
resulting only in upper limits:Υ(4S)→Υ′ππ < 0.039%; Υ(4S)→Υππ < 0.012%. Interest in such
decays has recently been promoted by the BES claim of the corresponding decay in the charmonium
sector:ψ(3770)→Jψπ+π−.

H. Unanswered questions

Aside from a first-principles explanation of the dipion massspectrum in theΥ′′→Υπ+π− spec-
trum (such a three-body decay does not, unfortunately, easily lend itself to lattice gauge techniques),
much experimental work remains. Among the dipion transitions one would like to observe are theη
transitions between theS states, or one of the two dipion transitions involving the singlet 11P1 state:
the isospin-violating decayΥ′′→hb(1

1P1)π
0, or Υ′′→hbπ

+π− 21, as well as the dipion transitions be-
tween theχb states:χ′

b → χbππ. Owing to the larger total widths of theχ′
b (J=2 and J=0) states

relative to the J=1 state, the first observation of this decaymight be expected in the transition between
the J=1 states. Transitions at higher order in QCDME, e.g.,Υ′′→ηbω (E1E1M1 transition), and also
HT to theηb, which is accessible through two routes, each of which involves a radiative and a hadronic
transition: eitherΥ′′→hb(1

1P1)ππ; followed byhb(11P1)→ηbγ, or Υ′′→χ′
bγ; χ′

b → ηbπ
+π−, would

both help complete our picture of heavy quark spectroscopy (see Chapter 3). Also extremely interesting
would be the observation of HTs from the recently discoveredtriplet D-bottomonia states (Υ(13DJ)),
e.g. Υ(13D2)→Υπ+π−, or Υ(13D2)→Υ(1S)η. Currently, only an upper limit exists for the product
branching fraction:Υ′′→χ′

b,J=2γ, χ′
b,J=2→13D, 13D→Υππ of 1.1 × 10−4 for the J=2D-state, and

2.7 × 10−4, including all theD-states. A 90% c.l. upper limit is also set for the same decay chain, but
with anη rather than dipion transition, of2.3 × 10−4.

7.6 Hadronic transition experiments in thecc̄ system

Hadron transitions in the charmonium system where there is experimental information includeπ+π− →
J/ψ π0, π+π− → J/ψ η, andπ+π− → J/ψ ππ. Recently evidence has been presented onψ(3770) →
J/ψ π+π− decays, and very recently, Belle announced the discovery oftheX(3872) [280], which is
detected viaX(3872) → J/ψ π+π−, making it another means to study hadronic transitions. Here
recent experimental results onπ+π− → J/ψ π0, π+π− → J/ψ η, π+π− → J/ψ ππ andψ(3770) →
J/ψ π+π− will be summarized. We will shortly mention theX(3872) → J/ψ π+π− transition, which
has been discussed in detail in Chapter 3, Sec. 8.2.

A. π+π− → J/ψ π0, π+π− → J/ψ π0 π0 andπ+π− → J/ψ η

Experimental results for the processesψ ′ → J/ψ π0 andJ/ψ η are few and were mainly taken in
the 1970s and 80s [281–285]. Recently, however, BES, using asample of(14.0 ± 0.6) × 106 ψ ′ events

21For thisS → P transition, Kuang & Yan predict a dipion mass distribution that peaks atlow values of invariant mass.
This is understood by the following argument: such a transition 1− → 0+1+ can only proceed inP wave, which suppresses
the high mass region.
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collected with the BESII detector [286], studiedψ ′ decaying intoJ/ψ(π0, η), with π0 andη decaying
to two photons, andJ/ψ to lepton pairs [241]. Events with two charged tracks identified as an electron
pair or muon pair and two or three photon candidates are selected. A five constraint (5C) kinematic fit
to the hypothesisψ ′ → γγl+l− with the invariant mass of the lepton pair constrained toJ/ψ mass is
performed, and the fit probability is required to be greater than 0.01.

To remove the huge background fromψ ′ → γχc1,c2 under theψ ′ → J/ψ π0 signal, the invariant
mass of the highest energy gamma and theJ/ψ, Mγh,J/ψ is required to be less than 3.49 or greater than
3.58 GeV/c2. Figure 4.23 shows, after this requirement, the distribution of invariant mass,Mγγ , where
the smooth background is due toψ(2S) → γχc1,2 andJ/ψ π0π0. A Breit Wigner with a double Gaussian
mass resolution function to describe theπ0 resonance plus a third-order background polynomial is fitted
to the data.
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Fig. 4.23: Two-photon invariant mass distribution for candidateψ ′ → π0J/ψ events for (a)γγe+e− and (b)γγµ+µ−.
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Fig. 4.24: Two-photon invariant mass distribution for candidateψ ′ → ηJ/ψ events for (a)γγe+e− and (b)γγµ+µ−.

In theψ ′ → J/ψ η channel, the main backgrounds are fromψ ′ → J/ψ π0π0 andγχc1,c2. By
requiringMγh,J/ψ < 3.49 GeV/c2, most background fromψ ′ → γχc1,c2 is removed. The resultant plot
shown in Fig. 4.24 shows a clearη signal superimposed on background, mainly fromψ ′ → π0π0J/ψ.
A fit is made using a Breit-Wigner resonance convoluted with amass resolution function for theη signal
plus a polynomial background, where the width of theη is fixed to its Particle Data Group (PDG) value
[10] and the background function is determined fromψ ′ → J/ψ π0π0 Monte Carlo simulated events
that satisfy the same criteria as the data.

Using the fitting results and the efficiencies and correctionfactors for each channel, the branching
fractions listed in Table 4.31 are determined. The BESB(ψ ′ → J/ψ π0) measurement has improved
precision by more than a factor of two compared with other experiments, and theψ ′ → J/ψ η branching
fraction is the most accurate single measurement. The BESB(ψ ′ → J/ψ π0) agrees better with the
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Channel J/ψ π0 J/ψ η

Final state γγe+e− γγµ+µ− γγe+e− γγµ+µ−

Number of events 123 ± 18 155 ± 20 2465 ± 101 3290 ± 148
Efficiency (%) 11.21 13.34 26.94 34.07
Sys. error (%) 9.68 8.77 8.54 8.40

Correction factor 0.962 0.974 0.962 0.974
BR (%) 0.139 ± 0.020 ± 0.013 0.147 ± 0.019 ± 0.013 2.91 ± 0.12 ± 0.21 3.06 ± 0.14 ± 0.25

Combine BR (%) 0.143 ± 0.014 ± 0.013 2.98 ± 0.09 ± 0.23
PDG (%) [10] 0.096 ± 0.021 3.16 ± 0.22

Table 4.31: Recent BES results onψ ′ → J/ψ π0 andψ ′ → J/ψ η.

Mark-II result [284] than with the Crystal Ball result [285]. For the comparison of the BES result with
related theoretical predictions, see Sec. 7.2.

In another recent BES analysis [287], based on a sample of approximately4 × 106 π+π− events
obtained with the BESI detector [288], a different technique is used for measuring branching fractions
for the inclusive decayπ+π− → J/ψ anything, and the exclusive processes for the cases whereX = η
andX = ππ. Inclusiveµ+µ− pairs are reconstructed, and the number ofπ+π− → J/ψX events
is determined from theJ/ψ → µ+µ− peak in theµ+µ− invariant mass distribution. The exclusive
branching fractions are determined from fits to the distribution of masses recoiling from theJ/ψ with
Monte-Carlo determined distributions for each individualchannel.

Selected events are required to have more than one and less than six charged tracks and must have
two identified muon tracks with zero net charge. The two muon tracks must satisfy a one constraint
kinematic fit to theJ/ψ mass. Shown in Fig. 4.25 is the dimuon invariant mass distribution,mµµ, for
these events. A clear peak at theJ/ψ mass is evident above background.
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Fig. 4.25: Distribution of dimuon invariant mass,mµµ, for events that pass theJ/ψ → µ+µ− kinematic fit. Dots with error

bars are data. Also shown is the fit (solid histogram) to the distribution with signal (long dashed histogram) and background

(short dashed histogram) shapes.

The mass recoiling against theJ/ψ candidates,mX is determined from energy and momentum
conservation. In order to distinguishψ(2S) → J/ψπ+π− andψ(2S) → J/ψπ0π0 events, separate
mX histograms are made for events with no additional charged tracks and those with additional charged
tracks. To reduce background and improve the quality of the track momentum measurements, events
used for this part of the analysis are required to have a kinematic fit χ2 < 7. ThemX histograms for
events with and without additional charged tracks, selected according to the above requirements, are
shown in Figs. 4.26 and 4.27.

To determine the number of exclusive decays and separateψ(2S) → J/ψπ0π0 andψ(2S) →
J/ψπ+π− events,mX histograms for events with and without additional charged tracks, shown in
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Fig. 4.26: Fit of themX distribution events with no additional

charged tracks. Shown are the data (points with error bars),the

component histograms, and the final fit. For the components,

the large, long-dash histogram isψ(2S) → J/ψππ, the nar-

row, dash-dot histogram isψ(2S) → J/ψη, the broad, short-

dashed histogram isπ+π− → γχc1, χc1 → γJ/ψ, the broad,

hatched histogram isπ+π− → γχc2, χc2 → γJ/ψ, and the low-

est cross-hatched histogram is the combinede+e− → γµ+µ−

ande+e− → ψ(2S), ψ(2S) → (γ)µ+µ− background. The fi-

nal fit is the solid histogram.
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Fig. 4.27: Fit of themX distribution for events with

any number of additional charged tracks. Shown are the

data (points with error bars), the component histograms,

and the final fit (solid histogram). The dashed histogram

is ψ(2S) → J/ψπ+π−, and the hatched histogram

is ψ(2S) → J/ψη. There is very little evidence for

ψ(2S) → γχc1/2, χc1/2 → γJ/ψ. This distribution is

composed predominantly ofψ(2S) → J/ψπ+π−.

Figs. 4.26 and 4.27, are fit simultaneously. Contributions from theψ(2S) → γχc0, χc0 → γJ/ψ are
expected to be very small [10] and are not included in the fit. The influence ofπ+π− → J/ψπ0 is
also small, indeed there is no indication of such a componentin Fig. 4.26, and this channel is also not
included. ThemX distributions forψ(2S) → γχc1, χc1 → γJ/ψ, ψ(2S) → γχc2, χc2 → γJ/ψ , and
the background are broad and rather similar in shape, as can be seen in Fig. 4.26. Since these are difficult
to distinguish, theχc2 toχc1 ratio is constrained using calculated efficiencies and the PDG world average
branching fractions for the two processes.

To avoid a number of systematic errors, the channels of interest are normalized to the observed
number ofJ/ψπ+π− events; ratios of the studied branching fractions to that for B(π+π− → J/ψπ+π−)
are reported. The advantage of normalizing in this way is that many of the muon selection systematic
errors largely cancel, as well as the systematic error due totheχ2 requirement.

The final branching fraction ratios and branching fractionsare shown in Table 4.32, along with
the PDG results, including their experimental averages andglobal fit results. For the ratio ofB(ψ(2S)
→ J/ψπ0π0) to B(ψ(2S) → J/ψπ+π−), the PDG does not use the previous experimental results and
gives no average value. For the other branching fraction ratios, only one measurement exists for each, and
Table 4.32 lists the single measurements quoted by the PDG. The results forB(J/ψ anything)/B(ψ(2S)
→ J/ψπ+π−) andB(J/ψη)/B(ψ(2S) → J/ψπ+π−) have smaller errors than the previous results.

To determine the branching fractions, the ratios are multiplied by the PDG value forB(ψ(2S) →
J/ψπ+π−) = (31.7±1.1)%. The agreement for both the ratios of branching fractions and the calculated
branching fractions using the PDG result forB(π+π− → J/ψπ+π−) with the PDG fit results is good,
and the determination ofB(J/ψη) agrees well with the determination fromψ(2S) → γγJ/ψ decays
above.
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Case This result PDG04-exp PDG04-fit
B(J/ψ anything)/Bππ 1.867 ± 0.026 ± 0.055 2.016 ± 0.150 [289] 1.821 ± 0.036∗

B(J/ψπ0π0)/Bππ 0.570 ± 0.009 ± 0.026 - 0.59 ± 0.05
B(J/ψη)/Bππ 0.098 ± 0.005 ± 0.010 0.091 ± 0.021 [284] 0.100 ± 0.008

B(J/ψ anything) (%) 59.2 ± 0.8 ± 2.7 55 ± 7 57.6 ± 2.0
B(J/ψπ0π0) (%) 18.1 ± 0.3 ± 1.0 – 18.8 ± 1.2
B(J/ψη) (%) 3.11 ± 0.17 ± 0.31 2.9 ± 0.5 3.16 ± 0.22

Table 4.32: Final branching ratios and branching fractions. PDG04-exp results are single measurements or averages of mea-

surements, while PDG04-fit are results of their global fit to many experimental measurements. For the value marked with an

asterisk, the PDG gives the reciprocal. The BES results in the second half of the table are calculated using the PDG value of

Bππ = B(π+π− → J/ψπ+π−) = (31.7 ± 1.1)%.

B. π+π− → J/ψ π+π−

The processπ+π− → J/ψ π+π−, is the largest decay mode of theψ(2S) [10]. Early investigation
of this decay by Mark I [290] found that theπ+π− mass distribution was strongly peaked towards higher
mass values, in contrast to what was expected from phase space. Further, angular distributions strongly
favoredS-wave production ofJ/ψ ππ, as well as anS-wave decay of the dipion system. The challenge
of describing the mass spectrum attracted considerable theoretical interest [227, 229, 230, 237, 240, 256,
291].

Theπ+π− → J/ψ ππ decay was studied by BES [292], using 22,800 almost background free
exclusiveψ(2S) → π+π−J/ψ, J/ψ → l+l− events, wherel signifies eithere or µ, from a data sample
of 3.8 × 106 ψ(2S) decays.

The angular distributions were fit using the general decay amplitude analysis of Cahn [270]. The
decay can be described in terms of partial wave amplitudes,Ml,L,S, wherel is theππ angular momentum,
L is J/ψ X (X → π+π−) angular momentum,S is the channel spin (S = s + l), ands is the spin of the
J/ψ. Parity conservation and charge conjugation invariance require bothL andl to be even. The partial
waves can be truncated after a few terms. Considering onlyM001,M201, andM021 [293]:

dΓ

dΩJ/ψ
∝ [|M001|2 + |M201|2 +

1

4
|M021|2(5 − 3 cos2 θ∗J/ψ) +

1√
2
ℜ{M021M

∗
001}(3 cos2 θ∗J/ψ − 1)],

(4.187)
dΓ

dΩπ
∝ [|M001|2 +

1

4
|M201|2(5− 3 cos2 θ∗π) + |M021|2 +

1√
2
ℜ{M201M

∗
001}(3 cos2 θ∗π − 1)], (4.188)

dΓ

dΩµ
∝ [|M001|2(1 + cos2 θ∗µ) +

1

10
(|M201|2 + |M021|2)(13 + cos2 θ∗µ)], (4.189)

whereθ∗J/ψ is the polar angle of theJ/ψ relative to the beam direction in the lab,θ∗π is the angle between

the momenta ofJ/ψ andπ+ in the rest frame of theππ system, andθ∗µ is the angle between the beam
direction andµ+ in the rest frame of theJ/ψ. ThedΩ’s are measured in their respective rest frames, and
theMl,L,S are functions ofmππ.

There are three complex numbers to be obtained. According toCahn, if theψ(2S) and J/ψ
are regarded as inert, thenMl,L,S = eiδ

0
l (mππ)|Ml,L,S|, whereδ0l (mππ) is the isoscalar phase shift for

quantum numberl. The phase angles are functions ofmππ. Interpolating theS wave, isoscalar phase
shift data found in Ref. [272, 294], BES tookδ00 to be≈ 45◦ andδ02 ≈ 0. Using these values as input,
BES obtained the combined fit to Eqs. (4.187) - (4.189), shownin Fig. 4.28. The fit yields a nonzero
result for|M201|, indicating that the dipion system contains someD-wave, which is shown by the non-
flat angular distribution forcos θ∗π seen in Fig. 4.28. On the other hand|M021|/|M001|, which measures
the amount ofD-wave of theJ/ψ - X system relative to theS-wave, is consistent with zero, which is
indicated by the flat angular distribution forcos θ∗X shown in Fig. 4.28
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Fig. 4.28: Angular distributions of(a) cos θ∗µ, (b) cos θ∗X , and(c) cos θ∗π. The fit shown uses the partial wave analysis descrip-

tion of Cahn [293].

Observation of a smallD-wave contribution is interesting theoretically since, aswe have seen in
Eqs. (4.180) and (4.168), there is onlyS-wave contribution in the NRSC approach, i.e.,the existence
of a smallD-wave contribution implies that the present NRSC theory should be improved to contain
systematic relativistic and coupled-channel contributions.

Themππ invariant mass spectrum has been fit with the Novokov-Shifman model and other models,
as shown in Fig. 4.29. As can be seen, they give nearly identical fits.

Mannel and Urech have constructed an effective Lagrangian using chiral symmetry arguments to
describe the decay of heavy excitedS-wave spin-1 quarkonium into a lowerS-wave spin-1 state [295].
Using total rates, as well as the invariant mass spectrum from Mark II via ARGUS [265], the parameters
of this theory have been obtained. More recently, M. L. Yanet al. [296] have pointed out that this model
allowsD-wave contributions. BES fit the jointcos θ∗π - mππ distribution using the amplitude of Mannel
and Urech. The results are given in Ref. [292], along with theresults from Ref. [295] which are based
on ARGUS-Mark II [265].

C. ψ(3770) → J/ψ π+π−

BES has reported evidence forψ(3770) → J/ψ π+π− based on27.7 pb−1 of data taken in the
center-of-mass (c.m.) energy region around 3.773 GeV usingthe BES-II detector [252].

To search for the decay ofψ(3770) → J/ψ π+π−, J/ψ → e+e− or µ+µ−, µ+µ−π+π− and
e+e−π+π− candidate events are selected. They are required to have four charged tracks with zero total
charge. Each track is required to have a good helix fit, to be consistent with originating from the primary
event vertex, and to satisfy| cos θ| < 0.85, whereθ is the polar angle. Pions and leptons must satisfy
particle identification requirements.

In order to reduce background and improve momentum resolution, events are subjected to four-
constraint kinematic fits to either thee+e− → µ+µ−π+π− or thee+e− → e+e−π+π− hypothesis.
Events with a confidence level greater than 1% are accepted. Figure 4.30(a) shows the dilepton masses
determined from the fitted lepton momenta of the accepted events. There are clearly two peaks. The
lower mass peak is mostly due toψ(3770) → J/ψ π+π−, while the higher one is produced via radiative
return to the peak of theψ(2S).

A maximum likelihood fit to the mass distribution in Fig. 4.30(a), using a Gaussian function to
describe the peak near theJ/ψ mass, two Gaussian functions to represent the second peak from radiative
return to theψ(2S) peak, and a polynomial to represent the broad background, yields a signal of17.8 ±
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Fig. 4.30: Distributions of dilepton masses for (a) data and

(b) Monte Carlo sample for events passing the selection

for ψ(3770) → π+π−J/ψ. The hatched histogram in (a)

is for J/ψ → µ+µ−, while the open one is forJ/ψ →
e+e−. The histogram in (b) is forψ(2S) → J/ψπ+π−,

while the points with error bars are the sum ofψ(3770) →
J/ψπ+π− andψ(2S) → J/ψπ+π−. (c) Distribution of

mass recoiling against theπ+π− system calculated using

measured momenta for events that pass the kinematic fit

requirement, where the hatched histogram is forJ/ψ →
µ+µ− and the open one is forJ/ψ → e+e−.

4.8 events with a significance of6.2 σ .

Backgrounds from QED radiative processes withγ conversion, two-photon backgrounds, such
ase+e− → e+e−µ+µ− (where the slow muons are misidentified as pions) ande+e− → e+e−π+π−,
ande+e− → τ+τ−, are negligibly small, as areJ/ψ π+π− events produced in the continuum process,
e+e− → l+l−π+π−. However, there is a contribution fromψ(2S) → J/ψ π+π− that can pass the
event selection criteria and yield fitted dilepton masses around 3.097 GeV. This is the main background
to ψ(3770) → J/ψ π+π−, as shown in Fig. 4.30(b). Here the histogram shows the dilepton mass
distribution forψ(2S) → J/ψ π+π− from a Monte Carlo simulation. The higher peak is due to the
radiative return to theψ(2S) peak, and the lower peak is from the tail of theψ(2S). The points with error
bars show the total contribution fromψ(2S) andψ(3770) production and decay. From the simulation, it
is estimated that6.0 ± 0.5 ± 0.6 out of 17.8 ± 4.8 events in the peak near 3.1 GeV in Fig. 4.30(a) are
due toψ(2S) → J/ψ π+π−, where the first error is statistical and the second one is thesystematic error
arising from the uncertainty in theψ(2S) resonance parameters.

With the calculated cross sections forψ(3770) production at each energy point around 3.773 GeV
and the corresponding luminosities, the total number ofψ(3770) events in the data sample is determined
to beNprod

ψ(3770) = (1.85 ± 0.37) × 105, where the error is mainly due to the uncertainty in the observed
cross section forψ(3770) production. The detection efficiency for the decay channel is determined to be
ǫψ(3770)→J/ψ π+π−,J/ψ→l+l− = 0.160 ± 0.002, where the error is statistical. Using these numbers and
the known branching fractions forJ/ψ → e+e− andµ+µ− [10], the branching fraction for the non-DD̄
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decayψ(3770) → J/ψ π+π− is measured to be

B(ψ(3770) → J/ψ π+π−) = (0.34 ± 0.14 ± 0.08)%, (4.190)

where the first error is statistical and the second systematic. UsingΓtot from the PDG [10], this branching
fraction corresponds to a partial width of

Γ(ψ(3770) → J/ψ π+π−) = (80 ± 32 ± 21) keV. (4.191)

The dominant systematic uncertainty is due to the uncertainty in the total number ofψ(3770) produced
(±24% ). Other systematic uncertainties are due to the efficiency (±10%), the background shape (±6%),
andψ(2S) → J/ψ π+π− background subtraction (±7%).

CLEOc has analyzed a sample ofψ(3770) decays (4.5 × 104) [209]. Although the sample is
smaller, they have a larger detection efficiency (37%). Theyfind two events in the signal region, con-
sistent with the estimated background, and set a preliminary upper limitB(ψ(3770) → J/ψ π+π−) <
0.26% (90% CL). The result does not confirm the BES result, but is notinconsistent with it either. CLEOc
is now analyzing a sample of about 50 pb−1, and the situation should be better understood when this is
completed. See Sec. 7.2 for the comparison of the BES result with the related theoretical prediction.

D. X(3872) → J/ψ π+π−

The Belle group has recently reported the observation of theX(3872), a charmonium-like par-
ticle with mass3872.0 ± 0.8 MeV that decays toJ/ψ π+π− [280]. For a review on the charmonium
assignments (and their problems) for theX(3872) we refer to Chapter 3, Sec. 8.2, and [297].

Theπ+π− invariant mass distribution for this process, shown in Fig.3.27(a) of Chapter 3, has
a stronger concentration at high mass values than QCDME [230] expectations forD-wave toS-wave
transitions, and is also more pronounced than that seen in the S-wave toS-waveψ ′ → J/ψ π+π−

process, which is shown in Fig. 3.27(b) of Chapter 3. This concentration at highπ+π− masses in
X(3872) → J/ψ π+π− has been experimentally confirmed by the CDF experiment [298].

8. Decays of theBc
22

Besides new spectroscopy, production and decay observables, the investigation of the long-lived heavy
quarkoniumBc, the pseudoscalar ground state of theb̄c system, provides the possibility to get model-
independent information on some electroweak parameters, like the CKM matrix elements, in the heavy
quark sector [299, 300]. The first experimental observationof theBc meson by the CDF collabora-
tion [224, 301] confirmed the theoretical predictions (and postdictions) on its mass, production rate and
lifetime [186,192,225,226,302–309]. Tevatron [310] and LHC [311] will provide in the near future new
data with increased statistics, opening the field to full experimental investigation and systematic test of
the theory.

Decays of theBc meson were considered in the pioneering paper by Bjorken of 1986 [312]. A lot
of work has been done after that in order to understand long-lived doubly heavy hadrons.23 Surprisingly,
the Bjorken’s estimates of total widths and various branching fractions are close to what is evaluated now
in a more rigorous way. TheBc properties determined by the strong interactions can be investigated in
the framework of effective field theories for heavy quarkonia, i.e. NRQCD [14, 314], potential NRQCD
[41, 42] or vNRQCD [315] (see also Chapters 1, 3 and 6). In contrast to the Wilson coefficients, the
hadronic matrix elements of operators composed by the effective fields of the nonrelativistic heavy quarks
cannot be evaluated in a perturbative manner. So, one has to use nonperturbative methods such as QCD

22Author: V. V. Kiselev
23Reviews on the physics ofBc meson and doubly heavy baryons can be found in Refs. [186,192,225,226,302] and [313],

respectively. For the doubly heavy baryons see also Chapter3.
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sum rules (SR) [316], operator product expansion (OPE) for inclusive estimates and potential models
(PM).

The measuredBc lifetime is equal to

τ [Bc] = 0.46+0.18
−0.16 ± 0.03 ps, (4.192)

which is close to the value expected by Bjorken. TheBc decays were, at first, calculated in PM [317–
326]. We do not distinguish here among relativistic and nonrelativistic PM, light-front, Bethe–Salpeter or
quasi-potential approaches, calculations with or withoutconfined quark-propagators and so on, because
(1) relativistic corrections to the initial and final state heavy quarkonium form factors are suppressed by
powers of the heavy quark velocity (at least, by a factor 10);(2) light mesons in the final states are usually
factorized, and corrections to the factorization are small; (3) heavy-light mesons in the final states are
quite accurately described by potential models adjusted tothe decays of such mesons. As a consequence
the different models agree on most of the decay channels.

The results of PM for theBc lifetime agree with each others after having been adjusted on the
semileptonic decays of theB mesons. The OPE evaluations of inclusive decays give lifetime and widths
[305] in agreement with PM, if one sums up the dominant exclusive modes. On the other hand, SR of
QCD gave at first semileptonicBc widths, which were one order of magnitude smaller than thoseof PM
and OPE [327]. The reason was identified in the missing Coulomb resummation [306–308, 319]. At
present, all mentioned approaches give close results for the lifetime and decay modes of theBc if similar
sets of parameters are used. Nevertheless, various questions remain open:

• What is the appropriate normalization point of the non-leptonic weak Lagrangian in theBc decays?

• What are the values of the masses for thec andb quarks that have to be used (see in this respect
Chapter 6)?

• What are the implications of the NRQCD symmetries for theBc form factors?

• How consistent is our understanding of hadronic matrix elements characterizing theBc decays
with the data from other heavy hadrons?

In the following of this section we shortly review theBc decays by summarizing the theoretical
predictions in the different frameworks and discussing howdirect experimental measurements can help
to answer the above questions.

8.1 Bc lifetime and inclusive decay rates

TheBc decay processes can be divided into three classes [305]:

1) theb̄-quark decay with the spectatorc quark,

2) thec-quark decay with the spectatorb̄ quark and

3) the annihilation channelB+
c → l+νl(cs̄, us̄), wherel = e, µ, τ .

In the b̄→c̄cs̄ decays one separates also the Pauli interference with thec quark from the initial state. In
accordance with the given classification, the total width isthe sum over the partial widths

Γ(Bc → X) = Γ(b→ X) + Γ(c→ X) + Γ(ann.)+ Γ(PI). (4.193)

We will see that the dominant contribution to theBc lifetime is expected to be given by the charmed
quark decays (≈ 70%), theb-quark decays and the weak annihilation are expected to add about 20% and
10%, respectively, while the Pauli interference term givesa valuable contribution in thēb→cc̄s decays at
the level of−1.5%, which we have included in theb-quark decay fraction. The above percentages were
obtained in [309]. Somewhat different figures may be obtained in different approaches, e.g. C. H. Chang
et al. obtain in [305] about70% for the fraction ofc-quark decays, about22% for the fraction ofb-quark
decays without Pauli interference, about17% for the fraction of weak annihilation and about−9% for
the fraction of the Pauli interference.

283



The annihilation width,Γ(ann.), can be reliably estimated in the framework of inclusive ap-
proaches. Let us consider, for instance, the effective weakinteraction Hamiltonian in the quark transition
b→cūd:

Heff =
GF

2
√

2
VcbV

∗
ud{C+(µ)O+ +C−(µ)O−}, (4.194)

with
O± = ūiγν(1 − γ5)di b̄jγ

ν(1 − γ5)cj ± ūiγν(1 − γ5)dj b̄iγ
ν(1 − γ5)cj , (4.195)

wherei, j are color indices. The factorsC±(µ) account for the corrections induced by hard gluons to the
corresponding four-fermion operators. A review on the evaluation ofC±(µ) can be found in [328]. The
normalization condition is given byC±(mb) = 1. A natural choice forµ in decays with given initial and
final hadronic states should correspond to the scale at whichthe hadronic matrix elements are evaluated.
We also define

a1(µ) =
1

2Nc
[C+(µ)(Nc + 1) + C−(µ)(Nc − 1)],

a2(µ) =
1

2Nc
[C+(µ)(Nc + 1) − C−(µ)(Nc − 1)].

(4.196)

Then, we obtain

Γ(ann.)=
∑

i=τ,c

G2
F

8π
|Vbc|2f2

BcMm2
i (1 −m2

i /m
2
Bc)

2 · Ci , (4.197)

wherefBc ≈ 400 MeV (see below),Cτ = 1 for theτ+ντ -channel,Cc = 3|Vcs|2a2
1 for thecs̄-channel,

and the gluon corrections for the annihilation into hadronsgo in the factora1 = 1.22± 0.04 (see [328]).
This estimate of the quark contribution does not depend on a hadronization model, since a large energy
release, of the order of the meson mass, takes place. Moreover, one can see that the contributions from
light leptons and quarks can be neglected.

As for the non-annihilation decays, in the approach of the OPE for the quark currents of weak
decays [305], one takes into accountαs corrections to the free quark decays and uses the quark-hadron
duality for the final states. Then one considers the matrix element for the transition operator over the
meson state. The latter allows one also to take into account the effects caused by the motion and virtuality
of the decaying quark inside the meson because of the interaction with the spectator. In this way the
b̄→c̄cs̄ decay mode turns out to be suppressed almost completely due to the Pauli interference with the
charm quark from the initial state. Besides, thec-quark decays with the spectatorb̄ quark are essentially
suppressed in comparison with the free quark decays becauseof the large binding energy in the initial
state.

In an exclusive approach it is necessary to sum up widths of different decay modes calculated in
potential models. Considering the semileptonic decays dueto theb̄→c̄l+νl andc→sl+νl transitions, one
finds that the hadronic final states are practically saturated by the lightest1S state in the(c̄c) system,
i.e. ηc andJ/ψ and the1S states in the(b̄s) system, i.e.Bs andB∗

s . Further, thēb→c̄ud̄ channel, for
example, can be calculated through the decay width ofb̄→c̄l+νl, taking into account color factors and
hard gluon corrections to the four-quark interaction. It can be also obtained as a sum over the widths of
decays to(ud̄) bound states.

The results of the calculation of theBc total width in the inclusive OPE and exclusive PM ap-
proaches give values that are consistent with each other, ifone takes into account the most significant
uncertainty, which is related to the choice of the quark masses (especially of the charm quark):

τ [B+
c ]OPE, PM = 0.55 ± 0.15 ps. (4.198)

So, for instance, M. Beneke and G. Buchalla using OPE [305] give the estimate0.4-0.7 ps (see Fig. 4.31),
which slightly corrects a result by I. Bigi [305]:0.4 ps. As for the potential approach, despite huge
differences in details of exclusive estimates, models usually give a lifetime close to0.4-0.6 ps, although
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Fig. 4.31: TheBc lifetime calculated in QCD sum rules versus the scale of the hadronic weak Lagrangian in the decay of the

charm quark. The wide shaded region, taken from Ref. [308], shows the uncertainty of the semi-inclusive estimates, the dark

shaded region is the preferable choice as given by the lifetimes of charmed mesons. The dots represent the values in the OPE

approach by M. Beneke and G. Buchalla (left point) and A. Onishchenko (right point) taken from Refs. [305]. The narrow

shaded region represents the result of [309] obtained by summing up the exclusive channels with a variation of the hadronic

scale in the decays of thēb in the range of1 < µb < 5 GeV. The arrow points to the preferable prescription ofµ = 0.85 GeV

as discussed in [308].

the estimates strongly depend on the choice of the charm quark mass. We refer to the pioneering paper
by M. Lusignoli and M. Masetti [317]. The obtained value agrees with the measured one (4.192). In
Tab. 4.33 the reader may find summarized several theoreticalresults for inclusive decay channels.

The OPE estimates of inclusive decay rates agree with recentsemi-inclusive calculations in the
sum rules of QCD and NRQCD [307,308], where one assumes the saturation of hadronic final states by
the ground levels in thecc̄ andb̄s systems as well as the factorization that allows to relate the semileptonic
and hadronic decay modes. The Coulomb resummation plays an essential role in theBc decays and
removes the disagreement between the estimates in sum rulesand OPE. In contrast to OPE, where the
basic uncertainty is given by the heavy quark masses, these parameters are fixed by the two-point sum
rules for bottomonia and charmonia, so that the accuracy of SR calculations for the total width of theBc
is determined by the choice of the scaleµ for the hadronic weak Lagrangian in decays of charmed quarks.
We show this dependence in Fig. 4.31, wheremc/2 < µ < mc. The dark shaded region corresponds to
the scales preferred by the data on the charmed meson lifetimes. Choosing the scale in thec→s decays
of Bc to be equal toµ2

Bc
≈ (0.85 GeV)2, puttinga1(µBc) = 1.20 and neglecting the contributions of a

nonzeroa2 in the charmed quark decays, in the framework of semi-inclusive sum rule calculations one
obtains [308]

τ [Bc]SR = 0.48 ± 0.05 ps, (4.199)

which agrees with the direct sum of exclusive channels presented in the next sections. In Fig. 4.31 we
also show the exclusive estimate of the lifetime from Ref. [309].

8.2 Exclusive decays

Typical values for the exclusive decay branching ratios of theBc, as obtained in QCD SR [308,309], are
shown in Table 4.34 at given values of the factorsa1,2 and lifetime. The uncertainty of such predictions
is about 15%, and the numbers essentially agree with most of the potential models within the theoretical
uncertainties of the QCD SR estimates. In square bracket we show the marginal deviations from the
central values obtained in some potential models.

In addition to the decay channels with aJ/ψ well detectable through its leptonic mode, one could
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Bc decay mode OPE, % PM, % SR, %
b̄→c̄l+νl 3.9 ± 1.0 3.7 ± 0.9 2.9 ± 0.3
b̄→c̄ud̄ 16.2 ± 4.1 16.7 ± 4.2 13.1 ± 1.3∑
b̄→c̄ 25.0 ± 6.2 25.0 ± 6.2 19.6 ± 1.9

c→sl+νl 8.5 ± 2.1 10.1 ± 2.5 9.0 ± 0.9
c→sud̄ 47.3 ± 11.8 45.4 ± 11.4 54.0 ± 5.4∑
c→s 64.3 ± 16.1 65.6 ± 16.4 72.0 ± 7.2

B+
c →τ+ντ 2.9 ± 0.7 2.0 ± 0.5 1.8 ± 0.2

B+
c →cs̄ 7.2 ± 1.8 7.2 ± 1.8 6.6 ± 0.7

Table 4.33: Summary of theoretical predictions in various approaches for the branching ratios of theBc decay modes calculated

in the framework of the inclusive OPE approach (see M. Benekeand G. Buchalla in [305]), by summing up the exclusive modes

in potential models (for instance, in the model of [318,319]used in [308]) and according to the semi-inclusive estimates in the

sum rules of QCD and NRQCD [307–309].

expect significant information on the dynamics ofBc decays coming from channels with a single heavy
mesons, if the experimental efficiency is good enough to extract a signal from the cascade decays. Since
decays to excited charmonia in the final state (likeP waves) [331, 332], radiative leptonic modes [333]
and some rare decays [334] are out of reach for the experimental facilities of the nearest future, we do
not display them in Tab. 4.34.

In [309] theb̄ decay to the doubly charmed states is predicted to give

B(B+
c →c̄c cs̄) ≈ 1.39%. (4.200)

Comparing the width with the estimate from the spectator decay [305],

Γ(B+
c →c̄c cs̄)

∣∣
SR ≈ 20 · 10−15 GeV, (4.201)

Γ(B+
c →c̄c cs̄)

∣∣
spect.

≈ 90 × 10−15 GeV, (4.202)

we see that they differ by a factor of about1/4.5. The SR result is in agreement with an estimate in
OPE by M. Beneke and G. Buchalla of [305], though the uncertainty is quite large (≈ 60%) due to the
mentioned uncertainty in the renormalization point as wellas in the charm quark mass.

At present we can say that an accurate direct measurement of theBc lifetime can provide in-
formation on the masses of thec and b quarks and the normalization point of the non-leptonic weak
Lagrangian in theBc decays (thea1 anda2 factors). The experimental study of semileptonic decays and
the extraction of ratios of form factors can test the spin symmetry of NRQCD and HQET and decrease the
uncertainties in the corresponding theoretical evaluation of the quark parameters as well as the hadronic
matrix elements. The measurement of branching fractions for semileptonic and non-leptonic modes and
their ratios can give information on the values of the factorization parameters, which depend again on
the normalization of the non-leptonic weak Lagrangian. Thecharm quark counting in theBc decays is
related to the overall contribution ofb quark decays as well as to the suppression ofb̄→cc̄s̄ transitions
because of the destructive interference, whose value depends on the nonperturbative parameters (roughly
said, the leptonic constant) and on the non-leptonic weak Lagrangian.

8.21 Semileptonic decays

The semileptonic decay rates estimated in the QCD sum rules for 3-point correlators [335] are underesti-
mated in [327], because large Coulomb-like corrections were not taken into account. The recent analysis
of SR in [306–308] decreased the uncertainty, so that the estimates agree with the calculations in the
potential models.
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Mode BR, %
B+
c → ηce

+ν 0.75 [0.5]
B+
c → ηcτ

+ν 0.23 [0.2]
B+
c → η′ce

+ν 0.020 [0.05]
B+
c → η′cτ

+ν 0.0016 [-]
B+
c → J/ψe+ν 1.9 [1]

B+
c → J/ψτ+ν 0.48 [0.35]

B+
c → ψ′e+ν 0.094 [0.2]

B+
c → ψ′τ+ν 0.008 [-]

B+
c → D0e+ν 0.004 [0.02]

B+
c → D0τ+ν 0.002 [0.08]

B+
c → D∗0e+ν 0.018 [0.004]

B+
c → D∗0τ+ν 0.008 [0.016]

B+
c → B0

se
+ν 4.03 [1]

B+
c → B∗0

s e
+ν 5.06 [1.2]

B+
c → B0e+ν 0.34 [0.08]

B+
c → B∗0e+ν 0.58 [0.15]

B+
c → ηcπ

+ 0.20 [0.12]
B+
c → ηcρ

+ 0.42 [0.3]
B+
c → J/ψπ+ 0.13 [0.08]

B+
c → J/ψρ+ 0.40 [0.2]

B+
c → ηcK

+ 0.013 [0.008]
B+
c → ηcK

∗+ 0.020 [0.018]
B+
c → J/ψK+ 0.011 [0.007]

Bc → J/ψK∗+ 0.022 [0.016]
B+
c → D+D

0 0.0053 [0.0018]
B+
c → D+D

∗0 0.0075 [0.002]
B+
c → D∗+D

0 0.0049 [0.0009]
B+
c → D∗+D ∗0 0.033 [0.003]

B+
c → D+

s D
0 0.00048 [0.0001]

B+
c → D+

s D
∗0 0.00071 [0.00012]

B+
c → D∗+

s D
0 0.00045 [0.00005]

B+
c → D∗+

s D
∗0 0.0026 [0.0002]

B+
c → ηcD

+
s 0.28 [0.07]

Mode BR, %
B+
c → ηcD

∗+
s 0.27 [0.07]

B+
c → J/ψD+

s 0.17 [0.05]
B+
c → J/ψD∗+

s 0.67 [0.5]
B+
c → ηcD

+ 0.015 [0.04]
B+
c → ηcD

∗+ 0.010 [0.002]
B+
c → J/ψD+ 0.009 [0.002]

B+
c → J/ψD∗+ 0.028 [0.014]

B+
c → B0

sπ
+ 16.4 [1.6]

B+
c → B0

sρ
+ 7.2 [2.4]

B+
c → B∗0

s π
+ 6.5 [1.3]

B+
c → B∗0

s ρ
+ 20.2 [11]

B+
c → B0

sK
+ 1.06 [0.2]

B+
c → B∗0

s K
+ 0.37 [0.13]

B+
c → B0

sK
∗+ –

B+
c → B∗0

s K
∗+ –

B+
c → B0π+ 1.06 [0.1]

B+
c → B0ρ+ 0.96 [0.2]

B+
c → B∗0π+ 0.95 [0.08]

B+
c → B∗0ρ+ 2.57 [0.6]

B+
c → B0K+ 0.07 [0.01]

B+
c → B0K∗+ 0.015 [0.012]]

B+
c → B∗0K+ 0.055 [0.006]

B+
c → B∗0K∗+ 0.058 [0.04]

B+
c → B+K0 1.98 [0.18]

B+
c → B+K∗0 0.43 [0.09]

B+
c → B∗+K0 1.60 [0.06]

B+
c → B∗+K∗0 1.67 [0.6]

B+
c → B+π0 0.037 [0.004]

B+
c → B+ρ0 0.034 [0.01]

B+
c → B∗+π0 0.033 [0.003]

B+
c → B∗+ρ0 0.09 [0.03]

B+
c → τ+ντ 1.6

B+
c → cs̄ 4.9

Table 4.34: QCD SR predictions [308, 309] for the branching ratios of exclusiveB+
c decays with the choice of factors:ac1 =

1.20 andac2 = −0.317 in the non-leptonic decays of thec quark, andab1 = 1.14 andab2 = −0.20 in the non-leptonic decays

of the b̄ quark. The lifetime of theBc is takenτ [Bc] ≈ 0.45 ps. The uncertainty of the widths is estimated to be about 15%.

The numbers in square brackets show the marginal values obtained in some potential models [325,326,329,330]. The maximal

difference is of one order of magnitude.
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(A) Coulomb resummation

For the heavy quarkonium̄bc, where the relative quark velocity is small, Coulomb-likeαs/v cor-
rections are important and have to be resummed. It is well known that taking into account these correc-
tions in two-point sum rules numerically enhances the Born value of the spectral density by a factor two
or three [316].

(B) Primary modes

In practice, the most important information comes from theψ mode, since this charmonium is
clearly detected in experiments [224, 301]. In addition to the investigation of various form factors and
their dependence on the momentum transfer squared, the measurement of the decay toψ′, could answer
the question of the reliability of QCD predictions for the decays to excited states. At present, finite energy
sum rules predict the width of theB+

c →ψ′l+ν decay in reasonable agreement with potential models if
one takes into account an uncertainty of about 50%.

(C) Relations between the form factors

In the limit of infinitely heavy quark masses, the NRQCD and HQET Lagrangians possess spin
symmetry. The most familiar implication of such symmetry isthe common Isgur–Wise function deter-
mining the form factors in the semileptonic decays of singleheavy hadrons. In contrast to weak decays
with a light spectator quark, theBc decays toψ, ηc andB(∗)

s involve the heavy spectator, so that the
spin symmetry works only at recoil momenta close to zero, where the spectator enters the heavy hadron
in the final state with no hard gluon rescattering. Hence, we expect relations between the form factors
in the vicinity of zero recoil. The normalization of the formfactor is not fixed, as it is in decays of
hadrons with a single heavy quark, since the heavy quarkoniawave functions are flavor dependent. In
practice, the ratios of form factors, which are fixed at zero recoil, are expected to exhibit a dependence on
the momentum transfer squared, which is not significant in actual numerical estimates in the restricted
region of the physical phase space. The SR estimates of the form factors show a good agreement with
the expectations, whereas the deviations can be traced backto the difference in theq2 evolution of the
form factors from the zero recoil point. This can be neglected within the accuracy of the SR method for
the transitions ofBc→c̄c, as shown in [307]. The1/mQ deviations from the symmetry relations in the

decays ofB+
c →B

(∗)
s e+ν are about 10-15%, as found in the QCD sum rules considered in [308]. Form

factors for specific decay channels have been considered also in [322,331].

The combinations of relations derived in [307, 308] reproduce the only equality in [336], which
was found for each mode in the strict limit ofv1 = v2 also considered by Sanchis–Lozano in [337].

8.22 Leptonic decays

The dominant leptonic decay of theBc is given by theτντ mode (see Table 4.33). However, it has a
low experimental efficiency of detection because of the hadronic background in theτ decays. Recently,
in Refs. [333] the enhancement of muon and electron channelsin the radiative modes has been studied.
The additional photon removes the helicity suppression forthe leptonic decay of pseudoscalar particles,
leading to an increase of the muonic mode by about a factor two.

(A) Leptonic constant ofBc
In NRQCD the calculation of the leptonic constant for the heavy quarkonium with two-loop accu-

racy requires the two-loop matching of the NRQCD currents with the currents in full QCD,

JQCD
ν = Q̄1γ5γνQ2, J NRQCD

ν = −χ†ψ vν , JQCD
ν = K(µhard;µfact) J NRQCD

ν (µfact),

where the scaleµhard gives the normalization point for the matching of NRQCD withfull QCD, while
µfact denotes the normalization point for the calculations in perturbation theory in NRQCD.

For the pseudoscalar heavy quarkonium composed of heavy quarks with different flavors, the
Wilson coefficientK has been calculated with two-loop accuracy in Refs. [338] and [339]. In NRQCD
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Fig. 4.32: The leptonic constant of theBc is presented versus the soft scale of normalization. The shaded region restricted

by curves corresponds to the change of the hard scale fromµhard = 3 GeV (the dashed curve) toµhard = 2 GeV (the solid

curve) with the initial condition for the evolution of the normalization factorA(µfact), A(1.2 GeV) = 1 andA(1 GeV) = 1

respectively, in the nonrelativistic current matrix element. The horizontal band is the region expected from the QCD sum

rules [306, 327, 340] and scaling relations for the leptonicconstants of heavy quarkonia [341]. In the overlap region, the

leptonic constant ofBc depends weakly on the parameters.

the currentJ NRQCD
ν has nonzero anomalous dimension, so that we find

〈0|J NRQCD
ν (µ)|Q̄Q〉 = A(µ) vνf

NRQCD

Q̄Q
MQ̄Q, (4.203)

where, in terms of nonrelativistic quarks, the leptonic constant for the heavy quarkonium is given by the
well-known relation with the wave function at the origin.

Following the method described in [342,343], one can estimate the wave function of thēbc quarko-
nium using the static potential given in [342]. Details of the calculations can be found in [344]. The result
of the calculation of theBc leptonic constant is shown in Fig. 4.32. The final result of the two-loop cal-
culation is

fBc = 395 ± 15 MeV, (4.204)

which is close to an early estimate by S. Capstick and S. Godfrey in [304].

The result onfBc is in agreement with the scaling relation derived from the quasi-local QCD sum
rules [341], which use the regularity in the heavy quarkonium mass spectra, i.e. the fact that the splitting
between the quarkonium levels after averaging over the spins of the heavy quarks depends weakly on the
quark flavors. So, the scaling law forS-wave quarkonia has the form

f2
n

Mn

(
Mn

M1

)2 (m1 +m2

4µ12

)2

=
c

n
, (4.205)

wheren is the radial quantum number,m1,2 the masses of the heavy quarks composing the quarkonium,
µ12 the reduced mass andc a dimensional constant independent on both the quark flavorsandn. The
accuracy depends on the heavy quark masses, and is discussedin detail in [341]. The parameterc can be
extracted from the known leptonic constants ofψ andΥ.

8.23 Non-leptonic modes

With respect to the inclusive non-leptonic widths, which can be estimated in the framework of quark-
hadron duality (see Table 4.33), the calculation of exclusive modes usually involves factorization [86,
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345], which, as expected, can be quite accurate for theBc, since the quark-gluon sea is suppressed in the
heavy quarkonium. Thus, the important parameters are the factorsa1 anda2 in the non-leptonic weak
Lagrangian, which depend on the normalization point.

The agreement of QCD SR estimates for the non-leptonic decays of the charm quark in theBc with
the values predicted by potential models is rather good for the direct transitions with no permutation of
color lines, i.e. processes involving the factora1 in the non-leptonic amplitude. In contrast, the sum rule
predictions are significantly enhanced in comparison with the values calculated in potential models for
transitions with color permutation, i.e. for processes involving the factora2 (see Table 4.34). Further,
for transitions̄b→cc̄s where the interference is significantly involved the size ofthe interference is about
35-50% of the width evaluated by neglecting interference terms. These estimates are in agreement with
the potential models of Refs. [322,325].

At large recoils as inB+
c →ψπ+(ρ+), the spectator picture of transition can be broken by hard

gluon exchanges [346]. The spin effects in such decays were studied in [332]. Typically recoil effects
are taken into account to some extent in any relativistic approach like [322].

For the widths of non-leptonicc-quark decays the sum rule estimates are typically greater than
those of potential models24. In this respect we note that the QCD SR calculations are consistent with
the inclusive ones. Summing up the calculated exclusive widths, the total width of theBc meson is
shown in Fig. 4.31, which points to a good agreement of the exclusive calculations with those of OPE
and semi-inclusive estimates.

Another interesting point is the possibility to extract thefactorization parametersa1 anda2 in the
c-quark decays by measuring the ratios of widths

Γ(B+
c →B(∗)+K̄(∗)0)

Γ(B+
c →B(∗)0K(∗)+)

=

∣∣∣∣
Vcs
V 2
cd

∣∣∣∣
2 a2

2

a2
1

, (4.206)

where one should take identical sets of pseudoscalar and vector states in both decays. This procedure
can give a test for the factorization approach itself.

The suppressed decays caused by the flavor changing neutral currents were studied in [334].

(A) CP violation inBc decays

CP violation inBc decays can be investigated in the same way as inB decays. The expected CP
asymmetry ofA(B±

c →J/ψD±) is about4×10−3, when the corresponding branching ratio is suppressed
as10−4 [299]. Therefore, the direct study of CP violation inBc decays is practically difficult because of
the low relative yield ofBc with respect to ordinaryB mesons:σ(Bc)/σ(B) ∼ 10−3.

As mentioned at the beginning, theBc meson is expected to be copiously produced in future
colliders. In such circumstances a possible challenge is whether one could get an opportunity to extract
some information about the CKM unitarity triangle from theBc in a model independent way. Indeed,
there is such an opportunity for the angleγ using the strategy of the reference triangles [352] in the decays
of doubly heavy hadrons. This strategy for the study of CP violation inBc decays was originally proposed
by M. Masetti [299], independently investigated by R. Fleischer and D. Wyler [299] and extended to
the case of doubly heavy baryons in [353]. Other possibilities include the lepton tagging ofBs in the
B±
c →B

(∗)
s l±ν decays for the study of mixing and CP violation in theBs sector [354], and a possible

transverse polarization of theτ lepton inBc→τ ν̄τγ [347].

The triangle strategy is based on the direct determination of absolute values for the set of four
decays, at least: the decays of the hadron into the taggedD0 meson, the tagged̄D0 meson, the tagged
CP-even state ofD0, and the decay of the anti-hadron into the tagged CP-even state ofD0. To illustrate
the point, let us consider the decays

B+
c →D0D+

s and B+
c →D̄0D+

s .
24See also the recent discussions on theBc decays in [329,330,347–351].
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The corresponding diagrams with the decay ofb̄-quark are shown in Figs. 4.33 and 4.34.

B+
c D+

s

D0

B+
c D0

D+
s

b

c

u

c

s b u

c

s

c

Fig. 4.33: The diagrams of̄b-quark decay contributing to the weak transitionB+
c →D0D+

s .

B+
c D+

s

D̄0

B+
c

D+
s

D̄0

b

c

c

u

s

b

s
c

u
c

c

Fig. 4.34: The diagrams of̄b-quark decay contributing to the weak transitionB+
c →D̄0D+

s .

The exclusive modes do not have penguin terms at the leading order in the Fermi constantGF
that we consider here. However, the diagram with the weak annihilation of two constituents, i.e. the
charmed quark and beauty antiquark in theB+

c meson, can contribute at the next order inαs as shown
in Fig. 4.34 for the given final state. Nevertheless, we see that such diagrams have the same weak-
interaction structure as at tree level. The magnitude of theαs corrections to the absolute values of the
corresponding decay widths is discussed in [300]. We expectthe sides of the reference-triangles to be of
the same order of magnitude, which makes the method an attractive way to extract the angleγ.

The predictions of QCD sum rules for the exclusive decays ofBc are summarized in Table 4.35
at fixed values ofa1,2 and lifetime. For the sake of completeness and comparison weshow the estimates
for the channels with the neutralD meson and chargedD+ as well as for the vector states in addition to
the pseudoscalar ones.

First, we see that the similar decay modes without the strange quark in the final state can also
be used, in principle, for the extraction ofγ, however, these channels are more problematic since the
sides of the reference-triangles significantly differ fromeach other25, so that the measurements have to
be extremely accurate to get useful information on the angle, which means that one has to accumulate a
huge statistics for the dominant mode.

Second, the decay modes with the vector neutralD meson in the final state are useless for the
purpose of the CKM measurement under the discussed approach. However, the modes with the vector
chargedD∗ andD∗

s mesons can be important for the extraction ofγ. For instance, one could consider
the modesD∗+→D0π+ andD0→K−π+. The neutral charmed meson should be carefully treated in
order to avoid misidentification with the primary one. Otherwise, one could use the mode with the
neutral pion,D∗+→D+π0, whose detection in an experimental facility could be problematic. The same
considerations apply to the vector mesonD∗+

s , whose radiative electromagnetic decay is also problematic
for the detection, since the photon could be easily lost. On the other hand, the loss of the photon does
not disturb the analysis in the case of fully reconstructedD+

s andB+
c .

25The ratio of widths is basically determined by|VcbVuda2|2/|VubVcda1|2 ∼ 110, if we ignore the interference effects.
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Mode BR, 10−6

B+
c → D+D 0 53 [18]

B+
c → D+D ∗0 75 [20]

B+
c → D∗+D

0 49 [9]
B+
c → D∗+D

∗0 330 [30]
B+
c → D+

s D
0 4.8 [1]

B+
c → D+

s D
∗0 7.1 [1.2]

B+
c → D∗+

s D
0 4.5 [0.5]

B+
c → D∗+

s D
∗0 26 [2]

Mode BR, 10−6

B+
c → D+D 0 0.32 [0.1]

B+
c → D+D ∗0 0.28 [0.07]

B+
c → D∗+D 0 0.40 [0.4]

B+
c → D∗+D ∗0 1.59 [0.4]

B+
c → D+

s D
0 6.6 [1.7]

B+
c → D+

s D
∗0 6.3 [1.3]

B+
c → D∗+

s D
0 8.5 [8.1]

B+
c → D∗+

s D
∗0 40.4 [6.2]

Table 4.35: QCD SR predictions [300] for the branching ratios of exclusiveB+
c decays with the choice of factors:ab1 = 1.14

andab2 = −0.20 in the non-leptonic decays ofb̄ quark. The lifetime of theBc is takenτ [Bc] ≈ 0.45 ps. For comparison we

show in square brackets minimal values estimated in the potential models of [299].

In the BTeV [310] and LHCb [311] experiments one expects theBc production at the level of sev-
eral billion events. Therefore, one expects104-105 decays ofBc in the gold-plated modes under interest.
The experimental challenge is the efficiency of detection. One usually gets a 10% efficiency for the ob-
servation of distinct secondary vertices outstanding fromthe primary vertex of beam interaction. Next,
one has to take into account the branching ratios ofDs andD0 mesons. This efficiency crucially depends
on whether one can detect the neutral kaons and pions or not. So, for theDs meson the corresponding
branching ratios grow from 4% (no neutralK andπ) to 25%. The same interval for the neutralD0 is
from 11% to 31%. The detection of neutral kaon is necessary for the measurement of decay modes into
the CP-odd stateD2 of the neutralD0 meson, however, one can omit this cross-check channel from the
analysis in dealing with the CP-even stateD1. The corresponding intervals of branching ratios reachable
by the experiments are from 0.5% to 1.3% for the CP-even stateand from 1.5% to 3.8% for the CP-odd
state ofD0. A pessimistic estimate for the product of branching ratiosis about2 × 10−4, which results
in 2-20 reconstructed events.
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1. Formalism for inclusive quarkonium production

1.1 NRQCD factorization method

In both heavy-quarkonium annihilation decays and hard-scattering production, large energy-momentum
scales appear. The heavy-quark massm is much larger thanΛQCD, and, in the case of production, the
transverse momentumpT can be much larger thanΛQCD as well. This implies that the associated values
of the QCD running coupling constant are much less than one. (αs(mc) ≈ 0.25 andαs(mb) ≈ 0.18.)
Therefore, one might hope that it would be possible to calculate the rates for heavy quarkonium decay and
production accurately in perturbation theory. However, there are clearly low-momentum, nonperturbative
effects associated with the dynamics of the quarkonium bound state that invalidate the direct application
of perturbation theory.

In order to make use of perturbative methods, one must first separate the short-distance/high-
momentum, perturbative effects from the long-distance/low-momentum, nonperturbative effects—a pro-
cess which is known as “factorization.” One convenient way to carry out this separation is through the
use of the effective field theory Nonrelativistic QCD (NRQCD) [1–3]. NRQCD reproduces full QCD
accurately at momentum scales of ordermv and smaller, wherev is the typical heavy-quark velocity in
the bound state in the CM frame. (v2 ≈ 0.3 for charmonium, andv2 ≈ 0.1 for bottomonium.) Virtual
processes involving momentum scales of orderm and larger can affect the lower-momentum processes,
and their effects are taken into account through the short-distance coefficients of the operators that appear
in the NRQCD action.

BecauseQQ̄ production occurs at momentum scales of orderm or larger, it manifests itself in
NRQCD through contact interactions. As a result, the inclusive cross section for the direct production of
the quarkoniumH at large transverse momentum (pT of orderm or larger) in hadron orep colliders or
at large momentum in the CM frame (p∗ of orderm or larger) ine+e− colliders can be written as a sum
of products of NRQCD matrix elements and short-distance coefficients:

σ[H] =
∑

n

σn(Λ)〈OH
n (Λ)〉. (5.1)

Here,Λ is the ultraviolet cutoff of the effective theory, theσn are short-distance coefficients, and the
〈OH

n 〉 are vacuum-expectation values of four-fermion operators in NRQCD. There is a formula analo-
gous to Eq. (5.1) for inclusive quarkonium annihilation rates, except that the vacuum-to-vacuum matrix
elements are replaced by quarkonium-to-quarkonium matrixelements [3].
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The short-distance coefficientsσn(Λ) in (5.1) are essentially the process-dependent partonic cross
sections to make aQQ̄ pair, convolved with parton distributions if there are hadrons in the initial state.
TheQQ̄ pair can be produced in a color-singlet state or in a color-octet state. Its spin state can be singlet
or triplet, and it also can have orbital angular momentum. The short-distance coefficients are determined
by matching the square of the production amplitude in NRQCD to full QCD. Because the scale of the
QQ̄ production is of orderm or greater, this matching can be carried out in perturbationtheory.

The four-fermion operators in Eq. (5.1) create aQQ̄ pair in the NRQCD vacuum, project it onto
a state that in the asymptotic future consists of a heavy quarkonium plus anything, and then annihilate
theQQ̄ pair. The vacuum matrix element of such an operator is the probability for aQQ̄ pair to form
a quarkonium plus anything. These matrix elements are somewhat analogous to parton fragmentation
functions. They contain all of the nonperturbative physicsassociated with evolution of theQQ̄ pair into
a quarkonium state. An important property of the matrix elements, which greatly increases the predictive
power of NRQCD, is the fact that they are universal,i.e., process independent.

The color-singlet and color-octet four-fermion operatorsthat appear in Eq. (5.1) correspond to
the evolution into a color-singlet quarkonium of aQQ̄ pair created at short distance in a color-singlet
state or a color-octet state, respectively. In the case of decay, the color-octet matrix elements have the
interpretation of the probability to find the quarkonium in aFock state consisting of aQQ̄ pair plus
some number of gluons. It is a common misconception that color-octet production proceeds through the
production of a higher Fock state of the quarkonium. However, in the leading color-octet production
mechanisms, the gluons that neutralize the color are not present at the time of the creation of the color-
octetQQ̄ pair, but are emitted during the subsequent hadronization process. The production of the
quarkonium through a higher Fock state requires the production of gluons that are nearly collinear to the
QQ̄ pair, and it is suppressed by additional powers ofv.

NRQCD power-counting rules allow one to organize the sum over operators in Eq. (5.1) as an
expansion in powers ofv. Through a given order inv, only a finite set of matrix elements contributes.
Furthermore, there are simplifying relations between matrix elements, such as the heavy-quark spin
symmetry and the vacuum-saturation approximation, that reduce the number of independent matrix el-
ements [3]. Some examples of relations between color-singlet matrix elements that follow from heavy-
quark spin symmetry are

〈OJ/ψ
1 (3S1)〉 = 3 〈Oηc

1 (1S0)〉, (5.2)

〈OχcJ
1 (3PJ)〉 = 1

3(2J + 1)〈Ohc
1 (1P1)〉. (5.3)

These relations hold up to corrections of orderv2. The prefactors on the right side of Eqs. (5.2)-(5.3)
are just ratios of the numbers of spin states. Since the operators in Eqs. (5.2) and (5.3) have the same
angular momentum quantum numbers as theQQ̄ pair in the dominant Fock state of the quarkonium,
the vacuum-saturation approximation can be used to expressthe matrix elements in terms of the squares
of wave functions or their derivatives at the origin, up to corrections of orderv4. Heavy-quark spin
symmetry also gives relations between color-octet matrix elements, such as

〈OJ/ψ
8 (3S1)〉 = 3〈Oηc

8 (1S0)〉, (5.4)

〈OJ/ψ
8 (1S0)〉 = 3 〈Oηc

8 (3S1)〉, (5.5)

〈OJ/ψ
8 (3PJ)〉 = 3 〈Oηc

8 (1P1)〉, (5.6)

〈OχcJ
8 (3S1)〉 = 1

3(2J + 1)〈Ohc
8 (1S0)〉. (5.7)

These relations hold up to corrections of orderv2. The prefactors on the right side of Eqs. (5.4)-(5.7) are
again just ratios of the numbers of spin states. The vacuum-saturation approximation is not applicable to
color-octet matrix elements.

The relative importance of the terms in the factorization formula in Eq. (5.1) is determined not
only by the sizes of the matrix elements but also by the sizes of the coefficientsσn in Eq. (5.1). The size
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of the coefficient depends on its order inαs, color factors, and dimensionless kinematic factors, suchas
m2/p2

T .

The NRQCD factorization approach is sometimes erroneouslycalled the “color-octet model,” be-
cause color-octet terms are expected to dominate in some situations, such asJ/ψ production at largepT
in hadron colliders. However, there are also situations in which color-singlet terms are expected to dom-
inate, such asJ/ψ production in continuume+e− annihilation at theB factories. Moreover, NRQCD
factorization is not a model, but a rigorous consequence of QCD in the limitΛQCD/m → 0.

A specific truncation of the NRQCD expansion in Eq. (5.1) could be called a model, although,
unlike most models, it is in principle systematically improvable. In truncating at a given order inv,
one can reduce the number of independent matrix elements by making use of approximate relations,
such as Eqs. (5.2)–(5.3) and Eqs. (5.4)–(5.7). The simplesttruncation of the NRQCD expansion in
Eq. (5.1) that is both phenomenologically viable and corresponds to a consistent truncation inv includes
four independent NRQCD matrix elements for each S-wave multiplet (one color-singlet and three color-
octet) and two independent NRQCD matrix elements for each P-wave multiplet (one color-singlet and
one color-octet). We will refer to this truncation as the standard truncation inv. For the S-wave char-
monium multiplet consisting ofJ/ψ andηc, one can take the four independent matrix elements to be

〈OJ/ψ
1 (3S1)〉, 〈OJ/ψ

8 (1S0)〉, 〈OJ/ψ
8 (3S1)〉, and〈OJ/ψ

8 (3P0)〉. Their relative orders inv arev0, v3, v4,
andv4, respectively. It is convenient to define the linear combination

MH
k = 〈OH

8 (1S0)〉 +
k

m2
c

〈OH
8 (3P0)〉 , (5.8)

because many observables are sensitive only to the linear combination of these two color-octet matrix
elements corresponding to a specific value ofk. These four independent matrix elements can be used to
calculate the cross sections for theηc and each of the 3 spin states of theJ/ψ. Thus, this truncation of
NRQCD gives unambiguous predictions for the polarization of the J/ψ. For the P-wave charmonium
multiplet consisting ofχc0, χc1, χc2, andhc, we can take the two independent matrix elements to be
〈Oχc0

1 (3P0)〉 and〈Oχc0
8 (3S1)〉. Their orders inv relative to〈OJ/ψ

1 (3S1)〉 are bothv2. These two inde-
pendent matrix elements can be used to calculate the cross sections for each of the 12 spin states in the
P-wave multiplet. Thus, this truncation of NRQCD gives unambiguous predictions for the polarizations
of theχc1, χc2, andhc.

The NRQCDdecay matrixelements can be calculated in lattice simulations [4–8] or determined
from phenomenology. However, it is not yet known how to formulate the calculation of production matrix
elements in lattice simulations, and, so, the production matrix elements must be obtained phenomeno-
logically. In general, the production matrix elements are different from the decay matrix elements. The
exceptions are the color-singlet production matrix elements in which theQQ̄ pair has the same quan-
tum numbers as the quarkonium state, such as those in Eqs. (5.2) and (5.3). They can be related to
the corresponding decay matrix elements through the vacuum-saturation approximation, up to correc-
tions of relative orderv4 [3]. Phenomenological determinations of the production matrix elements for
charmonium states are given in Section 2.1.

The proof of the factorization formula in Eq. (5.1) relies both on NRQCD and on the all-orders
perturbative machinery for proving hard-scattering factorization. A detailed proof does not yet exist,
but work is in progress [9]. At a large transverse momentum (pT of orderm or larger), corrections to
hard-scattering factorization are thought to be of order(mv)2/p2

T (notm2/p2
T ) in the unpolarized case

and of ordermv/pT (notm/pT ) in the polarized case. At a small transverse momentum,pT of order
mv or smaller, the presence of soft gluons in the quarkonium binding process makes the application of
the standard factorization techniques problematic. It is not known if there is a factorization formula for
dσ/dp2

T at smallpT or for dσ/dp2
T integrated overpT .

In practical calculations of the rates of quarkonium decay and production, a number of significant
uncertainties arise. In many instances, the series inαs andv in the factorization formula in Eq. (5.1)
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converge slowly, and the uncertainties from their truncation are large—sometimes100% or larger. In ad-
dition, the matrix elements are often poorly determined, either from phenomenology or lattice measure-
ments, and the important linear combinations of matrix elements vary from process to process, making
tests of universality difficult. There are also large uncertainties in the heavy-quark masses (approximately
8% formc and approximately 2.4% formb) that can be very significant for quarkonium rates that are
proportional to a large power of the mass.

Many of the largest uncertainties in the theoretical predictions, as well as some of the experimental
uncertainties, cancel in the ratios of cross sections. Examples in charmonium production are the ratio
Rψ of the inclusive cross sections forψ(2S) andJ/ψ production and the ratioRχc of the inclusive cross
sections forχc1 andχc2 production. These ratios are defined by

Rψ =
σ[ψ(2S)]

σ[J/ψ]
, (5.9)

Rχc =
σ[χc1]

σ[χc2]
. (5.10)

Other useful ratios are the fractionsFH of J/ψ’s that come from decays of higher quarkonium statesH.
The fractions that come from decays ofψ(2S) and fromχc(1P ) are defined by

Fψ(2S) = Br[ψ(2S)→J/ψ +X]
σ[ψ(2S)]

σ[J/ψ]
, (5.11)

Fχc =

2∑

J=0

Br[χcJ(1P )→J/ψ +X]
σ[χcJ(1P )]

σ[J/ψ]
. (5.12)

The J = 0 term in (5.12) is usually negligible, because the branchingfraction Br[χc0→J/ψX] is so
small. The fraction ofJ/ψ’s that are produced directly can be denoted byFJ/ψ.

Another set of observables in which many of the uncertainties cancel out consists of polarization
variables, which can be defined as ratios of cross sections for the production of different spin states of
the same quarkonium. The angular distribution of the decay products of the quarkonium depends on the
spin state of the quarkonium. The polarization of a1−− state, such as theJ/ψ, can be measured from the
angular distribution of its decays into lepton pairs. Letθ be the angle in theJ/ψ rest frame between the
positive lepton momentum and the chosen polarization axis.The most convenient choice of polarization
axis depends on the process. The differential cross sectionhas the form

dσ

d(cos θ)
∝ 1 + α cos2 θ, (5.13)

which defines a polarization variableα whose range is−1 ≤ α ≤ +1. We can define longitudinally and
transversely polarizedJ/ψ’s to be ones whose spin components along the polarization axis are 0 and
±1, respectively. The polarization variableα can then be expressed as(1 − 3ξ)/(1 + ξ), whereξ is the
fraction of theJ/ψ’s that are longitudinally polarized. The valueα = 1 corresponds toJ/ψ with 100%
transverse polarization, whileα = −1 corresponds toJ/ψ with 100% longitudinal polarization.

One short-coming of the NRQCD factorization approach is that, at leading order inv, some of the
kinematics of production are treated inaccurately. Specifically, the mass of the light hadronic state that
forms during the evolution of theQQ̄ pair into the quarkonium state is neglected, and no distinction is
made between2m and the quarkonium mass. While the corrections to these approximations are formally
of higher order inv, they can be important numerically in the cases of rapidly varying quarkonium-
production distributions, such aspT distributions at the Tevatron andz distributions at theB factories and
HERA near the kinematic limitz = 1. These effects can be taken into account through the resummation
of certain operator matrix elements of higher order inv [10]. The resummation results in universal
nonperturbative shape functions that give the probabilitydistributions for aQQ̄ pair with a given set of
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quantum numbers to evolve into a quarkonium with a given fraction of the pair’s momentum. The shape
functions could, in principle, be extracted from the data for one process and applied to another process.
Effects from resummation of logarithms of1− z and model shape functions have been calculated for the
processe+e−→J/ψ +X [11]. For shape functions that satisfy the velocity-scaling rules, these effects
are comparable in size. It may be possible to use this resummed theoretical prediction to extract the
dominant shape function from the Belle and BaBar data fore+e−→J/ψ + X and then use it to make
predictions forJ/ψ photoproduction nearz = 1 [12].

1.2 Color-singlet model

The color-singlet model (CSM) was first proposed shortly after the discovery of theJ/ψ. The initial
applications were toηc andχc production through two-gluon fusion [13–16]. Somewhat later, the CSM
was applied to the production ofJ/ψ andηc in B-meson decays [17–19] and to the production ofJ/ψ
plus a gluon [20–25] through two-gluon fusion and photon-gluon fusion. The CSM was taken seriously
until around 1995, when experiments at the Tevatron showed that it under-predicts the cross section
for prompt charmonium production inpp̄ collisions by more than an order of magnitude. An extensive
review of the color-singlet model can be found in Ref. [26].

The color-singlet model can be obtained from the NRQCD factorization formula in Eq. (5.1) by
dropping all of the color-octet terms and all but one of the color-singlet terms. The term that is retained
is the one in which the quantum numbers of theQQ̄ pair are the same as those of the quarkonium. The
CSM production matrix elements are related to the corresponding decay matrix elements by the vacuum-
saturation approximation, and, so, they can be determined from annihilation decay rates. Thus, the CSM
gives absolutely normalized predictions for production cross sections. The heavy-quark spin symmetry
relates the CSM matrix elements of the4(2L+ 1) states within an orbital-angular-momentum multiplet
with quantum numberL. Thus, the CSM also gives nontrivial predictions for polarization.

In the case of anS-wave state, the CSM term in Eq. (5.1) is the one whose matrix element is of
leading order inv. However, owing to kinematic factors or factors ofαs in the short-distance coefficients,
the CSM term may not be dominant. In the case of aP -wave state or a state of higher orbital angular
momentum, the CSM term is only one of the terms whose matrix element is of leading order inv. For
these states, the CSM leads to infrared divergences that cancel only when one includes color-octet terms
whose matrix elements are also of leading order inv. Thus, the CSM is theoretically inconsistent for
quarkonium states with nonzero orbital angular momentum.

1.3 Color-evaporation model

The color evaporation model (CEM) was first proposed in 1977 [27–30] and has enjoyed considerable
phenomenological success. In the CEM, the cross section fora quarkonium stateH is some fractionFH
of the cross section for producingQQ̄ pairs with invariant mass below theMM̄ threshold, whereM is
the lowest mass meson containing the heavy quarkQ. (The CEM parameterFH should not be confused
with the fraction ofJ/ψ’s that come from decay ofH.) This cross section has an upper limit on theQQ̄
pair mass but no constraints on the color or spin of the final state. TheQQ̄ pair is assumed to neutralize
its color by interaction with the collision-induced color field, that is, by “color evaporation.” TheQ and
theQ̄ either combine with light quarks to produce heavy-flavored hadrons or bind with each other to form
quarkonium. If theQQ̄ invariant mass is less than the heavy-meson threshold2mM , then the additional
energy that is needed to produce heavy-flavored hadrons can be obtained from the nonperturbative color
field. Thus, the sum of the fractionsFH over all quarkonium statesH can be less than unity. The
fractionsFH are assumed to be universal so that, once they are determinedby data, they can be used to
predict the cross sections in other processes and in other kinematic regions.

In the CEM at leading order inαs, the production cross section for the quarkonium stateH in
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collisions of the light hadronshA andhB is

σ
(LO)
CEM[hAhB→H +X] =

FH
∑

i,j

∫ 4m2
M

4m2

dŝ

∫
dx1dx2 f

hA
i (x1, µ) fhBj (x2, µ) σ̂ij(ŝ) δ(ŝ − x1x2s) , (5.14)

whereij = qq̄ or gg, ŝ is the square of the partonic center-of-mass energy, andσ̂ij(ŝ) is theij → QQ̄
subprocess cross section. The leading-order calculation cannot describe the quarkoniumpT distribution,
since thepT of theQQ̄ pair is zero at LO. At NLO inαs, the subprocessesij → kQQ̄, wherei, j, andk
are light quarks, antiquarks, and gluons, produceQQ̄ pairs with nonzeropT . Complete NLO calculations
of quarkonium production in hadronic collisions using the CEM have been carried out in Refs. [31, 32],
using the exclusiveQQ̄ production code of Ref. [33] to obtain theQQ̄ pair distributions. The resulting
values of the parametersFH are given in Section 3.3. There are also calculations in the CEM beyond LO
that use only a subset of the NLO diagrams [34] and calculations that describe the soft color interaction
within the framework of a Monte Carlo event generator [35]. Calculations beyond LO in the CEM have
also been carried out forγp, γγ and neutrino-nucleon collisions and forZ0 decays [36–40]. Apparently,
the color-evaporation model has not been applied to quarkonium production ine+e− annihilation.

The most basic prediction of the CEM is that the ratio of the cross sections for any two quarkonium
states should be constant, independent of the process and the kinematic region. Some variations in these
ratios have been observed. For example, the ratio of the cross sections forχc andJ/ψ are rather different
in photoproduction and hadroproduction. Such variations present a serious challenge to the status of the
CEM as a quantitative phenomenological model for quarkonium production.

In some papers on the Color Evaporation Model [34], the collision-induced color field that neu-
tralizes the color of theQQ̄ pair is also assumed to randomize its spin. This leads to the prediction that
the quarkonium production rate is independent of the quarkonium spin. This prediction is contradicted
by measurements of nonzero polarization of theJ/ψ, theψ(2S), and theΥ(nS) in several experiments.
The assumption of the randomization of theQQ̄ spin also implies simple spin-counting ratios for the
cross sections for the direct production of quarkonium states in the same orbital-angular-momentum
multiplet. For example, the CEM with spin randomization predicts that the direct-production cross sec-
tions for charmonium satisfyσdir[ηc] : σdir[J/ψ] = 1 : 3 andσdir[χc0] : σdir[χc1] : σdir[χc2] = 1 : 3 : 5.
The inclusive cross sections need not satisfy these spin-counting relations if there is significant feed-
down from decay of higher quarkonium states, as is the case for J/ψ. Deviations from the predicted
spin-counting ratio forχc1 to χc2 have been observed. One might conclude that the CEM is ruled out
by the observations of nonzero polarization and of deviations from the spin-counting relations. On the
other hand, the assumption of the randomization of theQQ̄ spin is really independent of the assumption
of color evaporation. Some proponents of the CEM omit the assumption of spin randomization. Alter-
natively, since the CEM is just a model, one can simply declare it to apply only to spin-averaged cross
sections. In the remainder of this chapter, when we mention the predictions of the CEM for the relative
production rates of quarkonium states that differ only in their spin or total-angular-momentum quantum
numbers, we are referring to the version of the CEM that includes the assumption of spin randomization.

There is a simple correspondence between the CEM and the NRQCD factorization approach. The
CEM amounts to the assumption that an NRQCD production matrix element〈OH

n (Λ)〉 is proportional
to the expectation value of the operator that is obtained by replacing the projector onto the hadronic
stateH with a projector onto the set ofQQ̄ states with invariant mass less than2mM . In addition to an
integral over theQQ̄ phase space, the projector contains sums over theQQ̄ spins and colors. The only
dependence on the quarkoniumH is through a common factorFH in the proportionality constant for
each NRQCD matrix element. Since, in this picture, the probability of forming a specific quarkonium
stateH is independent of the color and spin state of theQQ̄ pair, NRQCD matrix elements that differ
only by color and spin quantum numbers are equal up to simple group theory factors. This picture also
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implies a hierarchy of NRQCD matrix elements according to their orbital-angular-momentum quantum
numberL. In the integration over theQQ̄ phase space of an NRQCD operator with orbital-angular-
momentum quantum numberL, the leading term scales ask2L+1, wherek is theQ or Q̄ momentum in
theQQ̄ rest frame. The differencesmax − 4m2 is proportional tok2. Hence, there is an orbital-angular-
momentum suppression factor[(smax − 4m2)/4m2]L ∼ v2L in the matrix elements.1 That is, the CEM
implies thatS-wave NRQCD matrix elements dominate and that those with orbital-angular-momentum
quantum numberL ≥ 1 are suppressed asv2L. One way to test the assumptions of the CEM is to extract
the NRQCD matrix elements from data and compare them with thepredictions of the CEM.

The qualifier NLO in “the CEM at NLO” is somewhat misleading. As is described in Section 1.4,
the NLO cross section forQQ̄ production that is used in computing the CEM predictions is accurate
through orderα3

s, which is next-to-leading order at zeropT , but leading order at nonzeropT . This is the
same accuracy inαs as the existing predictions in the NRQCD factorization approach. The NLOQQ̄
pT distribution is singular atpT = 0, but integrable. The existing NLO calculations in the CEM obtain
a smoothpT distribution at smallpT by using a smearing prescription to mimic the effects of multiple
gluon emission. The smearing has a significant effect on the shape of thepT distribution, except at very
largepT .

1.4 Multiple gluon emission

Multiple gluon emission can be very important for transverse momentum distributions, distributions
near kinematic limits, and in situations in which production near threshold is important. For example,
a fixed-order perturbative calculation typically gives a transverse momentum distributiondσ/dp2

T for
quarkonium that includes terms proportional toδ(p2

T ) and1/p2
T that are singular aspT → 0. (However,

the distribution has a well-behaved integral overpT .) This singular distribution becomes a smooth one
when the effects of multiple gluon emission are taken into account to all orders in perturbation theory.
Several methods, which we now describe, have been developedto take into account some of these effects.

Resummationmethods sum, to all orders inαs, certain logarithmically enhanced terms that are
associated with soft- and collinear-gluon emission. The resummations can be carried out at various levels
of precision in the logarithmic enhancements, that is, in leading logarithmic (LL) order, in next-to-leading
logarithmic (NLL) order, etc. Resummation can, in principle, be extended to arbitrarily high precision in
the logarithmic enhancements. However, in practice, it is seldom carried out beyond LL or NLL accuracy.
Generally, logarithms ofp2

T /M
2 have the largest effect onpT distributions [42], although logarithms of

the available partonic energy above threshold (threshold logarithms) and logarithms ofs/p2
T (small-x

logarithms) can also be important for particular processesand kinematic regions2. Because arbitrarily
soft or collinear gluon emissions are resummed, the resummed expressions depend on nonperturbative
functions. This dependence lessens as the mass and transverse momentum scales of the process increase,
and it may be insignificant at large masses and/or transversemomenta. Some practical disadvantages
of the resummation method are that it has to be reformulated,to some extent, for every process and
that it usually does not yield results that are fully differential in all of the kinematic variables. Since
resummation calculations retain only soft and collinear logarithmically enhanced terms, they generally do
not describe accurately processes in which hard gluons are emitted at large angles—so called “Mercedes
events.” This situation can be remedied to some extent by combining resummation with exact next-to-
leading order (NLO) calculations, which retain all contributions associated with gluon emission at NLO,
not just logarithmically enhanced contributions [44].

Parton-shower Monte Carlosshare with resummation methods the approach of modeling multiple
gluon emission by retaining certain logarithmically enhanced terms in the cross section. The Monte Car-
los take into account a finite, but arbitrarily large, numberof gluon emissions. The original implementa-

1From the perspective of NRQCD, the upper limitsmax = 4m2
M on theQQ̄ invariant mass that traditionally has been used

in the CEM is quite arbitrary. Any choice that satisfiessmax − 4m2
Q ∼ 4m2

Qv
2 leads to the same velocity-scaling rules.

2For a general discussion of resummation techniques for logarithms ofp2
T /M

2 and threshold logarithms, see Ref. [43].
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tions of shower-Monte-Carlo methods, such as ISAJET [45,46], generally treat only the leading collinear
logarithmic enhancements correctly, while more recent implementations, such as PYTHIA [47, 48] and
HERWIG [49,50] treat both the leading collinear and soft logarithmic enhancements correctly. Generally,
the showering processes are cut off so that they do not becomeso soft or collinear as to be nonpertur-
bative in nature. The showering may then be supplemented with nonperturbative models that describe
the hadronization of the partons. A practical advantage of the shower-Monte-Carlo approach is that it
is generally applied easily to any Born-level production process. Furthermore, it produces results that
are differential in all of the kinematic variables that are associated with the final-state particles. Hence,
it lends itself to the application of experimental cuts. As is the case with resummation methods, the
shower-Monte-Carlo approach does not yield an accurate modeling of processes in which hard gluons
are emitted at large angles. A partial remedy for this problem is to use shower Monte Carlos in conjunc-
tion with exact NLO calculations, rather than LO calculations. Recently, important progress has been
made in this direction [51–56]. In contrast with resummation methods, some shower Monte Carlos do
not take into account virtual gluon emission. Such shower Monte Carlos do not yield reliable estimates
of the total cross section.

ThekT -factorizationmethod is an attempt to take into account initial-state radiation through par-
ton distributions that depend the parton’s transverse momentumkT , as well as on the parton’s longitu-
dinal momentum fractionx. It generally gives answers that are very different from those of collinear
factorization. ThekT -dependent parton distributions are not very well known phenomenologically, and
there are possibly unresolved theoretical issues, such as the universality of thekT -dependent parton
distributions.

ThekT -smearingmethod is a phenomenological model for multiple initial-state radiation. As in
thekT -factorization method, thekT smearing method makes use ofkT -dependent parton distributions.
It is assumed that the distribution factors into thex-dependent PDF’s that are defined by collinear fac-
torization and a Gaussian distribution in the transverse momentumkT . The width〈k2

T 〉 of the Gaussian
can be treated as a process-dependent phenomenological parameter. One advantage of this model is that
it is easy to implement. On the other hand, while this model may capture some of the crude features of
soft- and collinear-gluon emission, it is probably incorrect in detail: resummation methods and shower
Monte Carlos yield transverse-momentum distributions that have longer tails than those of a Gaussian
distribution. The impact of a parton shower on the quarkonium transverse momentum distribution is, in
general, larger than for the GaussiankT smearing, and it extends out to larger values ofpT .

1.5 Production in nuclear matter

The existing factorization “theorems” for quarkonium production in hadronic collisions are for cold
hadronic matter. These theorems predict that nuclear matter is “transparent” forJ/ψ production at large
pT . That is, at largepT , all of the nuclear effects are contained in the nuclear parton distributions.
The corrections to this transparency are of order(mv)2/p2

T for unpolarized cross sections and of order
mv/pT for polarized cross sections.

The effects of transverse-momentum kicks from multiple elastic collisions between active partons
and spectators in the nucleons are among those effects that are suppressed by(mv)2/p2

T . Nevertheless,
these multiple-scattering effects can be important because the production cross section falls steeply with
pT and because the number of scatterings grows linearly with the length of the path through the nuclear
matter. Such elastic interactions can be expressed in termsof eikonal interactions [57] or higher-twist
matrix elements [58].

Inelastic scattering of the quarkonium by the nuclear matter is also an effect of higher order in
(mv)2/p2

T . However, it can become dominant when the amount of nuclear matter that is traversed by the
quarkonium is sufficiently large. Factorization breaks down when the lengthL of the quarkonium path
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in the nucleus satisfies

L >∼
Min(zQ, zQ̄)P 2

onium

MA(ktot
T )2

, (5.15)

whereMA is the mass of the nucleus,z is the parton longitudinal momentum fraction,Ponium is the mo-
mentum of the quarkonium in the parton CM frame, andktot

T is the accumulated transverse-momentum
“kick” from passage through the nuclear matter. This condition for the break-down of factorization is
similar to “target-length condition” in Drell-Yan production [59,60]. Such a breakdown of factorization
is observed in the Cronin effect at lowpT and in Drell-Yan production at lowQ2, where the cross section
is proportional to the nucleon number raised to a power less than unity.

It is possible that multiple-scattering effects may be larger for color-octet production than for
color-singlet production. In the case of color-octet production, the pre-quarkoniumQQ̄ system carries
a nonzero color charge and, therefore, has a larger amplitude to exchange soft gluons with spectator
partons.

At present, there is no complete, rigorous theory to accountfor all of the effects of multiple
scattering, and we must resort to “QCD-inspired” models. A reasonable requirement for models is
that they be constructed so that they are compatible with thefactorization result in the large-pT limit.
Many models treat interactions of the pre-quarkonium with the nucleus as on-shell scattering (Glauber
scattering). This assumption should be examined carefully, as on-shell scattering is known, from the
factorization proofs, not to be a valid approximation in leading order in(mv)2/p2

T .

2. Quarkonium production at the Tevatron

Charmonium and bottomonium are produced copiously in high energy hadron colliders. The present and
future hadron colliders include

• the Tevatron, app̄ collider operating at Fermilab with center-of-mass energyof 1.8 TeV in Run I
and 1.96 TeV in Run II,

• RHIC, a heavy-ion orpp collider operating at Brookhaven with center-of-mass energy of up to 200
GeV per nucleon-nucleon collision,

• the LHC at CERN, app collider under construction at CERN with center-of-mass energy of 17
TeV.

In this section, we focus on the Tevatron, because it has produced the most extensive and precise data
on quarkonium production. The photoproduction of quarkonium at high-energypp̄, pp, and heavy ion
colliders is discussed in Chapter 7 “Quarkonium in Media” ofthis report.

2.1 Charmonium cross sections

In high energy collisions, charmonium is produced both through direct production mechanisms and
through decays of other hadrons. In the case of charmonium production throughB-hadron decays,
the charmonium is produced at a secondary vertex, and a vertex detector can be used to identify this
contribution to the measured production rate. We refer to the inclusive cross section for production of a
charmonium state with the contribution fromB decays removed as thepromptcross section. The prompt
cross section includes both the direct production of the charmonium and its production through decays
of higher charmonium states.

In Run I of the Tevatron, the CDF collaboration measured the prompt cross sections for the pro-
duction of several charmonium states inpp̄ collisions at a center-of-mass energy of 1.8 TeV [61,62]. The
CDF data for production of directJ/ψ, promptψ(2S), and promptJ/ψ from decay ofχc are shown in
Fig. 5.1. In the CDF analysis, promptJ/ψ’s that do not come from decays ofψ(2S) orχc were assumed
to be produced directly.

At non-vanishing transverse momentum, the leading parton processes for producing charmonium
(ij → cc̄ + k, wherei, j, andk are light quarks, antiquarks, and gluons) occur at orderα3

s. The
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Fig. 5.1: Differential cross sections for the production ofdirectJ/ψ (top), promptψ(2S) (middle), and promptJ/ψ from

decay ofχc (bottom) at the Tevatron as a function ofpT . The data points are CDF measurements from Run I [61, 62]. The

dotted curves are the CSM contributions. The solid curves are the NRQCD factorization fits, and the other curves are individual

color-octet contributions to the fits. From Ref. [64].
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H 〈OH
1 〉 〈OH

8 (3S1)〉 MH
3.5

J/ψ 1.16 GeV3 (1.19 ± 0.14) × 10−2 GeV3 (4.54 ± 1.11) × 10−2 GeV3

ψ(2S) 0.76 GeV3 (0.50 ± 0.06) × 10−2 GeV3 (1.89 ± 0.46) × 10−2 GeV3

χc0 0.11 GeV5 (0.31 ± 0.04) × 10−2 GeV3

Table 5.1: NRQCD production matrix elements for charmoniumstates obtained from the transverse momentum distributions

at the Tevatron [64]. The errors quoted are statistical only.

color-singlet-model (CSM) predictions are shown as dottedlines in Fig. 5.1. In the top two panels of
Fig. 5.1, the more steeply falling dotted lines are the predictions of the CSM at leading order inαs.
The other dotted lines in the top two panels of Fig. 5.1 are contributions of higher order inαs involving
gluon fragmentation. As can be seen in the top panel of Fig. 5.1, the gluon-fragmentation contribution
renders the shape of the CSM prediction for directJ/ψ production roughly compatible with the CDF
data. However, the normalization is too small by more than anorder of magnitude. There is a similar
discrepancy in the normalization for promptψ(2S) production, as can be seen in the middle panel of
Fig. 5.1. In the case of production of promptJ/ψ from decay ofχc, which is shown in the bottom panel
of Fig. 5.1, the discrepancy is less dramatic, but the cross section is still under-predicted by the CSM. The
large discrepancies between the measurements and the CSM predictions for the production cross section
for S-wave charmonium states rules out the CSM as a credible model for quarkonium production.

According to the NRQCD factorization approach, the charmonium production cross section con-
tains not only the CSM terms, which are absolutely normalized, but also color-octet terms, whose nor-
malizations are determined by color-octet matrix elements. In the case ofJ/ψ andψ(2S) production,
the most important color-octet matrix elements are〈OH

8 (3S1)〉, 〈OH
8 (3P0)〉, and〈OH

8 (1S0)〉. At large
pT , theJ/ψ andψ(2S) cross sections are dominated by gluon fragmentation into color-octet3S1 charm
pairs [65], which falls asdσ̂/dp2

T ∼ 1/p4
T . The color-octet1S0 and3PJ channels are significant in the

regionpT ∼< 10 GeV, but fall asdσ̂/dp2
T ∼ 1/p6

T and become negligible at largept. Because the1S(8)
0

and3P
(8)
J short-distance cross sections have a similarpt dependence, the transverse momentum distribu-

tion is sensitive only to the linear combinationMH
k defined in (5.8), withk ≈ 3. As can be seen in the top

panel of Fig. 5.1, a good fit to the normalization and shape of the directJ/ψ cross section can be obtained

by adjusting〈OJ/ψ
8 (3S1)〉 andMJ/ψ

3.5 . As is shown in the middle panel of Fig. 5.1, a similarly good fit to
the promptψ(2S) cross section can be obtained by adjusting the corresponding parameters forψ(2S).
In the case of production of theχcJ states, the most important color-octet matrix element is〈OH

8 (3S1)〉.
As can be seen in the bottom panel of Fig. 5.1, the fit to the cross section for production of promptJ/ψ
from decay ofχc can be improved by adjusting〈Oχc0

8 (3S1)〉. Table 5.1 shows the values of the quarko-
nium matrix elements that are obtained in the fit of Ref. [64, 66]. The color-singlet matrix elements are
taken from the potential-model calculation of Refs. [67, 68]. The color-octet matrix elements have been
extracted from the CDF data [61, 62]. The CTEQ5L parton distribution functions [69] were used, with
renormalization and factorization scalesµ = (p2

T + 4m2
c)

1/2 andmc = 1.5 GeV. The Altarelli-Parisi
evolution has been included for the〈Oχc0

8 (3S1)〉 fragmentation contribution. See Ref. [66] for further
details. The extraction of the various color-octet matrix elements relies on the differences in theirpT
dependences. Smaller experimental error bars could help toresolve the differentpT dependences with
greater precision.

The normalization and the shape of the prompt charmonium cross section at the Tevatron can also
be described reasonably well by the color-evaporation model (CEM). The CEM parameters can be fixed
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Fig. 5.2: Differential cross sections for production of directJ/ψ (top left), promptJ/ψ from decays ofψ(2S) (top right), and

promptJ/ψ from decays ofχc (bottom) at the Tevatron as a function ofpT . The data points are the CDF measurements [61,62].

The dotted and solid curves are the CEM predictions at NLO with 〈k2
T 〉 = 2.5 GeV2, using the first and fourth charmonium

parameter sets in Table 5.8.

by fitting to the data frompN collisions and by using the measured branching fractions for charmonium
decays. The predictions of the CEM at next-to-leading orderin αs (NLO) can be calculated using the
NLO parameter sets that are described in Section 3.3. The normalization of the predicted cross section
for promptJ/ψ production is in reasonable agreement with the CDF data fromRun I. The shape can be
brought into good agreement by addingkT smearing, with〈k2

T 〉 = 2.5 GeV2. In Fig. 5.2, the resulting
CEM predictions are compared with the CDF charmonium data for production of directJ/ψ, prompt
J/ψ from decay ofψ(2S), and promptJ/ψ from decay ofχc. The predictions are all in good agreement
with the CDF data.

In the case of theS-wave production matrix elements, the NRQCD velocity-scaling rules predict
that

〈O8〉
〈O1〉

∼ v4

2Nc
, (5.16)

where this estimate includes color factors that are associated with the expectation values of the NRQCD
operators, as advocated by Petrelliet al. [70]. As can be seen from Table 5.1, the extracted color-octet
matrix elements are roughly compatible with this estimate [v4/(2Nc) ≈ 0.015]. However, a much more
stringent test of the theory is to check the universality of the extracted matrix elements in other processes.
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Reference PDF 〈OJ/ψ
8 (3S1)〉 M

J/ψ
k k

LO collinear factorization

CL [73] MRS(D0) [74] 0.66 ± 0.21 6.6 ± 1.5 3

CTEQ4L [75] 1.06 ± 0.14+1.05
−0.59 4.38 ± 1.15+1.52

−0.74

BK [66] GRV-LO(94) [76] 1.12 ± 0.14+0.99
−0.56 3.90 ± 1.14+1.46

−1.07 3.5

MRS(R2) [77] 1.40 ± 0.22+1.35
−0.79 10.9 ± 2.07+2.79

−1.26

MRST-LO(98) [79] 0.44 ± 0.07 8.7 ± 0.9
BKL [78]

CTEQ5L [69] 0.39 ± 0.07 6.6 ± 0.7
3.4

Parton shower radiation

CTEQ2L [81] 0.96 ± 0.15 1.32 ± 0.21

S [80] MRS(D0) [74] 0.68 ± 0.16 1.32 ± 0.21 3

GRV-HO(94) [76] 0.92 ± 0.11 0.45 ± 0.09

KK [82] CTEQ4M [75] 0.27 ± 0.05 0.57 ± 0.18 3.5

kT -smearing

〈kT 〉[GeV]

1 1.5 ± 0.22 8.6 ± 2.1
P [83] CTEQ4M [75]

1.5 1.7 ± 0.19 4.5 ± 1.5
3.5

0.7 1.35 ± 0.30 8.46 ± 1.41
SMS [84] MRS(D′

−) [74]
1 1.5 ± 0.29 7.05 ± 1.17

3

kT -factorization

HKSST1 [85] KMS [86] ≈ 0.04 ± 0.01 ≈ 6.5 ± 0.5 5

Table 5.2:J/ψ production matrix elements in units of10−2 GeV3 [64]. The first error bar is statistical; the second error bar

(where present) is obtained by varying the factorization and renormalization scales.

In the case of theP -wave production matrix elements, the velocity scaling rules yield the estimate

〈O8〉
〈O1〉/m2

c

∼ v0

2Nc
. (5.17)

TheP -wave color-octet matrix element in Table 5.1 is somewhat smaller than this estimate would sug-
gest. That is also the case for the matrix elements that appear in P -wave quarkonium decays, which have
been determined phenomenologically [71] and in lattice calculations [4–8].

In Table 5.2, we show matrix elements forJ/ψ production that have been obtained from various
other fits to the transverse momentum distribution. We see that there is a large uncertainty that arises
from the dependence of the matrix elements on the factorization and renormalization scales, as well as
a large dependence on the choice of parton distributions. The extracted values of the color-octet matrix
elements (especiallyMk) are very sensitive to the small-pT behavior of the cross section and this, in
turn, leads to a sensitivity to the behavior of the gluon distribution at smallx. Furthermore, the effects
of multiple gluon emission are important, and their omission in the fixed-order perturbative calculations
leads to overestimates of the sizes of the matrix elements. In Table 5.2, one can see the results of var-
ious attempts to estimate the effects of multiple gluon emission. Sanchis-Lozano (S) and Kniehl and
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Kramer (KK) made use of parton-shower Monte Carlos, while Petrelli (P) and Sridhar, Martin, and Stir-
ling (SMS) employed models containing GaussiankT smearing. In addition, Sanchis-Lozano included a
resummation of logarithms ofp2

T/m
2. Hägler, Kirschner, Schäfer, Szymanowski, and Teryaev (HKSST)

used thekT -factorization formalism to resum large logarithms in the limit s ≫ 4m2
c . (See also the

calculations by Yuan and Chao [87, 88].) Similar large dependences on the choices of factorization and
renormalization scales, parton distributions, and multiple gluon emission can be seen in the matrix ele-
ments that have been extracted from theψ(2S) andχc transverse momentum distributions. See Ref. [64]
for details.

Effects of corrections of higher order inαs are a further uncertainty in the fits to the data in
Table 5.2. Such corrections are known to be large in the case of charmonium decays. In the case of char-
monium production, a new channel for color-singlet production, involving t-channel gluon exchange,
first appears in orderαs and could yield a large correction. Maltoni and Petrelli [83] have found that
real-gluon corrections to color-singlet3S1 production give a large contribution. Next-to-leading order
(NLO) corrections inαs for χc0 andχc2 production have been calculated [70], as have NLO corrections
for the fragmentation process [89–91]. Large corrections from the resummation of logarithms ofp2

T /m
2

in the fragmentation of partons into quarkonium have also been calculated [80,92–94].

Similar theoretical uncertainties arise in the extractionof the NRQCD production matrix elements
for theψ(2S) andχc states. The statistical uncertainties are larger forψ(2S) andχc production than for
J/ψ production. We refer the reader to Ref. [64] for some examples of the NRQCD matrix elements that
have been extracted for these states.

H FH (in %)
J/ψ 64 ± 6
ψ(2S) 7 ± 2 to 15 ± 5
χc(1P ) 29.7 ± 1.7(stat.) ± 5.7(sys.)

Table 5.3: The fractionsFH of promptJ/ψ mesons that are produced by the decay of higher charmonium statesH and the

fractionFJ/ψ that are produced directly.

The CDF collaboration has measured the fraction of promptJ/ψ’s that come from decays of
ψ(2S) andχc(1P ) states and the fractions that are produced directly [62]. The CDF measurements were
made forJ/ψ’s with transverse momentumpT > 4 GeV and pseudo-rapidity|η| < 0.6. The fractions,
which are defined in Eqs. (5.11) and (5.12), are given in Table5.3. The fraction ofJ/ψ’s that are directly
produced is approximately constant over the range 5 GeV< pT < 15 GeV. The fraction from decays of
ψ(2S) increases from(7± 2)% atpT = 5 GeV to(15± 5)% atpT = 15 GeV. The fraction from decays
of χc(1P ) seems to decrease slowly over this range ofpT . Such variations withpT are counter to the
predictions of the color-evaporation model.

The CDF collaboration has also measured the ratio of the prompt χc1 andχc2 cross sections at the
Tevatron [95]. The measured value of the ratioRχc defined in Eq. (5.10) is

Rχc = 1.04 ± 0.29(stat.) ± 0.12(sys.). (5.18)

Theχc2 andχc1 were observed through their radiative decays into aJ/ψ and a photon, which were
required to have transverse momenta exceeding 4 GeV and 1 GeV, respectively. The color-evaporation
model predicts that this ratio should be close to the spin-counting ratio3/5, since the feeddown from the
ψ(2S) is small. The NRQCD factorization fit to the promptχc cross section in the regionpT > 5 GeV
implies a ratio of0.9 ± 0.2 [96]. The CDF result slightly favors the NRQCD factorization prediction.

Charmonium production data from Tevatron Run II have recently become available. Using a
39.7 pb−1 data sample from Run II, the CDF Collaboration has measured the inclusive cross section for
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Fig. 5.3: Differential inclusive cross section forpp̄ → J/ψX (left). Differential cross section distribution ofJ/ψ events

from b-hadron decay (right). Both cross sections are plotted as a function of the transverse momentumpT of theJ/ψ and are

integrated over the rapidity range|y(J/ψ)| < 0.6.

J/ψ production and subsequent decay intoµ+µ− [97]. The inclusive cross section includes both prompt
J/ψ’s andJ/ψ’s from decays ofb-hadrons. The inclusive differential cross section as a function of pT
for rapidity |y| < 0.6 has been obtained down to zero transverse momentum and is shown in the left
panel of Fig. 5.3. The total integrated cross section for inclusive J/ψ production inpp̄ interactions at√
s = 1.96 TeV is measured to be

σ[pp̄→ J/ψX, |y(J/ψ)| < 0.6] = 4.08 ± 0.02(stat) ± 0.36(syst) µb. (5.19)

These new measurements await comparison with updated theoretical calculations in the lowpT region.

Using a sample of 4.7 pb−1 of Run II data, the D0 collaboration has verified that theJ/ψ cross
section is independent of the rapidity of theJ/ψ for a rapidity range 0< |y| < 2. This analysis has been
performed forpT (J/ψ) > 5 GeV andpT (J/ψ) > 8 GeV [98]. The CDF and D0 collaborations have
performed studies of forward differentialJ/ψ production cross sections in the pseudo-rapidity regions
2.1 < |η(J/ψ)| < 2.6 and 2.5≤ |η(J/ψ)| ≤ 3.7, respectively, using their Run I data [99,100].

Using 39.7 pb−1 of the Run II data, the CDF Collaboration has also measured the differential
cross section as a function ofpT and the cross section integrated overpT for the production ofb-hadrons
that decay in the channelHb → J/ψX [97]. The differential cross section multiplied by the branching
fraction forJ/ψ→µ+µ− is shown in the right panel of Fig. 5.3. A recent QCD prediction that is based on
a fixed order (FO) calculation plus a resummation of next-to-leading order logs (NLL) [101] is overlaid.
The cross section integrated overpT was found to be

σ[pp̄→ HbX, pT (J/ψ) > 1.25 GeV, |y(J/ψ)| < 0.6] = 28.4 ± 0.4(stat)+4.0
−3.8(syst) µb. (5.20)

This measurement can be used to extract the total inclusiveb-hadron cross section.

2.2 Bottomonium cross sections

Using Run I data, the CDF Collaboration has reported inclusive production cross sections for theΥ(1S),
Υ(2S) andΥ(3S) states in the region 0< pT < 20 GeV [102]. The rates of inclusive production of the
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Fig. 5.4: InclusiveΥ(1S) cross section at the Tevatron as a function ofpT . The data points are the CDF measurements [61].

The solid curve is the NRQCD factorization fit, and the other curves are individual contributions to the NRQCD factorization

fit. From Ref. [64,104].

Υ(1S), Υ(2S) andΥ(3S) states forpT > 4 GeV were found to be higher than the rates predicted by
CSM calculations by a factor of about five. Inclusion of color-octet production mechanisms within the
NRQCD framework can account for the observed cross sectionsfor pT > 8 GeV [72, 73, 104, 105], as
is shown forΥ(1S) production in Fig. 5.4. An accurate description of theΥ cross section in the low-pT
region requires NLO corrections and a resummation of multiple gluon radiation. A fit to the CDF data
using a parton shower Monte Carlo to model the effects of multiple gluon emission has given much
smaller values of the color-octet matrix elements that are compatible with zero [106].

The normalization and the shape of the bottomonium cross sections at the Tevatron can also be
described reasonably well by the color-evaporation model (CEM). The CEM predictions are compared
with the CDF data forΥ(1S), Υ(2S), andΥ(3S) in Fig. 5.5. Most of the relevant parameters can
be fixed completely by fitting data frompN collisions and by using measured branching fractions for
bottomonium decays. The predictions of the CEM at NLO that are shown in Fig. 5.5 have been calculated
using the NLO parameter sets that are described in Section 3.3. The predicted cross sections forΥ(1S)
andΥ(3S) production are a little below the data; the normalizations can be improved by multiplying the
cross sections by a K-factor of 1.4. The shapes have been brought into good agreement with the data
by includingkT smearing, with〈k2

T 〉 = 3.0 GeV2. This value of〈k2
T 〉 is a little larger than the value

〈k2
T 〉 = 2.5 GeV2 that gives the best fit to the charmonium cross sections.

A recent calculation of the production cross sections for the Υ(1S), Υ(2S), andΥ(3S) at the
Tevatron combines a resummation of logarithms ofM2

Υ/p
2
T with a calculation at leading order inαs in

what is, in essence, the color-evaporation model [41]. The resummation of the effects of multiple gluon
emission in the CEM has some simplifications that do not occurin the NRQCD factorization approach.
The results of the calculation of Ref. [41] are shown, along with CDF data, in Fig. 5.6. The resummation
of logarithms ofM2

Υ/p
2
T allows the calculation to reproduce the shape of the data at small pT . The

normalizations have been adjusted to obtain the best fit to the data. the best fit to the data.

The CDF Collaboration has also reported the fractions ofΥ(1S) mesons, forpT > 8 GeV, that
come from decays ofχb(1P ), χb(2P ), χb(3P ), Υ(2S), andΥ(3S) and the fraction that originate from
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Fig. 5.5: Differential cross sections forΥ(1S) (top left),Υ(2S) (top right), andΥ(3S) (bottom) at the Tevatron as a function

of pT . The data points are the CDF measurements [102]. The solid curves are the CEM predictions at NLO with〈k2
T 〉 = 3.0

GeV2, using the first bottomonium parameter set in Tables 5.8. Thedashed curves are multiplied by aK-factor of 1.4.

direct production [103]. The fractions from decays ofΥ(nS) and forχb(nP ) are defined by

FΥ(nS) = Br[Υ(nS)→Υ(1S) +X]
σ[Υ(nS)]

σ[Υ(1S)]
, (5.21)

Fχb(nP ) =
3∑

J=0

Br[χbJ (nP )→Υ(1S) +X]
σ[χbJ(nP )]

σ[Υ(1S)]
. (5.22)

The fraction ofΥ(1S)’s that are produced directly can be denoted byFΥ(1S). The fractions are given in
Table 5.4.

2.3 Polarization

The polarization of the quarkonium contains important information about the production mechanism.
The polarization variableα for a 1−− state, such asJ/ψ, ψ(2S), or Υ(1S), is defined by Eq. (5.13),
where the angleθ is measured with respect to some polarization axis. At a hadron collider, a convenient
choice of the polarization axis is the direction of the boostvector from the quarkonium rest frame to the
center-of-momentum frame of the colliding hadrons.

The NRQCD factorization approach gives a simple predictionfor the polarization variableα at
very large transverse momentum. The production of a quarkonium with pT that is much larger than the
quarkonium mass is dominated by gluon fragmentation—a process in which the quarkonium is formed

325



0 5 10 15 20
0

50

100

150

Υ(1S)

2002

1995

d
2 σ/

d
yd

p
T
 ×

 B
 (

p
b

/G
eV

)

pT(GeV)
0 5 10 15 20

0

20

40

Υ(2S)

2002

1995

d
2 σ/

d
yd

p
T
 ×

 B
 (

p
b

/G
eV

)
pT(GeV)

0 5 10 15 20
0

10

20
Υ(3S)

2002

1995

d
2 σ/

d
yd

p
T
 ×

 B
 (

p
b

/G
eV

)

pT(GeV)

Fig. 5.6: Calculated differential cross sections times leptonic branching fractionsB, evaluated aty = 0, as functions of

transverse momentum for hadronic production of (a)Υ(1S), (b) Υ(2S), and (c)Υ(3S) [41], along with CDF data [102, 107]

at
√
S = 1.8 TeV. The solid lines show the result of the full calculation.The 1995 CDF cross sections are multiplied a factor

0.88.

H FH (in %)
Υ(1S) 50.9 ± 8.2(stat.) ± 9.0(sys.)
Υ(2S) 10.7+7.7

−4.8

Υ(3S) 0.8+0.6
−0.4

χb(1P ) 27.1 ± 6.9(stat.) ± 4.4(sys.)
χb(2P ) 10.5 ± 4.4(stat.) ± 1.4(sys.)
χb(3P ) < 6

Table 5.4: The fractionsFH of Υ(1S) mesons that are produced by the decay of a higher bottomoniumstateH and the fraction

FΥ(1S) that are produced directly.

in the hadronization of a gluon that is created with even larger transverse momentum. The NRQCD
factorization approach predicts that the dominant gluon-fragmentation process is gluon fragmentation
into aQQ̄ pair in a color-octet3S1 state. The fragmentation probability for this process is oforder
αs, while the fragmentation probabilities for all other processes are of orderα2

s or higher. The NRQCD
matrix element for this fragmentation process is〈OH

8 (3S1)〉. At largepT , the fragmenting gluon is nearly
on its mass shell, and, so, is transversely polarized. Furthermore, the velocity-scaling rules predict that
the color-octetQQ̄ state retains the transverse polarization as it evolves into anS-wave quarkonium
state [108], up to corrections of relative orderv2. Radiative corrections and color-singlet production
dilute the quarkonium polarization somewhat [66, 89]. In the case ofJ/ψ production, feeddown from
higher quarkonium states is also important [78]. Feeddown from χc states is about 30% of theJ/ψ
sample and dilutes the polarization. Feeddown from theψ(2S) is about 10% of theJ/ψ sample and
is largely transversely polarized. Despite these various diluting effects, a substantial polarization is
expected at largepT , and its detection would be a “smoking gun” for the presence of the color-octet
production mechanism. In contrast, the color-evaporationmodel predicts zero quarkonium polarization.

The CDF measurement of theJ/ψ polarization as a function ofpT [103] is shown in the left
panel of Fig. 5.7, along with the NRQCD factorization prediction [78]. The observedJ/ψ polarization
is in agreement with the prediction, except for the highestpT bin. However, the prediction of increasing
polarization with increasingpT is not in evidence. The CDF data [103] and the NRQCD factorization
prediction [66, 78, 109] forψ(2S) polarization are shown in the right panel of Fig. 5.7. The theoretical
analysis ofψ(2S) polarization is simpler than for theJ/ψ, since feeddown does not play a rôle. However,
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Fig. 5.7: Polarization variableα for promptJ/ψ (left) and for promptψ(2S) (right) at the Tevatron as a function ofpT . The

data points are the CDF measurements from Run I [103]. In the left panel (promptJ/ψ), the band is the NRQCD factorization

prediction of Ref. [78], and the other curves are the values of α for individual components of the promptJ/ψ signal. In the

right panel (promptψ(2S)), the bands are various NRQCD factorization predictions [66,78,109].

the experimental statistics are not as good for theψ(2S) as forJ/ψ. Again, the expectation of increasing
polarization with increasingpT is not confirmed.

Because the polarization depends on ratios of matrix elements, some of the theoretical uncertain-
ties are reduced compared with those in the production crosssection. The polarization is probably not
strongly affected by multiple gluon emission orK-factors. Uncertainties from contributions of higher-
order inαs could conceivably change the rates for the various spin states by a factor of two. Therefore,
it is important to carry out the NLO calculation, but that calculation is very difficult technically and
is computing intensive. Order-v2 corrections to parton fragmentation to quarkonium can be quite large.
Bodwin and Lee [110] have found that thev2 corrections to gluon fragmentation toJ/ψ are about+70%
for the color-singlet channel and−50% for the color-octet channel. The color-singlet correctionshiftsα
down by about 10% at the largestpT . Since the color-octet matrix element is fit to Tevatron data, thev2

correction merely changes the size of the matrix element andhas no immediate effect on the theoretical
prediction. An additional theoretical uncertainty comes from the presence of order-v2 spin-flip processes
in the evolution of theQQ̄ pair into the quarkonium. It could turn out that spin-flip contributions are
large, either because their velocity-scaling power laws happen to have large coefficients or because, as
has been suggested in Refs. [111–115], the velocity scalingrules themselves need to be modified. Then
spin-flip contributions could significantly dilute theJ/ψ polarization. Nevertheless, it is is difficult to
see how there could not be substantial polarization inJ/ψ or ψ(2S) production forpT > 4mc.3

The CDF data forΥ polarization is shown in Fig. 5.8, along with the NRQCD factorization predic-
tion. Averaging over a range ofpT , the CDF Collaboration findsα = −0.06 ± 0.20 for 1 GeV< pT <
20 GeV [119, 120], which is consistent with the NRQCD factorization prediction [118]. In compari-
son with the prediction forJ/ψ polarization, the prediction forΥ polarization has smallerv-expansion
uncertainties. However, in the case ofΥ production, the fragmentation mechanism does not dominate
until relatively large values ofpT are reached, and, hence, the transverse polarization is predicted to be
small forpT below about 10 GeV. Unfortunately, the current Tevatron data sets run out of statistics in the

3It has been argued that re-scattering interactions betweenthe intermediate charm-quark pair and a co-moving color field
could yield unpolarized quarkonium [116,117]. The theoretical analysis of these effects, however, relies on several simplifying
assumptions, and further work is needed to establish the existence of re-scattering corrections in charmonium hadroproduction
at largepT .
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Fig. 5.8: Polarization variableα for inclusiveΥ(1S) production at the Tevatron as a function ofpT . The data points are the

CDF measurements from Run I [102]. The theoretical band represents the NRQCD factorization prediction [118].

high-pT region.

2.4 Prospects for the Tevatron Run II

Run II at the Tevatron will provide a substantial increase inluminosity and will allow the collider exper-
iments to determine theJ/ψ, ψ(2S) andχc cross sections more precisely and at larger values ofpt. An
accurate measurement of theJ/ψ andψ(2S) polarization at large transverse momentum will be the most
crucial test of NRQCD factorization. In addition, improveddata on theJ/ψ andψ(2S) cross sections
will help to reduce some of the ambiguities in extracting thecolor-octet matrix elements.

With increased statistics it might be possible to access other charmonium states such as theηc(nS)
or thehc(nP ). Heavy-quark spin symmetry provides approximate relations between the nonperturbative
matrix elements that describe spin-singlet and spin-triplet states. The matrix elements forηc(nS) are
related to those forψ(nS), while the leading matrix elements forhc(nP ) can be obtained from those for
χc(nP ). [See Eqs. (5.2-5.7).] Within NRQCD, the rates forη(nS) andh(nP ) production can thus be
predicted unambiguously in terms of the nonperturbative matrix elements that describe theJ/ψ, ψ(2S)
andχc production cross sections. A comparison of the various charmonium production rates would
therefore provide a stringent test of NRQCD factorization and the heavy-quark spin symmetry. The cross
sections for producing theηc and thehc at Run II of the Tevatron are large [121,122], but the acceptances
and efficiencies for observing the decay modes on which one can trigger are, in general, small, and
detailed experimental studies are needed to quantify the prospects. Other charmonium processes that
have been studied in the literature include the production of D-wave states [123],J/ψ production in
association with photons [124,125], and double gluon fragmentation toJ/ψ pairs [126].

The larger statistics expected at Run II of the Tevatron willalso allow the collider experiments to
improve the measurements of the bottomonium cross sections. As yet undiscovered states, such as the
ηb(1S), could be detected, for example, in the decayηb→J/ψ + J/ψ [105] or in the decayηb→D∗ +
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D(∗) [127], and the associated production ofΥ and electroweak bosons might be accessible [128]. If
sufficient statistics can be accumulated, the onset of transverseΥ(nS) polarization may be visible at
pT,Υ >∼ 15 GeV.

3. Quarkonium production in fixed-target experiments

3.1 Cross sections

Several collaborations have made predictions for fixed-target quarkonium production within the NRQCD
factorization formalism [129–131]. The predictions of Ref. [129] for J/ψ andψ(2S) production inpN
collisions are shown, along with the experimental data, in the left panels of Figs. 5.9 and 5.10. The
calculation is at leading-order inαs and uses the standard truncation inv that is described in Section 1.1.
The data are from the compilation in Ref. [26], with additional results from Refs. [132–134]. In the
case ofpN production ofJ/ψ, the data clearly require a color-octet contribution, in addition to a color-
singlet contribution. In the case ofψ(2S) production, it is less clear that a color-octet contribution
is essential. One should keep in mind that the color-singletcontribution is quite uncertain, owing to
uncertainties in the values ofmc and the renormalization scale [111]. One can reduce these uncertainties
by considering the ratio of the cross sections for direct andinclusiveJ/ψ production, which is predicted
to be approximately 0.6 in the NRQCD factorization approachand approximately 0.2 in the color-singlet
model [111]. Clearly, experiment favors the NRQCD factorization prediction. However, the prediction
for the ratio depends on our knowledge of feed-down fromχc states, and, as we shall see, NRQCD
factorization predictions forχc production in fixed-target experiments are not in good agreement with
the data.
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Fig. 5.9: Forward cross section (xF > 0) for J/ψ production inpN collisions (left) andπN collisions (right). The curves

are the CSM predictions for directJ/ψ (dashed lines), the NRQCD factorization predictions for directJ/ψ with MJ/ψ
7 =

3.0 × 10−2 GeV3 (dotted lines), and the inclusive cross sections forJ/ψ including radiative feed-down fromχcJ andψ(2S)

(solid lines). From Ref. [129].

In fixed-target production ofJ/ψ andψ(2S) at leading order inαs (LO), the relevant production
matrix elements are〈OH

8 (3S1)〉, 〈OH
8 (1S0)〉, and〈OH

8 (3P0)〉, but the cross section is sensitive only to
the linear combinationMH

k defined in (5.8) withk ≈ 7. The fits of the LO predictions forJ/ψ andψ(2S)

production inpN collisions [129] yieldMJ/ψ
7 = 3.0×10−2 GeV3 andMψ(2S)

7 = 5.2×10−3 GeV3. The
corrections at next-to-leading order inαs (NLO) give a largeK-factor in the color-octet contributions
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Fig. 5.10: Forward cross section (xF > 0) for ψ(2S) production inpN collisions (left) andπN collisions (right). The curves

are the CSM predictions (dotted lines) and the NRQCD factorization predictions withMψ(2S)
7 = 5.2 × 10−3 GeV3 (solid

lines). From Ref. [129].

[70]. A fit to the data using the NLO result for the color-octetcontributions givesMJ/ψ
6.4 = 1.8 ×

10−2 GeV3 andMψ(2S)
6.4 = 2.6 × 10−3 GeV3 [71]. The NLO value ofMJ/ψ

6.4 is about a factor2 smaller

than the LO value ofMJ/ψ
7 . Note that the NLO fit uses CTEQ4M [75] parton distributions,while the LO

fit uses the CTEQ3L [140] parton distributions. The LO resultfor MJ/ψ is somewhat smaller than the
LO result from the Tevatron, and the NLO result forMJ/ψ is somewhat larger than the parton-shower
result from the Tevatron. However, given the large uncertainties in these quantities, the agreement is
reasonable. It should also be remembered that the Tevatron cross sections are sensitive toMH

k with
k ≈ 3 rather thank ≈ 7, and, so, comparisons are somewhat uncertain. Attempts to constrain this
uncertainty are hampered by the fact that theMS matrix elements need not be positive. One can also
question whether hard-scattering factorization holds forthe total cross section, which is dominated by
small pT -contributions. Furthermore, kinematic corrections fromthe difference between2m and the
quarkonium mass may be large.

The predictions of Ref. [129] forJ/ψ andψ(2S) production inπN collisions are shown, along
with the experimental data, in the right panels of Figs. 5.9 and 5.10. The calculation is at leading-order
in αs and uses the standard truncation inv that is described in Section 1.1. Again, the data are from
the compilation in Ref. [26], with additional results from Refs. [132–134]. In the NRQCD predictions
in Figs. 5.9 and 5.10, the values ofM7 that are used are the ones that were obtained from the fits to the
pN production data. TheπN production data clearly show an excess over these predictions that cannot
be accounted for by the color-octet contributions. This discrepancy has been discussed extensively in
Ref. [26], and it may reflect our lack of knowledge of the gluondistribution in the pion or the presence
of different higher-twist effects in the proton and the pion. Such higher-twist effects are not accounted
for in the standard NRQCD factorization formulas, which arebased on leading-twist hard-scattering
factorization.

Some of the largest uncertainties in the predictions cancelout if we consider ratios of cross sec-
tions. The uncertainties in the NRQCD factorization predictions can still be very large. They arise from
uncertainties in the color-octet matrix elements, uncalculated corrections of higher order inv andαs, and
uncertainties from the choices of renormalization and factorization scales. In addition, one can question
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whether hard-scattering factorization holds for the crosssection integrated overpT .

Experiment beam/target
√
s/GeV Rψ

E537 [132] p̄W 15.3 0.185 ± 0.0925

E705 [141] pLi 23.7 0.14 ± 0.02 ± 0.004 ± 0.02

E705 [141] p̄Li 23.7 0.25 ± 0.22 ± 0.007 ± 0.04

E771 [134] pSi 38.8 0.14 ± 0.02

HERA-B [142] p(C, W) 41.5 0.13 ± 0.02

E537 [132] π−W 15.3 0.2405 ± 0.0650

E673 [144] πBe 20.6 0.20 ± 0.09

E705 [141] π+Li 23.7 0.14 ± 0.02 ± 0.004 ± 0.02

E705 [141] π−Li 23.7 0.12 ± 0.03 ± 0.03 ± 0.02

E672/706 [146] π−Be 31.1 0.15 ± 0.03 ± 0.02

Table 5.5: Experimental results for the ratioRψ of the inclusive cross sections forψ(2S) andJ/ψ production.

Theψ(2S)-to-J/ψ ratioRψ is defined in Eq. (5.11). The experimental results forRψ from fixed-
target experiments are compiled in Table 5.5. The result from experiment E673 is obtained by dividing
the observed fraction ofJ/ψ’s from decays ofψ(2S) by the branching fraction forψ(2S)→J/ψX
given by the Particle Data Group [135]. The result from experiment E771 is obtained by dividing the
observed ratio of the products of the cross sections and the branching fractions intoµ+µ− by the ratio
of the branching fractions intoµ+µ− given by the Particle Data Group [135]. The NRQCD factorization
approach gives the valuesRψ = 0.16 for both pN collisions andπ−N collisions [129]. The color-
singlet model givesRψ = 0.14 for pN collisions andRψ = 0.16 for π−N collisions [129]. In the
color-evaporation model, this ratio is simply an input. Thus the ratioRψ is not able to discriminate
between any of these approaches.

The fractionFχc of J/ψ’s that come fromχc decays is defined in Eq. (5.12). The experimental
results forFχc from fixed-target experiments are compiled in Table 5.6. TheNRQCD factorization
approach gives the valuesFχc = 0.27 for pN collisions andFχc = 0.28 for π−N collisions [129]. The
color-singlet model givesFχc = 0.68 for pN collisions andFχc = 0.66 for π−N collisions [129]. In
the color-evaporation model, this ratio is simply an input.Clearly, the experimental results favor the
NRQCD factorization approach over the color-singlet model. The most precise results frompN fixed
target experiments are compatible with the Tevatron resultin Table 5.3. The most precise results from
πN fixed target experiments are somewhat larger.

The χc1-to-χc2 ratio Rχc is defined in Eq. (5.10). There are substantial variations among the
NRQCD factorization predictions forRχc in fixed-target experiments. Beneke and Rothstein [129] give
the valuesRχc = 0.07 for pN collisions andRχc = 0.05 for π−N collisions. Their calculation is carried
out at leading order inαs and uses the standard truncation inv that is described in Section 1.1. Beneke
and Rothstein [129] suggest that corrections to hard-scattering factorization may be large. Beneke [111]
gives the estimateRχc ≈ 0.3 for bothpN andπN collisions. This estimate is based on the assumption
that the3P2 and3P0 color-octet matrix elements dominate theχc1 production. It is consistent with the
estimate in Ref. [136], once that estimate is modified to takeinto account the dominant color-singlet
channel inχc2 production [111]. Maltoni [71] gives central values ofRχc for pN collisions that range
from Rχc = 0.04 to Rχc = 0.1 as the beam energy ranges from 200 GeV to 800 GeV. Maltoni’s
calculation takes into account matrix elements at leading order inv, but contains corrections of next-to-
leading order inαs. His calculation displays a very large dependence on the renormalization scale. In
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Experiment beam/target
√
s/GeV Fχc Rχc

E673 [137] pBe 19.4/21.7 0.47 ± 0.23 0.24 ± 0.28

E705 [138] pLi 23.7 — 0.08+0.25
−0.15

E705 [141] pLi 23.7 0.30 ± 0.04 —

E771 [139] pSi 38.8 — 0.53 ± 0.20 ± 0.07

HERA-B [142] p(C, W) 41.5 0.32 ± 0.06 ± 0.04 —

WA11 [143] πBe 18.6 0.305 ± 0.050 0.68 ± 0.28

E673 [137] πBe 18.9 0.31 ± 0.10 0.96 ± 0.64

E673 [144] πBe 20.6 0.37 ± 0.09 0.9 ± 0.4

E705 [138] πLi 23.7 — 0.52+0.57
−0.27

E705 [141] π+Li 23.7 0.40 ± 0.04 —

E705 [141] π−Li 23.7 0.37 ± 0.03 —

E672/706 [145] π−Be 31.1 0.443 ± 0.041 ± 0.035 0.57 ± 0.18 ± 0.06

Table 5.6: Experimental results for the fraction ofJ/ψ’s from χc decay,Fχc , and theχc1-to-χc2 ratio,Rχc . In view of the

experimental uncertainties, no attempt has been made to rescale older measurements to account for the latestχc branching

fractions. Modified version of a table from Ref. [111].

summary, the existing predictions forRχ based on NRQCD factorization are in the range 0.04–0.3 for
both pN andπN collisions. The color-singlet model predicts thatRχc ≈ 0.05–0.07 for both pN and
πN collisions [111,129]. The color-evaporation model predicts thatRχc ≃ 3/5 [34,147].

The experimental results forRχc are compiled in Table 5.6. As can be seen, the data are somewhat
inconsistent with each other. The results from the most precise experiments are significantly smaller than
the Tevatron result in Eq. (5.18). There seems to be a trend toward larger values ofRχc in πN experi-
ments than inpN experiments. Such a dependence on the beam type is contrary to the predictions of the
color-evaporation model. It also would not be expected in the NRQCD factorization approach, unless
there is an unusual enhancement in theqq̄ production channel [111]. Both thepN andπN data yield
results that are significantly larger than the predictions of the color-singlet model. ThepN experiments
seem to favor the NRQCD factorization predictions, while theπN experiments seem to favor the color-
evaporation prediction. However, in light of the large theoretical and experimental uncertainties, no firm
conclusions can be drawn.

3.2 Polarization

The polarization variableα for J/ψ production is defined by the angular distribution in Eq. (5.13). In
fixed-target experiments, the most convenient choice of thepolarization axis is the direction of the boost
vector from theJ/ψ rest frame to the lab frame. Experimental results forα are shown in Table 5.7.
The prediction of the NRQCD factorization approach is0.31 < α < 0.63 [129]. Both the theoretical
prediction and the data include feeddown fromχc states. The prediction is largely independent of the
target and beam types. It was made specifically for the beam energy 117 GeV. However, the energy
dependence of the prediction is quite mild, and the prediction would be expected to hold with little error
even at a beam energy of 800 GeV. The color-singlet model predicts a substantial transverse polarization
[151]. The color-evaporation model predicts thatα = 0 for all processes. There are also specific
predictions for the HERA-B experiment in which the region ofsmallpT is excluded. The predictions for
the rangepT = 1.5–4 GeV areα = 0–0.1 in the NRQCD factorization approach andα = 0.2–0.4 in
the color-singlet model [152]. Experimental results for the polarization variableα in J/ψ production are
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Experiment beam/target Beam Energy/GeV α

E537 [132] (π, p)(Be, Cu, W) 125 0.024–0.032

E672/706 [148] pBe 530 0.01 ± 0.15

E672/706 [148] pBe 800 −0.11 ± 0.15

E771 [149] pSi 800 −0.09 ± 0.12

E866 [150] pCu 800 0.069 ± 0.08

HERA-B [142] p(C, W) 920 (−0.5, +0.1) ± 0.1

Table 5.7: Experimental results for the polarization variableα in J/ψ production. Modified version of a table from Ref. [142].

shown in Table 5.7. The data from the conventional fixed-target experiments are consistent withα = 0
and favor the prediction of the color-evaporation model over the predictions of NRQCD factorization or
the color-singlet model [129]. At the smaller values ofpT , one can question whether resummation of
the perturbation series is needed and whether hard-scattering factorization would be expected to hold.
The HERA-B data are also consistent withα = 0 and favor the predictions of the NRQCD factorization
approach and the color-evaporation model over the prediction of the color-singlet model.

There is also a measurement of the polarization ofψ(2S) in a fixed-target experiment. The E615
experiment measuredα for ψ(2S) mesons produced inπN collisions at 253 GeV [153]. The data
yield −0.12 < α < 0.16, while the prediction of the NRQCD factorization approach is 0.15 < α <
0.44 [129].

The E866/NuSea experiment has studied the production of dimuons in the collision of 800 GeV
protons with copper [154]. The experiment used the angular distributions of dimuons in the mass range
8.1–15.0 GeV to measure the polarization variableα for Drell-Yan pairs, forΥ(1S) mesons, and for a
mixture ofΥ(2S) andΥ(3S) mesons. The data cover the kinematic ranges 0.0< xF < 0.6 andpT <
4.0 GeV. The results for the polarization variableα as a function ofpT andxF are shown in Fig. 5.11. The
Υ(1S) data show almost no polarization at smallxF andpT , but show nonzero transverse polarization
at either largepT or largexF . A fit at theΥ(1S) mass for a polarization that is independent ofxF and
pT givesα =0.07± 0.04. This observation is substantially smaller than a prediction that is based on
the NRQCD factorization approach, which givesα in the range 0.28–0.31 [155, 156]. However, it also
disagrees with the prediction of the color-evaporation model that the polarization should be zero [34].
The most remarkable result from this experiment is that theΥ(2S) andΥ(3S) were found to be strongly
transversely polarized, with the polarization variableα close to its maximal valueα = +1 for all xF
and pT , as in the case of Drell-Yan pairs. This result provides strong motivation for measuring the
polarizations of theΥ(2S) and Υ(3S) at the Tevatron to see if these states are also produced with
substantial polarizations inpp̄ collisions.

3.3 Color-evaporation model parameters

Data frompp andpA collisions have been used to extract the parametersFH of the color-evaporation
model. (The CEM parameterFH should not be confused with the fraction ofJ/ψ’s that come from
decay ofH.) The results of these extractions are given in Tables 5.8 and 5.9. The numerical values of
the CEM parametersFH that are obtained by fitting data depend on the choices of the parton densities
(PDF’s), the heavy quark massmQ, the renormalization/factorization scaleµ, and the order inαs of the
calculation. The CEM parameters have been calculated usingseveral sets of parton densities [69,79,159],
quark masses, and scales [160,161] that reproduce the measuredQQ̄ cross section. In these calculations,
the scaleµ was set to a constant timesmQT = (m2

Q + p2
T )1/2, wherepT is the sum of the transverse

momenta of theQ and theQ̄.

333



Fig. 5.11: Polarization ofΥ mesons and Drell-Yan pairs as a function ofpT andxF in p-Cu collisions in the E866 experiment.

From Ref. [154].

We first describe the extraction of the CEM parametersFH for charmonium states. The inclusive
cross section forJ/ψ production has been measured inpp andpA collisions up to

√
s = 63 GeV. The

data are of two types: the forward cross section,σ(xF > 0), and the cross section at zero rapidity,
dσ/dy|y=0. These cross sections include the feeddown from decays ofχcJ andψ(2S). The parameters
FJ/ψ that were obtained by fitting the inclusiveJ/ψ cross sections measured inpp andpA collisions are
given in Table 5.8 for four sets of PDF’s and parameters. The ratio of the parameterF dir

H for the direct
production of a charmonium stateH to the parameterFJ/ψ for the inclusive production ofJ/ψ can be
determined from the measured ratios of the inclusive cross sections forH andJ/ψ using the known
branching fractions for the feeddown decays. These ratios are given in Table 5.9 for various charmonium
states.

A similar procedure can be used to determine the CEM parameters FH for bottomonium states.
In most data onpp andpA collisions below

√
s = 100 GeV, only the sum of theΥ(1S), Υ(2S), and

Υ(3S) cross sections weighted by their branching fractions to decay into lepton pairs is reported. A fit
to the lepton-pair cross section in theΥ region at zero rapidity therefore gives a linear combination of
the inclusive parametersFΥ(nS) weighted by the branching fractionsB[Υ(nS)→ℓ+ℓ−]. The inclusive
parametersFΥ(1S) given in Table 5.8 were extracted by using the known branching fractions and the
measured ratios of the inclusive cross sections forΥ(nS) in pp̄ collisions at the Tevatron [162]. The
ratios of the parametersF dir

H for the direct production of a bottomonium stateH to the parameterFΥ(1S)

for the inclusive production ofΥ(1S) that were obtained in Ref. [163] have been updated in Ref. [158]
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PDF mc µ/mcT FJ/ψ PDF mb µ/mbT FΥ(1S)

MRST HO 1.2 2 0.0144 MRST HO 4.75 1 0.0276
MRST HO 1.4 1 0.0248 MRST HO 4.5 2 0.0201
CTEQ 5M 1.2 2 0.0155 MRST HO 5.0 0.5 0.0508
GRV 98 HO 1.3 1 0.0229 GRV 98 HO 4.75 1 0.0225

Table 5.8: Inclusive CEM parametersFJ/ψ andFΥ(1S) from Ref. [157] for various choices of PDF’s, quark masses (in GeV),

and scales.

H J/ψ ψ(2S) χc1 χc2
F dir
H /FJ/ψ 0.62 0.14 0.60 0.99

H Υ(1S) Υ(2S) Υ(3S) χb(1P ) χb(2P )

F dir
H /FΥ(1S) 0.52 0.33 0.20 1.08 0.84

Table 5.9: Ratios of the direct CEM parametersF dir
H to the inclusive CEM parameterFJ/ψ in the case of charmonium states

and to the inclusive CEM parameterFΥ(1S) in the case of bottomonium states. From Ref. [158].

by using recent CDF data onχb production and are given in Table 5.9.

The forward cross section forJ/ψ and the weighted cross section at zero rapidity forΥ(nS) are
shown as a function of the center-of-mass energy in Fig. 5.12. The energy dependence of both cross
sections is well reproduced by the CEM at NLO. All of the CEM parameter sets give good fits to the data
for

√
s ≤ 63 GeV, but their predictions forΥ(nS) differ by up to a factor of two when extrapolated to

2 TeV. The extrapolation of the forwardJ/ψ cross section to 2 TeV cannot be compared with data from
Run I of the Tevatron because the lepton-pT cut excludes a measurement of the cross section forJ/ψ in
the regionpT < 5 GeV that dominates the integrated cross section.

4. Quarkonium production at HERA

4.1 Inelastic photoproduction of charmonium

At the ep collider HERA, the inelastic charmonium production process is dominantly virtual-photon-
gluon fusion: a photon emitted from the incoming electron orpositron interacts with a gluon from the
proton to produce acc̄ pair that subsequently forms a charmonium state. In photoproduction, the photon
virtuality Q2 is small and the photon is quasi-real. In this case, the photon can either couple to thec quark
directly (“direct” processes, Fig. 5.13a or b) or it can interact via its hadronic component (“resolved”
processes, Fig. 5.13c). Many models have been suggested to describe inelastic charmonium production
in the framework of perturbative QCD, such as the color-singlet model (CSM) [21–24] described in
Section 1.2, the color-evaporation model [28, 36] described in Section 1.3, and soft color interactions
[35].

ForJ/ψ andψ(2S) photoproduction, the CSM calculations are available to next-to-leading order
[164, 165]. These are performed using standard hard-scattering factorization in which the gluon density
depends only on the momentum fractionx. Alternatively, using the CSM, inelasticJ/ψ production
can be modeled in thekT -factorization approach (see Section 1.4) using an unintegrated (kT -dependent)
gluon density in the proton.

Theoretical calculations based on the NRQCD factorizationapproach [1–3] are available in lead-
ing order. ForJ/ψ andψ(2S) photoproduction at HERA, these have been performed by Cacciari and
Krämer [166], Beneke, Krämer, and Vänttinen [167], Amundson, Fleming, and Maksymyk [168], Ko,
Lee, and Song [169], Godbole, Roy, and Sridhar [170], and Kniehl and G. Kramer [171,172]. The theo-
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Fig. 5.12: ForwardJ/ψ production cross section (left) and weighted average of theΥ(nS) production cross sections at zero

rapidity (right) as a function of the center-of-mass energy
√
s. TheJ/ψ data are frompp experiments and frompA experiments

with light targetsA ≤ 12. It has been assumed that the cross sections scale asA0.9. The low-energyΥ data are frompp and

pA experiments. It has been assumed that the cross sections arelinear inA. The high-energyΥ data are frompp̄ experiments.

The curves are the cross sections calculated to NLO in the CEMusing the four charmonium parameter sets and the four

bottomonium parameter sets in Table 5.8.

retical calculations use the standard truncation inv, in which the independent NRQCD matrix elements
are〈OJ/ψ

1 (3S1)〉, 〈OJ/ψ
8 (1S0)〉, 〈OJ/ψ

8 (3S1)〉, and〈OJ/ψ
8 (3P0)〉. The relative strength of the color-octet

contributions depends crucially on the size of the corresponding NRQCD matrix elements. Unfortunately
the values of the matrix elements〈OJ/ψ

8 (1S0)〉 and〈OJ/ψ
8 (3P0)〉, which are most important inJ/ψ and

ψ(2S) photoproduction at HERA, still show large uncertainties. (See Section 2.1 and Ref. [64].)

The theoretical predictions are sensitive to a number of input parameters,e.g., the parton distribu-
tions, the values ofαs, and the charm-quark massmc, as well as the choice of the renormalization and
factorization scales. In the NRQCD factorization approach, the values of the color-octet NRQCD matrix
elements are additional parameters. The comparison with the data in the NRQCD approach also suffers
from the uncertainties associated with LO calculations. Next-to-leading-order corrections might change
the results substantially. Although the NLO terms have not been calculated in the NRQCD approach,
effects that are similar to those in the CSM may be expected, in which the NLO terms lead to an increase
in the cross section of typically a factor two, with a strongpT,ψ dependence.

Figure 5.14 shows the measurements of the promptJ/ψ cross section by the H1 collaboration
[173] and the ZEUS collaboration [174], compared with the theoretical predictions given in Ref. [64].
The variablez denotes the fraction of the photon energy that is transferred to theJ/ψ and is defined as

z =
(E − pz)J/ψ

(E − pz)hadrons
, (5.23)

whereE andpz in the numerator are the energy andz-component of the momentum of theJ/ψ and
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Fig. 5.13: Generic Feynman diagrams for inelasticJ/ψ production. a,b) direct-photon processes; c) resolved-photon process.

In diagrams a) and c), thecc̄ pair leading to the formation of theJ/ψ can be in a color-singlet or a color-octet state while in b)

it can only be in a color-octet state. Additional soft gluonsemitted during the hadronization process are not shown.
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Fig. 5.14: The rate for inelasticJ/ψ photoproduction at HERA as a function ofz. The open band represents the LO NRQCD

factorization prediction [64]. The solid band represents the NLO color-singlet contribution [64,165]. The data points are from

the H1 [173] and ZEUS [174] measurements.
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Fig. 5.15: The rate for inelasticJ/ψ photoproduction at HERA as a function ofpT,ψ. The solid band represents the NLO

color-singlet contribution [64,165]. The dotted line is the LO color-singlet contribution. The data points are from the H1 [173]

and ZEUS [174] measurements.

E andpz in the denominator are the sums of the energies andz-components of the momenta of all the
hadrons in the final state.

TheJ/ψ data points shown in Fig. 5.14 are not corrected for feeddownprocesses, such as diffrac-
tive and inelastic production ofψ(2S) mesons (≈ 15%), the production ofb hadrons with subsequent
decays toJ/ψ mesons, or feeddown from the production ofχc states. The latter two contributions are
estimated to contribute between 5% at mediumz and 30% at the lowest values ofz. The open band in
Fig. 5.14 represents the sum of the color-singlet and color-octet contributions, calculated in leading order
in QCD perturbation theory. The uncertainty is due to the uncertainty in the color-octet NRQCD matrix
elements. The NRQCD prediction deviates from the data nearz = 1, owing to the large color-octet
contribution in that region. The shaded band shows the calculation of the color-singlet contribution to
next-to-leading order inαs [164, 165]. The NLO corrections increase the color-singletcontribution by
about a factor of two, so that it accounts for the data quite well without the inclusion of a color-octet
contribution.

Uncertainties inmc could lower the color-singlet contribution by about a factor of two, leaving
more room for color-octet contributions. In the experimental data, the cutpT,ψ > 1 GeV is employed.
One can question whether hard-scattering factorization isvalid at such small values ofpT,ψ. However,
the data differential inpT,ψ are compatible with color-singlet production alone at large pT,ψ (Fig. 5.15).

The next-to-leading-order QCD corrections are crucial in describing the shape of the transverse-
momentum distribution of theJ/ψ. The NLO color-singlet cross section includes processes such as
γ + g→(cc̄) + gg, which are dominated byt-channel gluon exchange and scale asα3

sm
2
c/p

6
T,ψ. At

pT,ψ ∼> mc their contribution is enhanced with respect to the leading-order cross section, which scales as
∼ α2

sm
4
c/p

8
T,ψ. The comparison with the experimental data in Fig. 5.15 confirms the importance of the

higher-order corrections.

At large z, the emission of soft gluons in the conversion of thecc̄ pairs toJ/ψ mesons is sup-
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(dashed line),Λ = 300 MeV (solid line), andΛ = 500 MeV (dash-dotted line). The theoretical curves have been scaled with

a common factor 2 in the left panel and 3 in the right panel.

pressed, owing to phase-space limitations. Furthermore, the velocity expansion of the NRQCD fac-
torization approach is expected to break down [10]. These effects are not taken into account in the
theoretical calculation that is shown in Fig 5.14. In Ref. [12], a resummation of the nonrelativistic ex-
pansion was carried out, leading to a decrease of the predicted cross section at highz. The resummation
involves a parameterΛ that describes the energy in thecc̄ rest frame that is lost by thecc̄ system in its
conversion into theJ/ψ meson. In Fig. 5.16, the measured cross sectionsdσ/dz for pT,ψ > 2 GeV
and forpT,ψ > 3 GeV are compared with the results of these resummed calculations. The calculated
curves have been roughly normalized to the data points at lowz. The resummed calculation forΛ = 500
MeV gives an acceptable description of the data atpT,ψ> 3 GeV, while the agreement between data and
calculation is still poor forpT,ψ> 2 GeV or for lowerΛ values.

Effects from resummation of logarithms of1 − z and model shape functions have also been cal-
culated for the processe+e−→J/ψ + X [11]. It may be possible to use this resummed theoretical
prediction to extract the dominant shape function from the Belle and BaBar data fore+e−→J/ψ + X
and then use it to make predictions forJ/ψ photoproduction nearz = 1.

Measurements of theJ/ψ production cross section at largez are available from H1 [203] and from
ZEUS [174]. In this region, the contribution from diffractively producedJ/ψ mesons is expected to be
large, as is discussed below in Section 4.3.

The ZEUS Collaboration has also measured theψ′ to J/ψ cross section ratio [174] in the range
0.55 < z < 0.9 and50 < W < 180 GeV. It is found to be consistent with being independent of the
kinematic variablesz, pt,ψ andW , as is expected if the underlying production mechanisms fortheJ/ψ
and theψ′ are the same. An average valueσ(ψ′)/σ(J/ψ) = 0.33 ± 0.10(stat.)+0.01

−0.02(syst.) is found
which compares well with the prediction from the leading-order color-singlet model [164].

ThekT -factorization approach (see Section 1.4) has recently been applied successfully to the de-
scription of a variety of processes [175–177]. In this approach, theJ/ψ production process is factorized
into akT -dependent gluon density and a matrix element for off-shellpartons. A leading-order calculation
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Fig. 5.17: InelasticJ/ψ production in the region60 < Wγp < 240 GeV,0.3 < z < 0.9, andp2
T,ψ > 1 GeV2, in comparison

with akT -factorization model implemented in the Monte Carlo generator CASCADE [175,176]. Left panel: differential cross

sectiondσ/dz; right panel:dσ/dp2
T,ψ in the range0.3 < z < 0.9.

within this approach is implemented in the Monte Carlo generator CASCADE [175, 176]. Figure 5.17
shows a comparison of the data with the predictions from thekT -factorization approach. Good agree-
ment is observed between data and predictions forz <∼ 0.8. At high z values, the CASCADE calculation
underestimates the cross section. This may be due to missinghigher-order effects, or missing relativistic
corrections, which are not available for the off-shell matrix element. It could also indicate a possible
missing color-octet contribution. The CASCADE predictions for the thep2

T,ψ dependence of the cross
section (Fig. 5.17c) fit the data considerably better than the collinear LO calculations. This improved
fit is due to the transverse momentum of the gluons from the proton, which contributes to the trans-
verse momentum of theJ/ψ meson. Note, however, that the NLO color-singlet calculation in collinear
factorization [165] also describes thep2

T,ψ distribution.

The polarization of theJ/ψ meson is expected to differ in the various theoretical approaches dis-
cussed here and could in principle be used to distinguish between them, independently of normalization
uncertainties. The general decay angular distribution canbe parametrized as

dΓ(J/ψ→l+l−)

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ+

ν

2
sin2 θ cos 2φ, (5.24)

whereθ andφ refer to the polar and azimuthal angle of thel+ three-momentum with respect to a co-
ordinate system that is defined in theJ/ψ rest frame. (See, for example, Ref. [167] for details.) The
parametersλ, µ, ν can be calculated within NRQCD or the CSM as a function of the kinematic vari-
ables, such asz andpT,ψ.

In Fig. 5.18, the data are shown, together with the results from two LO calculations: the NRQCD
prediction, including color-octet and color-singlet contributions [167], and the color-singlet contribution
alone. A calculation that uses akT -factorization approach and off-shell gluons is also available [178].
In contrast to the predictions shown in the Fig. 5.18, in which λ is zero or positive, the prediction of the
kT -factorization approach is thatλ should become increasingly negative toward larger values of pt,J/ψ,
reachingλ ∼ −0.5 at pT,ψ = 6 GeV. However, at present, the errors in the data preclude anyfirm
conclusions. In this range ofpT,ψ none of the calculations predicts a decrease inλ with increasingz.
In order to distinguish between full NRQCD and the color-singlet contribution alone, measurements
at largerpT,ψ are required. The measured values ofν, for which no prediction is available from the
kT -factorization approach, favor the full NRQCD prediction.
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show the result from the color-singlet contribution separately.
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Fig. 5.19: Generic diagrams for charmonium production mechanisms: photon-gluon fusion via a “2 → 1” process (top left

diagram) and “2 → 2” processes (remaining diagrams). All the diagrams contribute via color-octet mechanisms, while the

top right diagram can also contribute via the color-singletmechanism. Additional soft gluons emitted during the hadronization

process are not shown.

4.2 Inelastic electroproduction of charmonium

As in photoproduction, inelastic leptoproduction ofJ/ψ mesons at HERA (e+p → e+J/ψ+X) is dom-
inated by virtual-photon-gluon fusion (γ∗g → cc̄). In leptoproduction, or deep inelasticep-scattering
(DIS), the exchanged photon has a nonzero virtualityQ2 = −q2, whereq is the four-momentum of the
virtual photon. For events with a photon virtuality ofQ2 >∼ 1 GeV2, the electron scattering angle is large
enough for the electron to be detected in the central detectors.

The analysis of leptoproduction at finiteQ2 has experimental and theoretical advantages in com-
parison with the analysis of photoproduction. At highQ2, theoretical uncertainties in the models decrease
and resolved-photon processes are expected to be negligible. Furthermore, the background from diffrac-
tive production of charmonia is expected to decrease fasterwith Q2 than the inelastic process, and the
distinct signature of the scattered lepton makes the inelastic process easier to detect.

A first comparison between data and NRQCD calculations was presented in Ref. [179]. The
NRQCD calculations in Ref. [179] were performed by taking into account only “2 → 1” diagrams (see
the top left diagram of Fig.5.19) [180], and disagreement between data and theory was observed both
in the absolute values of the cross sections and in their shapes as functions of the variables that were
studied.

More recently, the cross section forJ/ψ production in deep-inelasticep scattering at HERA was
calculated in the NRQCD factorization approach at leading order inαs by Kniehl and Zwirner [181],
taking into account diagrams of the type “2 → 2”, as are shown in the top right and bottom diagrams
of Fig. 5.19. The calculation made use of the matrix elementsof Ref. [78] and MRST98LO [79] and
CTEQ5L [69] parton distributions.

In Fig. 5.20, the results of this calculation are plotted as afunction ofQ2 andp2
T,ψ, along with

the H1 data [182]. The NRQCD results that are shown in Fig. 5.20 include the contributions from the
color-octet channels3S1, 3PJ=0,1,2, 1S0, as well as from the color-singlet channel3S1. The contribution
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Fig. 5.23: Diagram for diffractive charmonium production via exchange of two gluons in a color-singlet state.

of the color-singlet channel is also shown separately. The values of the NRQCD matrix elements were
determined from the distribution of transverse momenta ofJ/ψ mesons produced inpp̄ collisions [78].4

The bands include theoretical uncertainties, which originate from the uncertainty in the charm-quark
massmc = 1.5 ± 0.1 GeV, the variation of renormalization and factorization scales by factors 1/2 and
2, and the uncertainties in the NRQCD matrix elements, all ofwhich result mainly in normalization
uncertainties that do not affect the shapes of the distributions.

Fig. 5.21 shows the differential electroproduction cross sections forJ/ψ mesons as functions
of Q2 and z, as measured by the ZEUS collaboration [183]. The ZEUS data,which are consistent
with the H1 results shown in Fig 5.20, are compared with predictions in the framework of NRQCD
(CS+CO) [181] and also with predictions in thekT -factorization approach in which only the color-
singlet contribution (CS) is included [184]. As in Fig. 5.20, the uncertainties in the NRQCD calculations
are indicated in Fig. 5.21 as shaded bands. For the prediction within the kT -factorization approach
(LZ(kt,CS)), only one of the sources of uncertainty is presented, namely the uncertainty in the pomeron
intercept∆, which controls the normalization of the unintegrated gluon density.

In Fig. 5.22, the normalization uncertainties of the theory, which are dominant, are removed by
normalizing the differential cross sections measured by H1[182] and the theory predictions to the inte-
grated cross sections in the measured range for each distribution. The comparisons in Figs. 5.20–5.22
indicate that the color-singlet contribution follows the shape of the data from H1 and ZEUS quite well.
In general, the CSM predictions are below the H1 and ZEUS data, but are consistent with the data, given
the uncertainties, both in shape and normalization. However, the differential cross sections as a function
of the transverse momentum squared of theJ/ψ are too steep compared to the data (lower left plot in
Fig. 5.20). A similar observation was made for photoproduction (Section 4.1, Fig 5.15), in which the LO
CSM calculation is too steep and the NLO CSM calculation is found to describe the data well. Thez
distribution (Figs. 5.21 and 5.22) is very poorly describedby the full calculation that includes color-octet
contributions, while the color-singlet contribution alone reproduces the shape of the data rather well. The
failure of the color-octet calculations could be due to the fact that resummations of soft-gluons are not
included here. It is worth noting that the calculation of Kniehl and Zwirner disagrees with a number of
previous results [185–189], which themselves are not fullyconsistent.

4.3 Diffractive vector meson production

At HERA, the dominant production channel for quarkonia withquantum numbers of real photons (i.e.
JPC = 1−−) is through diffractive processes. In perturbative QCD, the diffractive production of vector
mesons can be modeled in the proton rest frame by a process in which the photon fluctuates into aqq̄
pair at a long distance from the proton target. Theqq̄ subsequently interacts with the proton via a color-

4 The extracted values for the NRQCD matrix elements depend onthe parton distributions. For the set MRST98LO [79], the
values are〈OJ/ψ

1 (3S1)〉 = 1.3±0.1 GeV3, 〈OJ/ψ
8 (3S1)〉 = (4.4±0.7)×10−3 GeV3 andMJ/ψ

3.4 = (8.7±0.9)×10−2 GeV3,
whereMJ/ψ

3.4 is the linear combination of two NRQCD matrix elements that is defined in Eq. (5.8).
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Fig. 5.24: Total cross section and cross sections for production of various vector mesons inγp collisions as a function ofWγp,

as measured at HERA and in fixed-target experiments.
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singlet exchange, i.e. in lowest order QCD via the exchange of a pair of gluons with opposite color (see
Fig. 5.23) [190–196]. At small|t|, wheret is the momentum-transfer-squared at the proton vertex, the
elastic process in which the proton stays intact dominates.Toward larger values of|t|, the dissociation
of the proton into a small-invariant-mass state becomes dominant. Measurements of diffractive vector-
meson production cross sections and helicity structure from the H1 [179,197–204] and ZEUS [205–210,
212, 213] collaborations are available forρ0, ω, φ, J/ψ, ψ′, andΥ production, spanning the ranges of
0 ≃ Q2 < 100 GeV2, 0 ≃ |t| < 20 GeV2, and20 < Wγp < 290 GeV. (Wγp is theγp center-of-mass
energy.) In Fig. 5.24, the elastic photoproduction cross sections are shown. Perturbative calculations in
QCD are available for the kinematic regions in which at leastone of the energy scalesµ2 (i.e.Q2, M2

V

or |t|) is large and the strong-coupling constantαs(µ
2) is small [214–220].

In the presence of such a ‘hard’ scale, QCD predicts a steep rise of the cross section withWγp.
At smallQ2, |t| and meson massesMV , vector-meson production is known to show a non-perturbative
“soft” behavior that is described, for example, by Regge-type models [221–225]. Toward larger values
of |t|, in the leading logarithmic approximation, diffractiveJ/ψ production can be described by the
effective exchange of a gluonic ladder. At sufficiently low values of Bjorkenx (i.e. large values ofWγp),
the gluon ladder is expected to include contributions from BFKL evolution [226–230], as well as from
DGLAP evolution [231].

Experimentally, diffractive events are generally distinguishable from inelastic events, since, aside
from meson-decay products, only a few final-state particlesare produced in the central rapidity range
in proton dissociation and no particles are produced in the central rapidity range in elastic diffraction.
The elasticity variablez defined in Eq. (5.23) is often used to demark the boundary between the elastic
and inelastic regions, with a typical demarcation forJ/ψ production beingz > 0.95 for the diffractive
region andz < 0.95 for the inelastic region. However, at largez, there is actually no clear distinction
between inelasticJ/ψ production and diffractiveJ/ψ production in which the proton dissociates into
a final state with large invariant mass, owing to the fact thatthe two processes can produce the same
final-state particles. In the region of largez, both inelastic and diffractive processes are expected to
contribute to the cross section. In calculations that are based on the NRQCD factorization approach,
the cross section increases toward largez, owing to large contributions from color-octetcc̄ pairs, as is
explained in Section 4.1. These contributions are, however, substantially reduced when one takes into
account multiple soft gluon emission,e.g., in resummation calculations [12]. At the same time, calcula-
tions in perturbative QCD that assume a diffractive color-singlet exchange are capable of describing the
production cross sections at largez [203, 210, 211]. A unified description in QCD of the largez region,
taking into account both inelastic and diffractive contributions, has yet to be developed.

4.4 Prospects for the upgraded HERA collider

With the HERA luminosity upgrade, a wealth of new quarkoniumdata will become available. The ex-
isting J/ψ andψ(2S) measurements can be improved and extended into new kinematic regions, and
other quarkonium final states may become accessible. The future analyses of quarkonium production at
HERA offer unique possibilities to test the theoretical framework of NRQCD factorization. It should
be noted here that calculations to next-to-leading order, which are not yet available in the framework of
NRQCD factorization, could be an essential ingredient in a full quantitative understanding of charmo-
nium production at HERA, and also at other experiments, suchas those at the Tevatron. Some of the
most interesting reactions will be discussed briefly below.See Refs. [64,232] for more details.

The measurement of inelasticχc photoproductionis a particularly powerful way to discriminate
between NRQCD and the color-evaporation model. The assumption of a single, universal long-distance
factor in the color-evaporation model implies a universalσ[χc]/σ[J/ψ] ratio. A largeχc cross section
is predicted for photon-proton collisions. The ratio ofχc production toJ/ψ production is expected to
be similar to that at hadron colliders, for whichσ[χc]/σ[J/ψ] ≈ 0.5 [62]. In NRQCD, on the other
hand, theσ[χc]/σ[J/ψ] ratio is process-dependent and strongly suppressed in photoproduction. Up to
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corrections ofO(αs, v
2) one finds that [64]

σ[γp→χcJ X]

σ[γp→J/ψX]
≈ 15

8
(2J + 1)

〈Oχc0
8 (3S1)〉

〈OJ/ψ
1 (3S1)〉

≈ (2J + 1) 0.005, (5.25)

where the last approximation makes use of the NRQCD matrix elements that are listed in Table 5.1.
A search forχc production at HERA that results in a cross section measurement or an upper limit on
the cross section would probe directly the color-octet matrix element〈OχJ

8 (3S1)〉 and would test the
assumption of a single, universal long-distance factor that is implicit in the color-evaporation model.

The inclusion of color-octet processes is crucial in describing the photoproduction of thespin-
singlet statesηc(1S), ηc(2S), andhc(1P ). With regard to theP -wave statehc, the color-octet contribu-
tion is required to cancel the infrared divergence that is present in the color-singlet cross section [233].
The production of theηc, on the other hand, is dominated by color-octet processes, since the color-
singlet cross section vanishes at leading-order, owing to charge-conjugation invariance [234, 235], as is
the case forχc photoproduction. The cross sections forηc(1S), ηc(2S), andhc(1P ) photoproduction
are sizable [233,234], but it is not obvious that these particles can be detected experimentally, even with
high-statistics data.

The energy spectrum ofJ/ψ’s produced in association with a photonvia the processγp→J/ψ +
γ X is a distinctive probe of color-octet processes [232, 236–238]. In the color-singlet channel and at
leading-order inαs, J/ψ + γ can be produced only through resolved-photon interactions. The corre-
sponding energy distribution is therefore peaked at low values ofz. The intermediate-z and large-z
regions of the energy spectrum are expected to be dominated by the color-octet processγg→cc̄8(

3S1) γ.
Observation of a substantial fraction ofJ/ψ + γ events atz ∼> 0.5 would provide clear evidence for the
presence of color-octet processes in quarkonium photoproduction. Experimentally, this measurement is
very difficult due to the large background from photons fromπ0 decays which are produced in the final
state.

With the significant increase in statistics at the upgraded HERA collider, it might be possible
to study inelastic photoproduction of bottomonium statesfor the first time. The large value of theb-
quark mass makes the perturbative QCD predictions more reliable than for charm production, and the
application of NRQCD should be on safer ground for the bottomonium system, in whichv2 ≈ 0.1.
However, the production rates forΥ states are suppressed compared with those forJ/ψ by more than
two orders of magnitude at HERA—a consequence of the smallerb-quark electric charge and the phase-
space reduction that follows from the largerb-quark mass.

5. Quarkonium production at LEP

5.1 J/ψ production

The LEP collider was used to studye+e− collisions at theZ0 resonance. Charmonium was produced
at LEP through direct production inZ0 decay, through the decays ofb hadrons fromZ0 decay, and
throughγγ collisions. The contributions from the decays ofb hadrons can be separated from those from
direct production by using a vertex detector. Charmonium that is produced directly will be referred to as
“prompt.”

In Z0 decay, the dominant mechanism for charmonium production isthe decay of theZ0 into
bb̄, followed by the fragmentation of theb or b̄ into a heavy hadron and the subsequent decay of the
heavy hadron into charmonium. The inclusive branching fraction of theZ0 into a charmonium stateH
is to a good approximation the product of the branching fraction for Z0→bb̄, a weighted average of the
inclusive branching fractions ofb hadrons intoH, and a factor of two to account for theb and thēb:

Br[Z0→HX] ≈ 2 Br[Z0→bb̄]
∑

B

Db→B Br[B→HX]. (5.26)
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Fig. 5.25: Differential ratedΓ/dz for inclusive decay ofZ0 into J/ψ. The data is from the ALEPH collaboration [239]. The

dashed line is the sum of the tree-level color-singlet and color-octet terms. The solid line is an interpolation betweenresummed

calculations in the small-z and large-z regions. From Ref. [243].

The branching fraction for theb hadronB to decay into a state that includesH is weighted by the
probabilityDb→B for a 45 GeVb quark to fragment intoB. The inclusive branching fractions forZ0

decay into several charmonium states have been measured. Since these measurements have more to do
with b-hadron decay thanZ0 decay, they are presented in Section 7..

The ALEPH, DELPHI, L3, and OPAL collaborations at LEP have measured the inclusive branch-
ing fraction ofZ0 into promptJ/ψ [239–242]. In the NRQCD factorization approach, there are two
mechanisms that dominate directJ/ψ production. The first isZ0 decay intocc̄, followed by the frag-
mentation of thec or c̄ into J/ψ via the color-singlet channelcc̄1(3S1). The second isZ0 decay into
qḡg, followed by the fragmentation of the gluon intoJ/ψ via the color-octet channelcc̄8(3S1). Boyd,
Leibovich, and Rothstein [243] have used the results from the four LEP collaborations to extract the
color-octet matrix element:〈OJ/ψ

8 (3S1)〉 = (1.9 ± 0.5stat ± 1.0theory) × 10−2 GeV3. This is about
a factor of two larger than the Tevatron value and has smallertheory errors, but feeddown fromχc and
ψ(2S) states was not taken into account in the theoretical analysis. Boyd, Leibovich, and Rothstein [243]
also carried out a resummation of the logarithms ofM2

Z/M
2
ψ andz2, wherez = 2Ecc̄/mZ . Their result

for the resummedz distribution for promptJ/ψ production is compared with data from the ALEPH
collaboration [239] in Fig. 5.25. Their analysis predicts an enhancement in the production rate near
z = 0.15. The uncertainties in the data are too large to make a definitive statement about the presence or
absence of this feature.

The inclusive cross section forγγ → J/ψ +X at LEP has been measured by the DELPHI Collab-
oration [244,245]. The cross section at nonzeropT has been computed at leading order inαs. The com-
putation includes the direct-photon processγγ→(cc̄) + g, which is of orderα2αs, the single-resolved-
photon processiγ→(cc̄)+i, which is of orderαα2

s , and the double-resolved-photon processij→(cc̄)+k,
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Fig. 5.26: Differential cross section for the processγγ → J/ψ +X as a function ofp2
T . The data points are from the DELPHI

Collaboration [244, 245]. The upper set of curves is the NRQCD factorization predictions, and the lower set of curves is the

color-singlet model prediction. The solid and dashed curves correspond to the MRST98LO [79] and CTEQ5L [69] parton

distributions, respectively. The arrows indicate the relative contributions atpT = 0 from parton processesij→cc̄, which were

ignored in the analysis. Hereij = γγ, gg, or qq̄. From Ref. [250].

which is of orderα3
s [246–250]. (Here,ij = gg, gq, gq̄, or qq̄.) Note that all processes contribute for-

mally at the same order in perturbation theory since the leading behavior of the parton distributions in the
photon is∝ α/αs. The contribution to theγγ → J/ψ +X cross section at LEP that is by far dominant
numerically is that from single-resolved processes,i.e., photon-gluon fusion.

The results of the LO computation [250] are shown in Fig. 5.26. The computation uses the
NRQCD matrix elements of Ref. [78]. Theoretical uncertainties were estimated by varying the renor-
malization and factorization scales by a factor two and by incorporating the effects of uncertainties in
the values of the color-octet matrix elements. As can be seenfrom Fig. 5.26, the comparison with the
DELPHI data [244,245] clearly favors the NRQCD factorization approach over the color-singlet model.
However, the comparison of Fig. 5.26 is based on a leading-order calculation. It is known from the re-
lated process ofJ/ψ photoproduction at HERA, which is also dominated by photon-gluon fusion, that
the LO color-singlet cross section fails to describe theJ/ψ data at nonzeropT . Inclusion of the NLO
correction, however, brings the color-singlet predictionin line with experiment. Similarly large NLO
corrections can be expected forγγ → J/ψ +X production at LEP, and a complete NLO analysis is
needed before firm conclusions on the importance of color-octet contributions can be drawn. A first step
in this direction has been taken recently in Ref. [251], where the NLO corrections to the direct process
γγ→(cc̄) + g have been calculated.
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color-octet contribution, which includes a resummation oflogarithms of1 − z and a phenomenological shape function. The

lower lines are the leading-order color-singlet contribution alone. From Ref. [11].

5.2 Υ(1S) production

The OPAL collaboration has measured the inclusive branching fraction for the decay ofZ0 into Υ(1S)
[252]. The NRQCD factorization prediction forBr[Z0 → Υ(1S) + X] is 5.9 × 10−5 [253]. The
color-singlet-model prediction is1.7 × 10−5 [253–258]. The experimental result from OPAL [252] is
[1.0±0.4(stat.)±0.1(sys.)±0.2(prod. mech.)]×10−4. This is compatible with the NRQCD factorization
prediction, but not with the color-singlet-model prediction.

6. Charmonium production in e+e− annihilations at 10.6 GeV

TheB factories have proved to be a rich source of data on charmonium production ine+e− annihila-
tion. TheB factories operate near the peak of theΥ(4S) in order to maximize the production rate forB
mesons, but about 75% of the events are continuume+e− annihilation events. The enormous data sam-
ples that have been accumulated compensate for the relatively small cross sections fore+e− annihilation
into states that include charmonium.

6.1 J/ψ production

The Belle and BaBar Collaborations have measured the inclusive cross sectionσ[e+e− → J/ψX]. The
Belle Collaboration obtains2.52 ± 0.21 ± 0.21 pb [259], while the BaBar Collaboration obtains1.47 ±
0.10 ± 0.13 pb [260]. The leading-order parton process in the color-singlet model ise+e−→(cc̄) + gg,
which is of orderα2α2

s. The leading color-octet contributions in the NRQCD factorization approach
come frome+e− annihilation into(cc̄)+g, which is orderα2αs, and into(cc̄)+ qq̄ and(cc̄)+gg, which
are orderα2α2

s. The prediction for the cross sectionσ[e+e− → J/ψ X] in the color-singlet model is
0.45−0.81 pb [261–264], while the NRQCD factorization prediction is1.1−1.6 pb [262–264]. There is
a3σ discrepancy between the experiments, but the NRQCD factorization prediction seems to be favored.
The discrepancies between the two experiments in this and other measurements may be due partly to
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differences in cuts that were used to suppress contributions from processes in which the charmonium
is not produced by annihilation ofe+ ande− with a center-of-mass energy of 10.6 GeV. These include
radiative-return processes, in which thee+ ore− loses a substantial fraction of its momentum by radiating
a collinear photon before the collision, virtual photon radiation, in which thee+ or e− radiates a virtual
photon that becomes aJ/ψ orψ(2S), and two-photon collisions, which produceηc, χc0, andχc2.

The momentum distribution of theJ/ψ provides information about the production mechanism.
The momentum of theJ/ψ in the CM frame can be characterized in terms of its magnitudep∗ and its
angleθ∗ with respect to the beam direction. The Belle [259] and BaBar[260] measurements for the
differential cross section forJ/ψ production as a function ofp∗ are shown in Fig. 5.27. The color-singlet
prediction, which is shown in the lower curves in Fig. 5.27, is far too small to describe the data. The
measurements from Belle and BaBar do not show any enhancement at the maximum value ofp∗, as
might be expected from the color-octet processe+e−→(cc̄) + g that is of leading order inαs. However,
there are two effects that are expected to modify the leading-order result. The first effect is that the
v expansion of NRQCD breaks down near the kinematic maximum value of p∗. Resummation of the
expansion is required [10, 12], and it leads to a nonperturbative shape function [10], which smears out
the peak in the leading-order result. A second effect near the maximum value ofp∗ is that there are large
logarithms of1− z, wherez = Ecc̄/E

max
cc̄ , that must also be resummed. The effect of that resummation

is again to smear out the peak in the leading-order result. A resummation of logarithms of1− z has been
combined with a phenomenological shape function in Ref. [11]. The results of this calculation are shown
in the upper curves in Fig. 5.27. The shape function has been chosen to fit the Belle and BaBar data.
The normalization of the shape function is fixed by the color-octet NRQCD matrix elements, which were
taken to be〈OJ/ψ

8 (1S0)〉 = 〈OJ/ψ
8 (3P0)〉 = 6.6 × 10−2 GeV. These values of the color-octet matrix

elements are consistent with data from photoproduction andhadroproduction [129,168]. As can be seen,
the resummations of thev expansion and the logarithms of1 − z produce reasonable fits to the data.
The resummation prediction is not expected to be valid at small values ofp∗. It should also be kept in
mind that hard-scattering factorization may not hold unless p∗ ≫ ΛQCD. While the comparison of the
resummed theory with experiment indicates that it is plausible that the NRQCD factorization approach
can describe the experimental data, the theoretical results rely heavily on the phenomenological shape
function, whose shape is tuned to fit the data. The resummed theory will receive a much more stringent
test when a phenomenological shape function that has been extracted from thee+e− data is used to
predict theJ/ψ production cross section in some other process, for example, photoproduction at HERA.

Belle BaBar

Range ofp∗ (GeV) A α Range ofp∗ (GeV) A α

2.0 < p∗ < 2.6 0.82+0.95
−0.63 −0.62+0.30

−0.24 p∗ < 3.5 0.05 ± 0.22 −0.46 ± 0.21

2.6 < p∗ < 3.4 1.44+0.42
−0.38 −0.34+0.18

−0.16

3.4 < p∗ < 5.0 1.08+0.44
−0.33 −0.32+0.20

−0.18 3.5 < p∗ 1.5 ± 0.6 −0.80 ± 0.09

Table 5.10: Angular asymmetry variableA and polarization variableα for various ranges of the CM momentump∗ of theJ/ψ

in e+e−→J/ψX at
√
s = 10.6 GeV, as measured by the Belle [259] and BaBar [260] Collaborations.

The other variable that characterizes the momentum of theJ/ψ is its angleθ∗ with respect to the
beam direction in the CM frame. The angular distributiondσ/d(cos θ∗) is proportional to1 +A cos2 θ∗,
which defines an angular asymmetry variableA. The Belle [259] and BaBar [260] Collaborations have
measuredA in several bins ofp∗. Their results are shown in Table 5.10. The NRQCD factorization
approach predicts thatA ≈ 0 at smallp∗ and0.6 < A < 1.0 at largep∗ [265] . The color-singlet model
predicts thatA ≈ 0 at smallpT andA ≈ −0.8 at largep∗ [265]. The Belle and BaBar results favor the
NRQCD factorization prediction, but the uncertainties arelarge.
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The polarization of theJ/ψ provides further information about the production mechanism. The
polarization variableα for J/ψ production is defined by the angular distribution in Eq. (5.13). In e+e−

annihilation, the most convenient choice for the polarization axis is the boost vector from the quarkonium
rest frame to thee+e− center-of-momentum frame. The Belle and BaBar Collaborations have measured
the polarization variableα in several bins ofp∗. Their results are shown in Table 5.10. The polarization
of J/ψ’s from e+e− annihilation at theB factories has not yet been calculated within the NRQCD
factorization approach. In contrast to the production ofJ/ψ’s with largepT at the Tevatron, where the
dominance of gluon fragmentation into color-octet3S1 cc̄ states implies a large transverse polarization,
production ofJ/ψ’s at theB factories occurs at values ofp∗ for which there are no simple qualitative
expectations for the polarization. A comparison between theory and experiment must await an actual
calculation of theJ/ψ polarization, including the effects of feeddown from higher charmonium states.
It may be necessary to include in such a calculation resummations of thev expansion and logarithms
of 1 − z in order to make precise quantitative statements. However,the effects of these resummations
is mainly to re-distribute theJ/ψ’s that are produced via the color-octet mechanism over a range inp∗

without affecting the total number of suchJ/ψ’s.

A surprising result from the Belle Collaboration is that most of the J/ψ’s that are produced in
e+e− annihilation at10.6 GeV are accompanied by charmed hadrons. The presence of a charmed hadron
indicates the creation of a secondcc̄ pair in addition to the pair that forms theJ/ψ. A convenient measure
of the probability for creating the secondcc̄ pair is the ratio

Rdouble =
σ[e+e−→J/ψ +Xcc̄]

σ[e+e−→J/ψ +X]
. (5.27)

The Belle Collaboration finds thatRdouble = 0.82 ± 0.15 ± 0.14 with Rdouble > 0.48 at the 90%
confidence level [266]. The NRQCD factorization approach leads to the predictionRdouble ≈ 0.1 [261,
262,267], which disagrees with the Belle result by almost anorder of magnitude. The discrepancy seems
to arise primarily from the cross section in the numerator of(5.27). The Belle result for this cross section
is about 0.6–1.1 pb [268], while the prediction is about 0.10–0.15 pb [261, 262, 267, 269]. At leading
order inαs, which isα2

s, the process ofe+e− annihilation intoJ/ψ+Xcc̄ proceeds through(cc̄)+cc̄. The
contributions to this cross section in which theJ/ψ is formed from a color-octetcc̄ pair are suppressed
by a factorv4 ≈ 0.1, and they have been found to yield only about 7% of the total cross section [269].
Corrections of orderα3

s and higher are also not expected to be particularly large. Thus, the source of the
discrepancy between the Belle result forRdouble and theory remains a mystery.

There is also a large discrepancy between theory and experiment in an exclusive double-cc̄ cross
section. For the double-charmonium processe+e−→J/ψ + ηc, the Belle Collaboration measures the
product of the cross section and the branching fraction for the ηc to decay into at least two charged
tracks to be25.6 ± 2.8 ± 3.4 fb [270]. In contrast, leading-order calculations predicta cross section of
2.31 ± 1.09 fb [271–273]. There are some uncertainties from uncalculated corrections of higher-order
in αs andv and from NRQCD matrix elements. However, because this is an exclusive process, only
color-singlet matrix elements enter, and these are fairly well determined from the decaysJ/ψ→e+e−

andηc→γγ.

Since the Belle mass resolution is 110 MeV but theJ/ψ-ηc mass difference is only 120 MeV, it
has been suggested that some of theJ/ψ+ ηc data sample may consist ofJ/ψ+ J/ψ events [274,275].
The stateJ/ψ+J/ψ has charge-parityC = +1, and consequently, is produced in a two-photon process,
whose rate is suppressed by a factor(α/αs)

2 relative to the rate forJ/ψ + ηc. However, as was pointed
out in Refs. [274, 275], the two-photon process contains photon-fragmentation contributions that are
enhanced by factors(Ebeam/2mc)

4 from photon propagators andlog[8(Ebeam/2mc)
4] from a would-be

collinear divergence. As a result, the predicted cross section σ[e+e−→J/ψ + J/ψ] = 8.70 ± 2.94 fb is
larger than the predicted cross sectionσ[e+e−→J/ψ + ηc] = 2.31 ± 1.09 fb [274,275]. Corrections of
higher order inαs andv are likely to reduce the prediction for theJ/ψ + J/ψ cross section by about a
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Fig. 5.28: Distribution of masses recoiling against the reconstructedJ/ψ in inclusivee+e− → J/ψX events at Belle [270].
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90%-confidence-level limits.

factor of three [275, 276]. These predictions spurred a re-analysis of the Belle data [277]. The invariant
mass distribution ofX in e+e−→J/ψ + X is shown in Fig. 5.28. No significantJ/ψ + J/ψ signal
was observed. The upper limit on the cross section times the branching fraction into at least two charged
tracks [270] isσ[e+e−→J/ψ+J/ψ] < 9.1 fb, which is consistent with the prediction of Refs. [274,275].

6.2 Prospects at BaBar and Belle

The BaBar and Belle detectors are accumulating ever larger data samples of charmonium that is produced
directly in e+e− annihilation. The simplicity of the initial state makes thetheoretical analysis of this
process particularly clean. These two factors make charmonium production in continuume+e− annihi-
lation a particularly attractive process in which to compare theoretical predictions with experiment. The
experimental results that have already emerged from these detectors provide further motivation for un-
derstanding this process. There are significant discrepancies between previous measurements by BaBar
and Belle. There are also surprising results from Belle on double cc̄ production that differ dramatically
from theoretical expectations. The resolution of these problems will inevitably lead to progress in our
understanding of charmonium production.

The surprising double-cc̄ results from Belle include an inclusive measurement, the ratio Rdouble

defined in Eq. (5.27), and exclusive double-charmonium cross sections, such asσ[e+e−→J/ψ + ηc].
The discrepancies between theory and experiment in these measurements are among the largest in the
standard model. Theory and experiment differ by about an order of magnitude—a discrepancy which is
larger than any known QCDK-factor. It is important to recognize that these discrepancies are problems
not just for NRQCD factorization, but for perturbative QCD in general. It is difficult to imagine how any
perturbative calculation ofRdouble could give a value as large as 80%. With regard to the cross section
for e+e−→J/ψ + ηc, the perturbative QCD formalism for exclusive processes [273] gives a result that
reduces to that of NRQCD factorization [271, 272] in the nonrelativistic limit and is well-approximated
by it if one uses realistic light-cone wave functions forJ/ψ andηc.5 Clearly, it is very important to
have independent checks of the Belle inclusive and exclusive double-cc̄ results. If the Belle results
are confirmed, then we would be forced to entertain some unorthodox possibilities: the inapplicability of

5The Belle result can be accommodated by using asymptotic light-cone wave functions that are appropriate for light hadrons
[278], but there is no justification for using such wave functions for charmonium.
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perturbative QCD to double-cc̄ production, new charmonium production mechanisms within the standard
model, or perhaps even physics beyond the standard model.

The larger data samples that are now available should allow much more accurate measurements
of the inclusive processe+e−→J/ψX, including the momentum distribution of theJ/ψ and its polar-
ization. The measurements of theJ/ψ momentum distribution may allow the determination of all the
relevant NRQCD matrix elements. A comparison with the NRQCDmatrix elements measured at the
Tevatron would then provide a test of their universality. Once the NRQCD matrix elements are deter-
mined, they can be used to predict the polarization of theJ/ψ as a function of its momentum, which
would provide a stringent test of the NRQCD predictions for spin. Instead of imposing cuts to suppress
contributions from radiative return, virtual photon radiation, and two-photon collisions, it might be bet-
ter to choose cuts in order to maximize the precision of the measurements, without any regard to the
production mechanism. The contributions from other mechanisms could instead be taken into account in
the theoretical analyses.

The large data samples of BaBar and Belle should also allow measurements of the inclusive pro-
duction of other charmonium states, such as theψ(2S) and theχc(1P ). Such measurements could be
used to determine the NRQCD matrix elements for these charmonium states. They are also important
because they provide constraints on the contributions to inclusiveJ/ψ production from decays of higher
charmonium states.

There are some straightforward improvements that could be made in the theoretical predictions for
inclusive charmonium production ine+e− annihilation. For example, there are only a few components
missing from a complete calculation of all contributions through second order inαs. In the contribution
from the color-octet3S1 channel, the virtual corrections at orderα2

s have not been calculated. There are
also color-octet contributions toe+e−→cc̄cc̄ at orderα2

s that have not been calculated. The theoretical
predictions for inclusive charmonium production could also be improved by treating more systematically
the contributions from the feeddown from decays of higher charmonium states and from other mecha-
nisms, such as radiative return, virtual photon radiation,and two-photon collisions.

7. Charmonium production in B-meson decays

B-meson decays are an excellent laboratory for studying charmonium production becauseB mesons
decay into charmonium with branching fractions greater than a percent. At aB factory operating near
the peak of theΥ(4S) resonance, about 25% of the events consist of aB+B− pair or aB0B̄0 pair.
The large sample ofB mesons accumulated by the CLEO experiment allowed the measurements of
many exclusive and inclusive branching fractions into finalstates that include charmonium. The Belle
and BaBar experiments are accumulating even larger samplesof B mesons, providing a new source of
precise data on charmonium production inB decays.

The inclusive branching fractions ofB mesons into charmonium states can be measured most
accurately for the mixture ofB+,B0, and their antiparticles that are produced in the decay of theΥ(4S)
resonance [279, 280]. Those that have been measured are listed in Table 5.11. The fraction ofJ/ψ’s
that come from decay ofχc’s, which is defined in Eq. (5.12), isFχc = (11 ± 2)%. This is significantly
smaller than the value that is measured at the Tevatron, which is given in Table 5.3. Theχc1-to-χc2 ratio,
which is defined in Eq. (5.10), isRχc = 5.1 ± 3.0. Although the error bar is large, this ratio seems to be
substantially larger than the value that is measured at the Tevatron, which is given in Eq. (5.18), and the
values measured in fixed-target experiments, which are given in Table 5.6. Such differences inRχc and
Fχc are contrary to the predictions of the color-evaporation model.

Inclusive branching fractions into charmonium states havealso been measured at LEP for the
mixtures ofB+,B0,B0

s , b baryons, and their antiparticles that are produced inZ0 decay [240,281,282].
This mixture ofb hadrons can be interpreted as the one that arises from the fragmentation of ab quark
that is produced with a momentum of 45 GeV. The branching fractions that have been measured are listed
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in Table 5.11. The branching fraction intoχc1(1P ) seems to be significantly larger than for the mixture
from Υ(4S) decay. The difference could be due to the contribution fromb baryons. It is often assumed
that the mixture ofb hadrons that is produced at high-energy hadron colliders, such as the Tevatron, is
similar to that produced inZ0 decay. This assumption could be tested by measuring ratios of inclusive
cross sections for charmonium states that come from the decays of b hadrons at the Tevatron.

mixture J/ψ ψ(2S) χc1(1P ) χc2(1P )

from Υ(4S) decay 11.5 ± 0.6 3.5 ± 0.5 3.6 ± 0.5 0.7 ± 0.4

fromZ0 decay 11.6 ± 1.0 4.8 ± 2.4 11.5 ± 4.0

Table 5.11: Inclusive branching fractions (in units of10−3) for mixtures ofb hadrons to decay into charmonium states.

The observed inclusive branching fractions ofB mesons intoJ/ψ andψ(2S) are larger than the
predictions of the color-singlet model by about a factor of three. Ko, Lee, and Song applied the NRQCD
factorization approach to the production ofJ/ψ andψ(2S) in B decays [283]. The color-octet3S1

term in the production rate is suppressed by a factor ofv4 that comes from the NRQCD matrix element.
However, the production rate also involves Wilson coefficients that arise from evolving the effective weak
Hamiltonian from the scaleMW to the scalemb. The Wilson coefficient for the color-octet3S1 term is
significantly larger than that for the color-singlet term, although the smallness of the color-singlet term
may be the result of an accidental cancellation that occurs in the leading-order treatment of the evolution
of the coefficients. Moreover, the color-singlet contribution is decreased by the relativistic correction of
orderv2. The inclusion of the color-octet3S1 term allows one to explain the factor of three discrepancy
between the data and the color-singlet-model prediction.

The observed branching fraction for decays ofB directly intoJ/ψ, which excludes the feeddown
from decays ofψ(2S) andχc, is much larger than the prediction of the color-evaporation model. The
CEM prediction for the direct branching fraction is0.24 − 0.66 [284], where the range comes from
the uncertainty in the CEM parameters. The CLEO collaboration has made a precise measurement of
the direct branching fraction ofB into J/ψ [285]: Brdir[B→J/ψ + X] = (0.813 ± 0.041)%. The
CEM prediction is significantly smaller than the data. As we have already mentioned, the data can be
accommodated within the NRQCD factorization approach by including color-octet terms.

Beneke, Maltoni, and Rothstein [286] have calculated the inclusive decay rates ofB mesons into
J/ψ andψ(2S) to next-to-leading order inαs. They used their results to extract NRQCD matrix elements
from the data. Their results for the linear combinations of NRQCD matrix elements defined in Eq. (5.8)
areMJ/ψ

3.1 = (1.5+0.8
−1.1) × 10−2 GeV3 andMψ(2S)

3.1 = (0.5 ± 0.5) × 10−2 GeV3. The uncertainties arise
from experiment and from imprecise of knowledge of the matrix elements〈OH

8 (3S1)〉 and〈OH
1 (3S1)〉.

Ma, taking into account initial-state hadronic corrections, has extracted slightly different linear combi-
nations of matrix elements [287]:MJ/ψ

3.4 = 2.4 × 10−2 GeV3 andMψ(2S)
3.4 = 1.0 × 10−2 GeV3. In both

extractions, the color-octet matrix elements are considerably smaller than those from the Tevatron fits,
but the uncertainties are large.

The effects of color-octet terms on the polarization ofJ/ψ in B decays were considered by Flem-
ing, Hernandez, Maksymyk, and Nadeau [288] and by Ko, Lee, and Song [284]. The polarization vari-
ableα for J/ψ production is defined by the angular distribution in Eq. (5.13). InB meson decays, the
most convenient choice of the polarization axis is the direction of the boost vector from theJ/ψ rest
frame to the rest frame of theB meson. The color-evaporation model predicts no polarization. The
predictions of NRQCD factorization and of the color-singlet model depend on the mass of theb quark.
Formb = 4.7 ± 0.3 GeV, the prediction of NRQCD factorization isα = −0.33 ± 0.08 [288] and the
prediction of the color-singlet model isα = −0.40 ± 0.07 [288]. The uncertainties that arise frommb

have been added in quadrature with other uncertainties. We note that the uncertainty inmb that was used
in this calculation is considerably larger than the uncertainty of 2.4% that is given in Chapter 6. Mea-
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surements of the polarization by the CLEO Collaboration have given the resultsα = −0.30 ± 0.08 for
J/ψ andα = −0.45±0.30 for ψ(2S) [285]. The result forJ/ψ strongly disfavors the color-evaporation
model and is consistent with the predictions of the NRQCD factorization approach and the color-singlet
model.

Bodwin, Braaten, Yuan, and Lepage have applied the NRQCD factorization approach to the pro-
duction of theP -wave charmonium statesχcJ in B decays [289]. ForP -wave quarkonium production,
there is a color-octet NRQCD matrix element that is of the same order inv as the leading color-singlet
matrix element. Therefore, the factorization formula mustinclude both the color-singletP -wave and the
color-octetS-wave contributions. The short-distance coefficient in thecolor-singlet3PJ term forχcJ
production vanishes at leading order inαs for J = 0, 2 [18, 290]. The color-octet3S1 term for χcJ
production is proportional to the number of spin states2J + 1. Thus, the relative importance of the
color-singlet and color-octet terms can vary dramaticallyamong the threeχcJ states. The prediction of
the color-singlet model at leading order inαs that the direct production rate ofχc2 should vanish can be
tested. The feeddown fromψ(2S) decay contributes(0.24 ± 0.04) × 10−3 to the inclusive branching
fraction intoχc2 given in Table 5.11. The remainder(0.5 ± 0.4) × 10−3 is consistent with zero, and
hence it is compatible with the prediction of the color-singlet model, but it is also compatible with a
small color-octet contribution.

8. Bc production

TheBc andB∗
c are the ground state and the first excited state of theb̄c quarkonium system. Their total

angular momentum and parity quantum numbers areJP = 0− and1+, and their dominant Fock states
have the angular momentum quantum numbers1S0 and3S1, respectively. In the following discussion,
we will refer to general̄bc quarkonium states asBc mesons and use the termsBc andB∗

c specifically for
the ground state and the first excited state.

In contrast to charmonium and bottomonium states, which have “hidden flavor,”Bc mesons con-
tain two explicit flavors. As a consequence, theBc decays only through the weak interactions, and theB∗

c

decays through an electromagnetic transition into theBc with almost100% probability. The higher-mass
Bc mesons below theBD threshold decay through hadronic and electromagnetic transitions into lower-
massBc mesons with almost100% probability. They cascade down through theb̄c spectrum, eventually
producing aBc or aB∗

c . Another consequence of the explicit flavors is that the mostimportant produc-
tion mechanisms forBc mesons are completely different from those for hidden-flavor quarkonia. In the
production ofBc mesons by strong or electromagnetic interactions, two additional heavy quarks̄c and
b are always produced. The production cross sections forBc mesons are suppressed compared with the
production cross sections for hidden-flavor quarkonia because the leading-order diagrams are of higher
order in the coupling constants and also because the phase-space is suppressed, owing to the presence of
the additional heavy quarks.

The small cross sections for producingBc mesons make the prospects for observing theBc at
e+e− andep colliders rather bleak. A possible exception to this assessment exists for the case of produc-
tion at ane+e− collider with energy at theZ0 peak, for which the production rate of theBc is predicted to
be marginal for observation [291]. TheBc was not discovered at LEP, despite careful searches [292–294].
It was finally discovered at the Tevatron by the CDF collaboration in 1998 [295, 296]. We restrict our
attention in the remainder of this subsection to the production ofBc mesons at hadron colliders.

The production ofBc mesons was studied before the discovery of theBc [291,297–301,306–308].
If one assumes that all nonperturbative effects in the production of theBc in hadron-hadron collisions
can be absorbed into the hadrons’ parton distribution functions (PDF’s), then the inclusive production
cross section can be written in the factorized form

dσ[hAhB → Bc +X] =
∑

ij

∫
dx1dx2 f

hA
i (x1, µ)fhBj (x2, µ) dσ̂[ij → Bc +X] . (5.28)
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The NRQCD factorization formula for the parton-parton cross section is

dσ̂[ij → Bc +X] =
∑

n

dσ̂[ij → (b̄c)n +X] 〈OBc
n 〉 , (5.29)

where the sum is over 4-fermion operators that create and annihilate b̄c. At the leading order inαs, which
is α4

s, the parton-parton process isij→(b̄c) + bc̄, whereij = gg (gluon fusion) orqq̄ (quark-antiquark
annihilation). SincemBc > mb > mc ≫ ΛQCD, the leading-order parton-parton process involves
only hard propagators, even at smallpT . Nevertheless, because of soft-gluon interactions, for example
between theBc and the recoilingb andc̄ quarks, it is not clear that hard-scattering factorizationholds at
smallpT .

According to the velocity-scaling rules of NRQCD, the matrix element forBc production that is
of leading order inv is 〈OBc

1 (1S0)〉. The vacuum-saturation approximation can be used to show that
it is proportional toF 2

Bc
, whereFBc is the decay constant of theBc, up to corrections of orderv4.

The leading matrix element forB∗
c production is〈OB∗

c
1 (3S1)〉. The vacuum-saturation approximation

and heavy-quark spin symmetry can be used to show that this matrix element is also proportional to
F 2
Bc

, up to corrections of orderv3. The leading color-octet matrix elements are suppressed asv3 or
v4. The color-octet terms in (5.29) are probably not as important forBc mesons as they are for hidden-
flavor quarkonia. In the case ofJ/ψ production, the short-distance coefficients of the color-octet matrix
elements are enhanced relative to those for the color-singlet matrix element by an inverse power of the
QCD-couplingαs, by factors ofpT /mc at largepT , by factors ofmc/pT at smallpT , and by color
factors. The only one of these enhancement factors that may apply to theBc is the color factor. Because
there are many Feynman diagrams that contribute to the parton processij→(b̄c) + bc̄ at orderα4

s, the
color correlations implied by individual Feynman diagramstend to average out. We therefore expect a
b̄c pair to be created in a color-octet state roughly eight timesas often as in a color-singlet state. We
will assume that, in spite of the enhancement from this colorfactor, the color-octet contributions to the
production cross sections forBc andB∗

c are small compared with the leading color-singlet contributions.
This assumption is equivalent to using the color-singlet model to calculate the production rate.

Two approaches have been used to compute the cross sections forBc mesons: the complete order-
α4
s approach [298–301, 306, 307] and the fragmentation approach [297, 309]. In the complete order-α4

s

approach, the parton cross section in Eq. (5.29) is computedat leading order inαs, where the only
subprocesses areij→(b̄c) + bc̄:

dσ̂[ij → Bc +X] = dσ̂[ij → b̄c1(
1S0) + bc̄] 〈OBc

1 (1S0)〉 . (5.30)

The fragmentation approach is based on the fact that, for asymptotically largepT ≫ MBc , the cross
section (5.29) can be further factored into a cross section for producinḡb and a fragmentation function
Db̄→Bc(z, µ) that gives the probability for thēb to fragment into aBc carrying a fractionz of the b̄
momentum:

dσ̂[ij → Bc +X] ≈
∫
dz dσ̂[ij → b̄+ b] Db̄→Bc(z, µ) . (5.31)

If both factors are calculated only at leading order inαs, this is just an approximation to the complete
order-α4

s cross section in Eq. (5.29). One advantage of the fragmentation approach is that the expressions
for the b̄ production cross sectiondσ̂ and the fragmentation functionDb̄→Bc in Eq. (5.31) can be written
down in a few lines. ForpT ≫ mBc , the fragmentation approach has another advantage in that the
Altarelli-Parisi evolution equations can be used to sum theleading logarithms ofpT /mc to all orders.
Unfortunately, as was pointed out in Ref. [299–301], the fragmentation cross section does not become
an accurate approximation to the complete order-α4

s cross section until surprisingly large values ofpT .
For example, if the parton center-of-mass energy is

√
ŝ = 200 GeV, the fragmentation cross section is a
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Tevatron (
√
s = 2 TeV) LHC (

√
s = 14 TeV)

mc (GeV) 1.4 1.5 1.6 1.7 1.8 1.4 1.5 1.6 1.7 1.8

σ[Bc] (nb) 3.87 3.12 2.56 2.12 1.76 61.0 49.8 41.4 34.7 28.9
σ[B∗

c ] (nb) 9.53 7.39 5.92 4.77 3.87 153. 121. 97.5 80.0 66.2

Table 5.12: The cross sections (in nb) for direct productionof Bc andB∗
c at the Tevatron and at the LHC for various values

of the charm-quark massmc. The gluon distribution function is CTEQ5L, the running ofαs is leading order, the scale is

µ2 = ŝ/4, and the other parameters areFBc = 480 MeV, andmb = 4.9 GeV.

good approximation only forpT ≥ 40 GeV. We will therefore not consider the fragmentation approach
further.

The authors of Ref. [310] recently developed a Monte Carlo event generator for hadronicBc
andB∗

c production, using the complete order-α4
s approach and taking advantage of helicity amplitude

techniques [311]. The generator is a Fortran package, and itis implemented in PYTHIA [312], which al-
lows one to generate complete events. The complete order-α4

s cross section includes contributions from
gluon-gluon fusion and quark-antiquark annihilation. At the Tevatron, the gluon-gluon fusion mecha-
nism is dominant over quark-antiquark annihilation, except in certain kinematics regions [298, 313]. At
the LHC, the gluon-gluon fusion mechanism is always dominant. All the results below are obtained from
the gluon-gluon fusion mechanism only.

The inputs that are required to calculate the complete order-α4
s cross sections are the masses

mb,mc, andmBc , the decay constantFBc , the PDF’s, the QCD coupling constantαs, and the factoriza-
tion scaleQ. The massesmb andmc are known with uncertainties of about 2.4% and 8%, respectively. In
the NRQCD factorization approach, one setsmBc = mc+mb andmB∗

c
= mc+mb in the short-distance

coefficients. Contributions from operators of higher orderin v then account for the binding energy in
mBc andmB∗

c
. This procedure is also required in order to preserve gauge invariance if one makes use

of on-shell spin-projection operators for theBc andB∗
c states [20,314]. Since an experimental measure-

ment of the decay constantFBc is not available, one has to use a value that is obtained from potential
models [315–318] or from lattice gauge theory [319]. The uncertainty in the factorF 2

Bc
is about 6%.

Since the order-α4
s cross section is at leading order in perturbation theory, the running ofαs can be taken

at leading order, and LO versions of the PDF’s can be used.

The running coupling constant and the PDF’s depend on the renormalization/factorization scale
µ, and, so, a prescription for the scaleµ is also required. There is no general rule for choosing the
scale in an LO calculation, especially in the case of a2→3 subprocess, such asij→Bc + bc̄. The
factorization formula (5.31) for asymptotically largepT suggests that an appropriate choice for the scales
in the fragmentation contribution to the cross section might be to setµ = mbT ≡ (m2

b + p2
T )1/2 in the

PDF’s andα4
s = α2

s(mbT )α2
s(mc) in the parton cross section. However, the fragmentation term does not

dominate until very largepT , and there are important contributions to the cross sectionthat have nothing
to do with fragmentation [299–301]. For example, there are contributions that involve the splitting of
one of the colliding gluons into acc̄ pair, followed by the creation of abb̄ pair in the hard scattering of
thec from the other gluon and then by the recombination of theb̄ andc into aBc. The sensitivity to the
choice ofµ could be decreased by carrying out a complete calculation ofthe production cross section
for theBc at next-to-leading order inαs, but this is, at present, prohibitively difficult. In the absence of
such a calculation, we can use the variation in the complete order-α4

s cross section for several reasonable
choices for the scale as an estimate of the uncertainty that arises from the choice of scale.

The hadronic production cross-section forBc mesons depends strongly on the collision energy. In
Table 5.12, we give the direct cross sections forBc andB∗

c production at the Tevatron and the LHC for
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Fig. 5.29: The differential cross sections for the direct production of theBc as a function of its transverse momentumpT and

its rapidityy at the Tevatron (
√
s = 2 TeV) and at the LHC (

√
s = 14 TeV) for four choices of the scale:µ2 = ŝ/4 (solid line),

µ2 = p2
T +m2

Bc
(dotted line),µ2 = ŝ (dashed line), andµ2 = p2

Tb +m2
b (dash-dot line). The gluon distribution is CTEQ5L,

the running ofαs is leading order, and the other parameters areFBc = 480 MeV,mc = 1.5 GeV, andmb = 4.9 GeV.

several values of the charm quark massmc and for typical values for the other parameters. The cross
section forBc production at the LHC is larger than at the Tevatron by a factor of about 16. The cross
sections forB∗

c production are larger than those forBc production by a factor of about 2.4. The cross
sections are fairly sensitive to the charm-quark mass, varying by more than a factor of two asmc is varied
from 1.4 to 1.8 GeV. In Fig. 5.29, we show the differential cross-sections forBc production as a function
of theBc transverse momentumpT andBc rapidity y at the Tevatron and the LHC, using four different
prescriptions for the scaleµ. At central rapidity, the variations among the four choicesof scale is about
a factor of three at the Tevatron and a factor of two at the LHC.The differential cross-sections decrease
more slowly withpT and|y| at the LHC than at the Tevatron. The total uncertainty from combining all
of the uncertainties in the direct cross section forBc production is less than an order of magnitude. The
uncertainty in the ratio of the direct-production cross sections for theB∗

c and theBc is much smaller
because many of the uncertainties cancel in the ratio.

The results presented above are for the direct production oftheBc and theB∗
c . Experiments

at the Tevatron and the LHC will measure the inclusive cross sections, including the feeddown from
all of the higher states of thēbc system. Thēbc system has a rich spectrum of excited states below
theBD threshold. They include an additionalS-wave multiplet, one or twoP -wave multiplets, and a
D-wave multiplet. After being produced, these excitedBc mesons all cascade eventually down to the
ground stateBc. Since theB∗

c decays into theBc with a probability of almost 100%, the feeddown from
directly-producedB∗

c ’s increases the cross section for theBc by about a factor of 3.4. The complete
order-α4

s cross sections forBc andB∗
c production can be applied equally well to the2S multiplet. The

direct-production cross sections for these states are smaller than those for the1S states by the ratio of
the squares of the wave functions at the origin, which is about 0.6. Thus, the inclusive cross section
for Bc production, including the effect of feeddown from the direct production of all of theS-waveBc
states, is larger than the cross section for directBc production, which is given in Table 5.12 and shown
in Fig. 5.29, by a factor of about 5.4.

The production ofBc in pp̄ collisons at
√
s = 1.8 TeV has been measured at the Tevatron by the

CDF collaboration [295,296]. CDF has measured the ratio

R[J/ψlν] =
σ[Bc]Br[B+

c → J/ψl+ν]

σ[B+]Br[B+ → J/ψK+]
(5.32)

for B+
c andB+ with transverse momentapT > 6.0 GeV and with rapidities|y| < 1.0. Their result is

R[J/ψlν] = 0.132+0.041
−0.037(stat.) ± 0.031(syst.)+0.032

−0.020(lifetime). This result is consistent with results
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semileptonic widthΓs.l. = Γ[Bc → J/ψlν].

from previous searches [292–294]. Fig. 5.30 compares the CDF measurements ofR[J/ψlν] and theBc
lifetime with theoretical predictions from Refs. [302, 303] for two different values of the semileptonic
width Γs.l. = Γ[Bc → J/ψlν]. The theoretical predictions use the values|Vcb| = 0.041 ± 0.005 [304],
σ[B+

c ]/σ[b̄] = 1.3 × 10−3 [305], σ[B+]/σ[b̄] = 0.378 ± 0.022 [304], andBr[B+ → J/ψK+] =
(1.01 ± 0.14) × 10−3 [304]. The predictions and the measurement are consistent within experimental
and theoretical uncertainties.

Quantitative predictions for the contribution to the inclusiveBc production cross section from the
feeddown fromP -wave states would require complete knowledge of the order-α4

s cross sections for the
production ofP -wave states. It is theoretically inconsistent to use the color-singlet model to calculate
these cross sections for theP -wave states. There are color-octet terms in theP -wave production cross
sections that are of the same order in bothv andαs as the color-singlet terms, and they must be included.
The color-singlet production matrix elements for theP -wave states can be estimated from potential
models or determined from lattice gauge theory. The color-octet production matrix elements for theP -
wave states can perhaps be estimated by interpolating between the corresponding matrix elements for
charmonium and bottomonium states.

In summary, the order-α4
s color-singlet production cross section forS-wave b̄c mesons can be

used to predict theBc production cross section, including feeddown from excitedS-wave states. The
uncertainty in the normalization of that prediction is lessthan an order of magnitude. If the inclusive
cross section forBc production that is measured at the Tevatron or the LHC is muchlarger than that
prediction, it could indicate that there is a large contribution from the feeddown fromP -wave or higher-
orbital-angular-momentum states. It could also indicate that the color-octet contributions to the direct
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production of theBc and theB∗
c are important.

9. Summary and outlook

NRQCD factorization, together with hard-scattering factorization, provides a systematic formalism for
computing inclusive quarkonium production rates in QCD. Nonperturbative effects associated with the
binding of aQQ̄ pair into a quarkonium are factored into NRQCD matrix elements that scale in a definite
manner with the typical relative velocityv of the heavy quark in the quarkonium. The NRQCD matrix
elements are predicted to be universal,i.e., independent of the process that creates theQQ̄ pair. The
NRQCD factorization formula for inclusive cross sections is believed to hold whenpT ≫ ΛQCD, where
pT is the transverse momentum of the quarkonium with respect tothe colliding particles. It is well-
motivated by the effective field theory NRQCD and by factorization theorems that have been proven
for simpler hard-scattering processes. Explicit proofs offactorization for quarkonium production would
be welcome, because they would help quantify the sizes of corrections to the factorization formula. It
is important to bear in mind that conventional proofs of hard-scattering factorization fail at smallpT .
Consequently, NRQCD factorization formulas, even those that include soft-gluon resummation, may be
unreliable in this region. It also follows that the NRQCD factorization approach may not be applicable
to total cross sections if they are dominated by contributions at smallpT .

The NRQCD factorization approach incorporates elements ofboth the color-singlet model and
the color-evaporation model. It includes the color-singlet model terms, for which the NRQCD matrix
elements can be determined from annihilation decays. It also includes color-octet production mecha-
nisms, as in the color-evaporation model. The NRQCD factorization approach extends these models
into a systematically improvable framework. The color-singlet model is emphatically ruled out by the
observation of promptJ/ψ andψ(2S) production at the Tevatron at rates that are more than an order of
magnitude larger than the color-singlet-model predictions. The color-evaporation model is ruled out by
the observations of nonzero polarization ofJ/ψ’s in B meson decays and ine+e− annihilation at 10.6
GeV and by the observation of nonzero polarization ofΥ(2S)’s andΥ(3S)’s in fixed-target experiments.
It is also ruled out by the fact that different values of the fraction ofJ/ψ’s that come fromχc decays
are measured at the Tevatron and inB-meson decays. Despite having been ruled out, the color-singlet
model and the color-evaporation model can still play usefulroles as “straw men” with which to compare
the predictions of NRQCD factorization. The color-evaporation model has not yet been ruled out, for
example, as a description of differential cross sections atthe Tevatron and in fixed-target experiments.

The NRQCD factorization approach provides a general phenomenological framework that cannot
be ruled out easily. The factorization formula involves infinitely many NRQCD matrix elements, most
of which are adjustable parameters. It is only the truncation in v that reduces those parameters to a finite
set. The standard truncation has four independent NRQCD matrix elements for each S-wave multiplet
and two independent NRQCD matrix elements for each P-wave multiplet. NRQCD factorization with
the standard truncation inv remains a phenomenologically viable description of inclusive quarkonium
production. As one tests NRQCD factorization at higher levels of precision, the standard truncation must
ultimately fail. The NRQCD factorization approach itself may remain viable if one truncates at a higher
order inv, but only at the cost of introducing many new adjustable parameters.

In the effort to make the predictions of the NRQCD factorization approach more quantitative, the
most urgent need is to extend all calculations to next-to-leading order (NLO) inαs. For hadron collisions
at smallpT (pT ≪ m), the leading-order parton process isij→QQ̄. NLO calculations of that process
are already available, but a resummation of multiple gluon emissions is required in order to tame large
logarithms ofm2/p2

T and to turn the singularpT distribution into a smooth distribution. For very large
pT (pT ≫ m), the production of quarkonium is dominated by gluon fragmentation. The leading-order
fragmentation process isg→QQ̄8(

3S1), and the NLO calculation of the gluon fragmentation function
into QQ̄ is available. What is still lacking is the NLO calculation atintermediatepT , for which the
leading-order parton process isij→QQ̄ + k. By taking into account the NLO corrections inαs, one
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should significantly decrease some of the uncertainties in the NRQCD factorization predictions.

One problematic source of uncertainties in the NRQCD factorization predictions is relativistic
corrections. The first relativistic corrections of orderv2 in the channel that corresponds to the color-
singlet model have been calculated for many processes. In many cases, they have large coefficients that
cast doubt on the validity of the expansion in powers ofv for charmonium, and even for bottomonium.
The success of lattice NRQCD in describing bottomonium spectroscopy ensures the applicability of the
velocity expansion for this system in some form. It is possible that some reorganization or resumma-
tion of the velocity expansion might be necessary in order tomake precise quantitative calculations of
charmonium production.

The best individual experiments for determining the NRQCD production matrix elements for both
charmonium and bottomonium are probably those at the Tevatron, because of the large range ofpT that
is accessible. It will be important to take advantage of the measurements down to smallpT that were
achieved at the CDF detector for bottomonium in Run I and for charmonium in Run II. This will require
taking into account the effects of multiple gluon emission in the theoretical analysis. Measurements of
charmonium production in other experiments are also important because they provide tests of the uni-
versality of the production matrix elements. These experiments include those that measure charmonium
production inep collisions at HERA, ine+e− annihilation at theB factories, and inB meson decays at
theB factories. One can use these experiments to extract values of the NRQCD matrix elements or, as
has typically been the practice to date, one can use the matrix elements that have been extracted from the
Tevatron data to make predictions for charmonium production in other experiments.

The ratios of the production cross sections for different quarkonium states may also provide im-
portant tests of NRQCD factorization. (Here, particularly, one must keep in mind thecaveatsabout the
applicability of the NRQCD factorization approach to totalcross sections.) The uncertainties in the pre-
dictions for ratios of cross sections are much smaller than those in the individual cross sections because
many of the uncertainties cancel in the ratio. The variations of the ratios from process to process and as
functions of kinematic variables provide important information about the production mechanisms. The
ratios of production rates of spin-tripletS-wave states, such as theψ(2S)–to–J/ψ ratio, do not seem
to vary much. However, a significant variation has been observed in a ratio of the production rates of
P -wave andS-wave states, namely the fraction ofJ/ψ’s that come from decays ofχc’s. A substantial
variation has also been observed in a ratio of production rates ofP -wave states, namely theχc1-to-χc2
ratio. More precise measurements of these and other ratios would be valuable. Of particular importance
would be measurements of ratios of production rates of spin-singlet and spin-triplet quarkonium states,
such as theηc-to-J/ψ ratio. The absence of clean signatures for spin-singlet quarkonium states makes
such measurements difficult.

The polarization of quarkonium is another important test ofNRQCD factorization. The standard
truncation inv leads to unambiguous predictions for the ratios of production rates of different spin states,
without introducing any new parameters. The predictions are most easily tested for the quarkonium states
with JPC = 1−−, but they can also be tested for other states. It is extremelyimportant to test the simple
qualitative predictions that in hadron collisions the1−− states should become transversely polarized at
sufficiently largepT . More careful quantitative estimates of the polarization of theJ/ψ, theψ(2S), and
theΥ(nS) as functions ofpT at the Tevatron and the LHC would be useful. More precise measurements
of the polarization of theJ/ψ and theψ(2S) in other production processes, such asep collisions,e+e−

annihilations, andB decay, would also be valuable.

The most puzzling experimental results in quarkonium production in recent years have been the
double-cc̄ results frome+e− annihilation at theB factories. The measurements by the Belle collaboration
of the fraction ofJ/ψ’s that are accompanied by charmed hadrons and of the exclusive cross section for
J/ψ+ηc production are both much larger than expected. No satisfactory theoretical explanation of these
results has emerged. It would be worthwhile to measure the fraction ofJ/ψ’s accompanied by charm
hadrons in other processes, such aspp̄ annihilation at the Tevatron andep collisions at HERA, to see if
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there are any surprises.

The outlook for progress in understanding quarkonium production is very bright. The NRQCD
factorization approach provides a general framework for describing inclusive quarkonium production.
Current experiments will provide severe tests of NRQCD factorization with the standard truncation of
the velocity expansion. These tests will either provide a firm foundation for predictions of quarkonium
production in future experiments or lead us to new insights into the physics of quarkonium production.
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1. Introduction

The accurate knowledge of the parameters of the Standard Model (SM) is an important requirement in
the indirect search for new physics based on observables that can be predicted with small theoretical
uncertainties and that are measurable experimentally withhigh precision. Among the parameters of
QCD, for example, the precise knowledge of the top quark massplays a crucial role in the relation of the
electroweak precision observablesMZ ,MW and the weak mixing angle, which is sensitive to the vacuum
structure and to non-SM virtual particles. On the other hand, for the analysis of inclusive B-decay rates
the bottom and charm quark masses are needed as an input.

Heavy quarkonium systems provide an ideal instrument to extract the heavy quark masses and to
get constraints on the strong coupling using perturbative as well as non-perturbative methods. The pertur-
bative methods rely on the fact that the heavy quark masses are larger than the hadronization scaleΛQCD

and that non-perturbative effects affecting the dynamics can be suppressed. Based on the concept of ef-
fective theories, on new techniques to compute higher orderperturbative corrections and on an improved
understanding of the higher order behaviour of perturbation theory, a number of powerful methods were
developed in recent years that led to an improved understanding of the perturbative structure of heavy
quarkonium systems and to more realistic estimates of the uncertainties. For the determination of the
masses of the bottom and the charm quarks sum rules based on moments of the hadronic cross section in
e+e−-annihilation are the most reliable tool. While theoretically one needs to predict the moments with
high precision, dedicated experiments are needed to provide measurements of the hadronic cross section
with small uncertainties. A different method to determine the masses of the bottom and charm quarks
employs the masses of the low lying bottomonium and charmonium resonances with the assumption that
the perturbative contributions dominate.

An alternative method relies on lattice simulations of heavy quarkonium systems where theoret-
ical predictions are made non-perturbatively. Here the main issues are the control of lattice artifacts,
unquenching and the proper extrapolation to physical quarkmasses, and the matching to the continuum
theory. Continuous improvements on this approach have beenobserved in recent years.
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A heavy quarkonium system that can be studied at a futuree+e− Linear Collider is the top–antitop
threshold at a centre-of-mass energy of approximately twice the top quark mass. Although the top quark
lifetime in the SM is predicted to be too small to allow the production of separated resonances, the top–
antitop system is governed by bound-state-type non-relativistic dynamics. Moreover, the large top quark
width provides a very effective protection against the influence of non-perturbative effects making the
non-relativistic top–antitop systems almost entirely perturbative for predictions of inclusive quantities. A
number of precise measurements of top quark properties can be carried out at the top–antitop threshold.
Among them the measurement of the top quark mass with an uncertainty at the level of 100 MeV is the
most prominent one, exceeding the capabilities of hadron colliders by an order of magnitude.

In this chapter an overview is given on the current status of precision determinations of QCD
parameters from quarkonium systems. In Sec. 2. experimental aspects of measurements of the total cross
sectionσ(e+e−→hadrons) in the charmonium and bottomonium energy regions are reviewed. These
measurements are the basis for charm and bottom quark mass extractions using QCD sum rules. In Sec. 3.
the theoretical aspects of charm and bottom mass determinations from QCD sum rules and from the
quarkonium ground state masses are reviewed. The emphasis is placed on perturbative methods, but also
the status of lattice simulations is summarised. Section 4.contains a brief review of determinations of the
strong coupling from quarkonium properties using perturbative methods as well as lattice simulations of
the quarkonium spectrum. Some conceptual aspects of Nonrelativistic QCD and, in particular, the issue
of summing logarithms of the velocity in the theoretical description of the quarkonium dynamics in
the framework of vNRQCD (“velocity NRQCD”) are summarised in Sec. 5.. Finally, in Sec. 6. the
experimental and theoretical aspects of top quark pair production close to threshold at a future Linear
Collider are reviewed. In particular, the prospects of measurements of the top quark mass, its width and
its couplings to the Higgs boson and to gluons are discussed.

2. R-Measurements in Heavy Quarkonium Regions

The so-calledR-ratio is the total cross section of producing hadrons ine+e− collisions corrected for
initial state radiation and normalised to the lowest order QED cross section of the reactione+e−→µ+µ−,

R(s) =
σ(e+e−→hadrons)(s)

σ(0)(e+e−→µ+µ−)(s)
, (6.1)

where
√
s is the c.m. energy. Measurements ofR or of the cross section for hadrons containing a specific

quark flavour such as charm or bottom can be used for a variety of fundamental tests of perturbative
QCD using the assumption of duality and the operator productexpansion (OPE) [1, 2]. For example,
using QCD sum rules, which deal with moments of the hadronic cross section, one can extract values for
the quark masses, and for the quark and gluon condensates that parametrise non-perturbative effects in
the OPE [1,2]. Through dispersion relationsR measurements give an important input to the calculations
of the hadronic corrections to various fundamental quantities that are influenced by the photonic vacuum
polarisation at low energies: the anomalous magnetic moment of the muon [3], the running fine structure
constantα(s) [4], hyperfine splitting in muonium [5] etc. From the size of higher order QCD corrections
it is also possible to get constraints on the strong couplingαs [6]. Depending on the problem, different
energy ranges are of importance.

In the c.m. energy range between 3 and 5 GeV, measurements ofR were carried out by many ex-
perimental groups studying various states just above the charmonium threshold: PLUTO [7], DASP [8],
Mark-I [9, 10], Crystal Ball [11] and BES [12, 13]. In general, these measurements are consistent. Of
all the analyses the results by BES are the most precise. In the first measurementR was measured at 6
energy points from 2.6 to 5.0 GeV with a systematic uncertainty between 5.9% and 8.4% [12] while in
the second one the energy range from 2 to 5 GeV was scanned at 85energy points with an average sys-
tematic uncertainty of about 7% [13]. Despite the rather detailed information onR collected by BES, no
data on the cross sections of exclusive channels or on the parameters of broad charmonia in this energy
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Group PLUTO [7] DASP [8] Mark-I [10] Cr. Ball [11] BES [12,13]

Solid angle,Ω/4π 0.86 0.6 0.65 0.93 0.80

Energy
√
s, GeV 3.1 – 4.8 3.1 – 5.2 2.6 – 5.0 3.87 – 4.50 3.0 – 5.0∫

Ldt, nb−1 ∼ 3000 7500 ∼ 1500 ∼ 2000 ∼ 2500

Events ∼ 20000 ∼ 40000 ∼ 7000 ∼ 22000 ∼ 35000

Av. efficiency, % 70 – 80 35 – 40 30 – 60 85 70 – 80

Syst. error, % 12 15 10 – 20 10 7

Table 6.1:R Measurement at charmonium threshold

Group Mark-I [10] Crystal Ball [14] LENA [15] MD-1 [17]

Solid angle,Ω/4π 0.65 0.93 0.75 0.7

Energy
√
s, GeV 5.0 – 7.8 5.0 – 7.4 7.4 – 9.4 7.80 – 10.45∫

Ldt, nb−1 ∼ 3300 ∼ 1500 1140 16000

Events ∼ 20000 ∼ 11000 4050 48000

Av. efficiency, % 60 85 82 – 90 50

Syst. error, % 10 10 7 3.9

Table 6.2:R Measurements from 5 to 10 GeV

range are available yet from this experiment. As a result, the resonance properties ofψ(4040), ψ(4160)
andψ(4415) are still determined by the older DASP [8] and Mark-I [9] measurements. A comparison of
these experiments is presented in Table 6.1 whereas Fig. 6.1shows the energy dependence ofR between
3.6 and 5 GeV measured by PLUTO, Crystal Ball and BES.

A controversial situation exists between 5 and 7 GeV whereR values measured by Mark-I [10]
are substantially higher than both those of Crystal Ball [14] and the prediction of perturbative QCD,
see Fig. 6.2. The result of Crystal Ball is in fair agreement with the QCD prediction. Two groups –
LENA [15] and MD-1 [16,17] performed measurements in the broad energy range from 7.4 to 9.4 GeV
and 7.2 to 10.34 GeV, respectively. Information on these experiments is summarised in Table 6.2.

Various groups have measured the value ofR in the narrow energy range in the vicinity of the
Υ-family resonances [18–25]. The highest systematic accuracy of 1.9% was reached by CLEO [25].
We summarise the obtained values ofR in Table 6.3. No energy dependence is observed within the
experimental accuracy, which is not surprising taking intoaccount that most of the measurements were
made below the open beauty threshold.

In Fig. 6.2, we present the results ofRMeasurements below 10 GeV [4]. Only statistical errors are
shown. The relative uncertainty assigned by the authors of Ref. [4] to their parameterisation, displayed
as the solid line, is shown as a band and given with the numbersat the bottom.

The hadronic cross section above theBB̄ threshold (a centre-of-mass energy range from 10.60
to 11.25 GeV) was measured by the CUSB [26] and the CLEO [27] collaborations with an integrated
luminosity of 123 pb−1 and 70 pb−1, respectively. This energy range is of substantial interest since in
quarkonium potential models two excited states are expected there [28]. Moreover the coupled-channel
models also predict a rich structure inR due to the turn-on of various exclusive states [29]. Both groups
observe similar structures and provide compatible parameters for the two highest states at 10.865 GeV
and 11.019 GeV, tentatively referred to asΥ(5S) andΥ(6S). However, the values of these parameters
are obtained under different assumptions, thus, their formal averaging presently applied by the PDG [30]
hardly makes sense, as noted in Ref. [31]. There is also a visible step between the continuum points
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Group Energy,
√
s, GeV R

PLUTO [18] 9.4 3.70 ± 0.30 ± 0.56

DHHM [19] 9.4–9.5 3.80 ± 0.27 ± 0.42

9.98–10.1 3.60 ± 0.36 ± 0.54

LENA [15] 7.4–9.4 3.37 ± 0.06 ± 0.23

ARGUS [20] 9.40–9.44, 3.73 ± 0.16 ± 0.28

9.49–9.60

CUSB [21] 10.34–10.52 3.54 ± 0.05 ± 0.39

CLEO [22] 10.49 3.77 ± 0.06 ± 0.24

Crystal Ball [23] 9.39 3.48 ± 0.04 ± 0.16

ARGUS [24] 9.36 3.46 ± 0.03 ± 0.13

MD-1 [17] 7.34–10.24 3.58 ± 0.02 ± 0.14

CLEO [25] 10.52 3.56 ± 0.01 ± 0.07

Table 6.3: Values ofR in theΥ-family range

below theΥ(4S) and the average level above it. In Fig. 6.3(a) we show the results for the visibleR ratio,
Rvis, in this energy range obtained by CUSB [26]. Their results with an additional thrust cut to suppress
the continuum are shown in Fig. 6.3(b).

It is important to note that for various applications, e.g.,for extracting quark masses from spectral
moments, it is necessary to know the component ofR coming from a specific quark flavour, particularly
in the threshold energy range. Experimentally, this is a rather complicated problem. One of the theory-
driven possibilities can be illustrated by a method used in arecent charm mass determination [32]. For
the energy range from 3.73 to 4.8 GeV the authors employ the data for the totalR obtained by the
BES collaboration [13]. To obtain the charm component ofR, Rcc, they first fit the non-charmR ratio,
Rnc, assuming its energy independence and using the last four data points below 3.73 GeV. Finally,Rcc

is obtained by subtracting the fitted values ofRnc from Rtot. Note that to estimate the final error of
Rcc in this method a sophisticated analysis of various experimental uncertainties is needed. Another
possibility is to reconstruct all exclusive final states containing particles with a corresponding quark
flavour. For example, in the vicinity of the charm threshold one can assume that the correspondingR
component,Rcc, is saturated by the contributions from theDD̄,DD̄∗,D∗D̄∗ final states. Clearly, this
method crucially depends on the assumptions made and requires reliable reconstruction of various final
states. One should hope that an analysis of the already collected data samples as well as that of the
new energy scan of the relevant energy range planned by BES will clarify the situation. In the future,
substantial progress in the charmonium energy range can be expected from CLEOc and thec− τ factory.
Prospects for the bottomonium energy range are less clear since both B-factories are running at the peak
of theΥ(4S) only.

One should also take into account new possibilities suggested by the method of radiative return or
initial state radiation (ISR) [33,34]. Recently BaBar successfully applied this method to the detection of
theJ/ψ→µ+µ− decay [35]. The peak cross section of this process was measured with a 2.2% systematic
error and, using the world average values for the leptonic branching ratios, the total and leptonic width
was obtained with an accuracy better than the world average.Also studied were various exclusive final
states with pions and kaons. For example, the2π+2π− final state with a hadronic mass from 900 to 3000
MeV was successfully studied and the corresponding cross section already has better accuracy than all
other experiments at fixed energy [36]. Also an inclusive approach was applied, where the hadronic mass
is extracted from the ISR photon energy. However, in this method the resolution deteriorates rapidly for
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Fig. 6.3: (a)Rvis vs. total energy W measured by CUSB. (b) Same as (a) with a thrust cut to suppress continuum.
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low recoil masses.

Now let us briefly discuss which accuracy seems ultimately feasible in future experiments un-
der “ideal” detection and analysis conditions. The consideration of the experimental papers onR
measurements, which claimed the smallest systematic uncertainty in the charmonium region (those of
BES [12,13]) and in the bottomonium region (those of MD-1 [17] and CLEO [25]) allows the following
conclusions.

• The four main sources of systematic uncertainties are selection criteria, luminosity determination,
detection efficiency and radiative corrections.

• The uncertainty caused by selection criteria is dominated by the knowledge of background. To
large extent its level depends on the detector performance and ranges from 0.5% for CLEO to
2.0% for MD-1. We consider the value of 0.5% as a very aggressive one, which can hardly be
improved and will further assume the value (0.5-1.0)%.

• The uncertainty due to the luminosity determination was 1% for CLEO after a very thorough anal-
ysis of the three normalisation processes Bhabha scattering, e+e−→µ+µ− ande+e−→γγ [37].
One of the factors restricting the accuracy at that time was the knowledge of radiative corrections
for the normalisation process, which was of the order of 1% [38]. Today the cross section of the
main QED processes is known to better than 0.2% [39]. Taking also into account the experience
gained at LEP, it doesn’t look impossible to achieve the level of 0.5 to 0.7%.

• The detection efficiency is usually obtained by Monte Carlo simulations of the experiment using
the package JETSET [40] or its modification adapted to the charmonium energy range for the BES
experiment [41]. The corresponding contribution to the uncertainty was 1% for CLEO and 2 to
3% for BES. Note that this contribution is very sensitive to the solid angle coverage. Therefore, a
value of 1% for the future 4π detectors seems accessible.

• The modern approach to the calculation of the radiative corrections for the final hadronic state
based on structure functions yields formulae with an intrinsic accuracy of about 0.5% [42]. Some
uncertainty is induced by the calculational procedure itself, e.g., by the choice of the maximum
allowed energy. This leads to an error of about 0.7 to 0.8%.

Finally, assuming that all four sources of the uncertainty are independent and adding the corre-
sponding estimates in quadrature, one obtains that the ultimate systematic uncertainty could be as low as
1.4 to 1.8%. This is of course a very optimistic estimate. However, it should be possible to reach 3% in
a dedicatedR measurement.

3. Bottom and charm quark mass determinations

At the ongoing and future B-physics experiments the values of the bottom and charm quark masses and
realistic estimates of their uncertainties will become increasingly important for the measurements of the
CKM parameters and the search for new physics. However, due to confinement and the non-perturbative
aspects of the strong interaction, the concept of quark masses cannot be tied to an intuitive picture of
the weight or the rest mass of a particle, such as for leptons,which are to very good approximation
insensitive to the strong interactions. Rather, analogousto the strong couplingαs, quark masses should
be considered as couplings of the Standard Model Lagrangianthat have to be determined from processes
that depend on them. As such, quark masses are quantities that depend on the renormalisation scheme
that is used and in general also on the renormalisation scale. Although physical quantities do not depend
on the renormalisation scheme, the question of which quark mass scheme should be employed can be
relevant in order to avoid correlations to other unknown parameters or a badly converging perturbative
expansion.
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3.1 Quark mass definitions in perturbation theory

In principle, one is free to employ any renormalisation scheme, or definition for the quark masses. In the
framework of QCD perturbation theory, the difference between two mass schemes can be expressed as a
series in powers of the strong couplingαs. Therefore, higher-order terms in the perturbative expansion
of a quantity that depends on quark masses are affected by therenormalisation scheme that is employed.
Moreover, certain schemes turn out to be more appropriate ormore convenient for some purposes than
others. In the following, we review some of the most common quark mass definitions, focusing for
definiteness on the case of the bottom quark.

Pole mass

The bottom quark pole massmb,pole is defined as the solution to the full inverse quark propagator,

6p−mb,pole − Σ(p,mb,pole)
∣∣∣
p2=m2

b,pole

= 0 , (6.2)

whereΣ(p,mb) is the bottom quark self energy. The pole mass definition is gauge-invariant and infrared-
safe to all orders in perturbation theory [43,44] and has been used as the standard mass definition of many
perturbative computations in the past. By construction, the pole mass is directly related to the concept of
the mass of a free quark, which is, however, problematic because free quarks do not appear in nature. In
practical applications the pole mass has the additional disadvantage that the perturbative series relating
it to physical quantities are in general not well convergent, due to a strong sensitivity of the pole mass
definition to small scales [45,46]. This property of the polemass, often called the “pole-mass renormalon
problem”, is not related to any physical effect. The bad convergence of the perturbative expansion of
quantities in the pole mass scheme indicates that the concept of the pole mass is ambiguous to an amount
of orderΛQCD. This issue is reviewed in more detail in Sec. 3.4.

Nevertheless, in low orders of perturbation theory, there is in principle nothing wrong to employ
the pole mass as an intermediate quantity, as long as it is used in a consistent way. In particular, the
presence of a renormalon ambiguity [45, 46] requires considering the numerical value of the pole mass
as an order-dependent quantity. Because this makes estimates of uncertainties difficult, the pole mass
definition should be avoided for analyses where quark mass uncertainties smaller thanΛQCD are desired.
The problems of the pole mass definition can be easily avoidedif one uses quark mass definitions that
are less sensitive to small momenta and do not have an ambiguity of orderΛQCD. Such quark mass
definitions are generically called “short-distance” masses. In contrast to the pole mass, short-distance
masses have a parametric ambiguity of orderΛ2

QCD/mb or smaller.

MS mass

The most common short-distance quark mass parameter is theMS massmb(µ), which is defined by
regulating QCD with dimensional regularisation and subtracting only the1/ǫ-divergences in theMS
scheme [47]. Besides the renormalisation scheme, theMS mass also depends on the renormalisation
scaleµ. Since the subtractions do not contain any infrared sensitive terms, the bottomMS mass is only
sensitive to scales of order or larger thanmb. The relation between the pole mass and theMS mass is
known toO(α3

s ) [48–50] and reads for massless light quarks(ᾱs ≡ α
(nl=4)
s (mb(mb))):

mb,pole

mb(mb)
= 1+

4

3

ᾱs

π
+
(
13.44− 1.04nl

)( ᾱs

π

)2

+
(
190.6− 26.7nl +0.65n2

l

)( ᾱs

π

)3

+ . . . . (6.3)

The corrections coming from light quark masses at orderα2
s are fully known [48], while at orderα3

s

only the dominant light quark mass corrections have been determined [51]. The bottom quarkMS
mass arises naturally in processes where the bottom quark isfar off-shell. The scaleµ in theMS mass
is typically chosen of the order of the characteristic energy scale of the process under consideration
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since perturbation theory contains logarithmic terms∼ αs(µ)n ln(Q2/µ2) that would be large otherwise.
Using the renormalisation group equation formb(µ), the values of theMS mass for differentµ can be
related to each other. TheMS mass definition is less useful for processes in which the bottom quark is
close to its mass-shell, which also includes when the bottomquark has non-relativistic energies.

Threshold masses

The shortcomings of the pole and theMS masses in describing non-relativistic bottom quarks can be
resolved by so-called threshold masses [52]. The thresholdmasses do not possess the ambiguity of order
ΛQCD and, at the same time, are defined through subtractions that contain contributions that are universal
for the dynamics of non-relativistic quarks. Since the subtractions are not unique, an arbitrary number of
threshold masses can be constructed. In the following some threshold mass definitions that appear in the
literature are briefly reviewed.

Kinetic mass
The kinetic mass is defined as [53,54]

mb,kin(µkin) = mb,pole −
[
Λ̄(µkin)

]

pert
−
[

µ2
π(µkin)

2mb,kin(µkin)

]

pert

+ . . . , (6.4)

where[Λ̄(µkin)]pert and [µ2
π(µkin)]pert are perturbative evaluations of HQET matrix elements that de-

scribe the difference between the pole mass and the B meson mass. The ellipses indicate matrix elements
of operators with higher dimension, which have not been included in any analysis so far.

The relation between the kinetic mass and theMS mass is known toO(α2
s ) andβ0O(α3

s ) [55,56].
The formulae for[Λ̄(µkin)]pert and[µ2

π(µkin)]pert atO(α2
s ) read [56]

[
Λ̄(µkin)

]
pert

=
4

3
CFµkin

αs(m)

π

{
1 +

αs

π

[(
4

3
− 1

2
ln

2µkin

m

)
β0 − CA

(
π2

6
− 13

12

)]}
, (6.5)

[
µ2
π(m)

]
pert

= CFµ
2
kin

αs(m)

π

{
1 +

αs

π

[(
13

12
− 1

2
ln

2µkin

m

)
β0 − CA

(
π2

6
− 13

12

)]}
, (6.6)

wherem ≡ mb(mb), CF = 4/3, andβ0 = 11 − 2nf/3 is the one-loop beta function. Forµkin → 0 the
kinetic mass reduces to the pole mass.

Potential-subtracted mass

The potential-subtracted (PS) mass is similar to the kinetic mass, but arises considering the static energy
of a bottom-antibottom quark pair in NRQCD [57]. The PS mass is known toO(α3

s ) and its relation to
the pole mass reads

mb,PS(µPS) = mb,pole − CFµPS
αs(µ)

π

{
1 +

αs(µ)

4π

[
a1 − β0

(
ln
µ2

PS

µ2
− 2

)]
(6.7)

+

(
αs(µ)

4π

)2[
a2 − (2a1β0 + β1)

(
ln
µ2

PS

µ2
− 2

)
+ β2

0

(
ln2 µ

2
PS

µ2
− 4 ln

µ2
PS

µ2
+ 8

)]}
,

whereβ1 = 102 − 38nf/3 is the coefficient of the two-loop beta function, anda1 = 31/3 − 10nf/9
as well asa2 = 456.749 − 66.354nf + 1.235n2

f [58, 59] are perturbative coefficients appearing in the
static heavyqq̄ potential. ForµPS → 0 the PS mass also reduces to the pole mass.
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1S mass

The kinetic and the potential-subtracted mass depend on an explicit subtraction scale to remove the
universal infrared sensitive contributions associated with the non-relativistic heavy quark dynamics. The
1S mass [60–62] achieves the same task without a factorisation scale, since it is directly related to a
physical quantity. The bottom 1S mass is defined as one half ofthe perturbative contribution to the mass
of then = 1, 2s+1Lj = 3S1 quarkonium bound state in the formal limitmb ≫ mbv ≫ mbv

2 ≫ ΛQCD.
To three loop order (or NNLO in the non-relativistic expansion) the 1S-pole mass relation reads

mb,1S

mb,pole
= 1 − 1

8

(
CFαs(µ)

)2
{

1 +
αs(µ)

π

[
β0

(
L+ 1

)
+
a1

2

]

+

(
αs(µ)

π

)2 [
β2

0

(
3

4
L2 + L+

ζ3
2

+
π2

24
+

1

4

)
+ β0

a1

2

(
3

2
L+ 1

)
(6.8)

+
β1

4

(
L+ 1

)
+
a2

1

16
+
a2

8
+

(
CA − CF

48

)
CFπ

2

]}
,

whereL ≡ ln(µ/(CFαs(µ)mb,pole)) and ζ3 = 1.20206. The expression for the 1S mass is derived
in the framework of the non-relativistic expansion, where powers of the bottom quark velocity arise as
powers ofαs in the 1S mass definition. Thus, to achieve the renormalon cancellation in the 1S mass
scheme for quantities which are not defined in the non-relativistic power counting, such as for B decays,
it is mandatory to treat terms of orderαn+1

s in Eq. (6.8) as being of orderαns . This prescription is called
“Upsilon expansion” [60, 61] (see also Ref. [63]) and arisesbecause of the difference between the non-
relativistic power counting and the usual counting in the numbers of loops (or in powers ofαs). In the
upsilon expansion it is crucial that the renormalisation scale of allαs terms is chosen equal.

Renormalon-subtracted mass

The renormalon-subtracted mass [64] is formally defined as the perturbative series that results from
subtracting all non-analytic pole terms from the Borel transform of the pole-MS mass relation atu = 1/2
with a fixed choice for the renormalisation scaleµ = µRS . The scaleµRS is then kept independent from
the renormalisation scale used for the computation of the quantities of interest. The expression for the
relation between the RS and pole mass reads

mRS(RS′)(µRS) = mpole −
∞∑

n=0(1)

Nm µRS

(
β0

2π

)n
αn+1

s (µRS)
∞∑

k=0

ck
Γ(n+ 1 + b− k)

Γ(1 + b− k)
, (6.9)

where the coefficientsc1 andc2 are known from Refs. [64, 65]. An approximation to the termNm has
been determined in Refs. [64,66]. The values given in Tab. 6.4 refer to theRS′ scheme.

In Tab. 6.4b-quark threshold mass parameters are compared numericallytaking theMS mass
mb(mb) as a reference value for different values of the strong coupling. Each entry corresponds to the
mass using the respective 1-loop/2-loop/3-loop relations.

3.2 Bottom quark mass from Upsilon sum rules

The spectral sum rules forσ(e+e−→ b b̄) start from the correlator of two electromagnetic bottom quark
currents

(qµ qν − gµν q
2)Π(q2) =

∫
dx ei qx 〈 0 |T jbµ(x) jbν(0) | 0 〉 , (6.10)
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mb(mb) mb,pole mb,kin(1 GeV) mb,PS(2 GeV) mb,1S mb,RS′(2 GeV)

α
(5)
s (mZ) = 0.116

4.10 4.48/4.66/4.80 4.36/4.42/4.45∗ 4.29/4.37/4.40 4.44/4.56/4.60 4.48/4.58/4.62

4.15 4.53/4.72/4.85 4.41/4.48/4.50∗ 4.35/4.42/4.45 4.49/4.61/4.65 4.53/4.64/4.67

4.20 4.59/4.77/4.90 4.46/4.53/4.56∗ 4.40/4.48/4.51 4.54/4.66/4.71 4.59/4.69/4.73

4.25 4.64/4.83/4.96 4.52/4.59/4.61∗ 4.46/4.53/4.56 4.60/4.72/4.76 4.64/4.75/4.78

4.30 4.69/4.88/5.01 4.57/4.64/4.67∗ 4.51/4.59/4.62 4.65/4.77/4.81 4.69/4.80/4.84

α
(5)
s (mZ) = 0.118

4.10 4.49/4.69/4.84 4.37/4.44/4.46∗ 4.30/4.38/4.41 4.45/4.57/4.62 4.49/4.60/4.64

4.15 4.55/4.74/4.89 4.42/4.49/4.52∗ 4.36/4.43/4.47 4.50/4.63/4.67 4.55/4.66/4.70

4.20 4.60/4.80/4.94 4.47/4.55/4.57∗ 4.41/4.49/4.52 4.55/4.68/4.73 4.60/4.71/4.75

4.25 4.65/4.85/5.00 4.52/4.60/4.63∗ 4.46/4.54/4.58 4.61/4.73/4.78 4.65/4.77/4.81

4.30 4.71/4.91/5.05 4.58/4.66/4.69∗ 4.52/4.60/4.63 4.66/4.79/4.84 4.71/4.82/4.86

α
(5)
s (mZ) = 0.120

4.10 4.51/4.72/4.88 4.37/4.45/4.48∗ 4.31/4.39/4.43 4.46/4.59/4.64 4.51/4.63/4.67

4.15 4.56/4.77/4.93 4.43/4.51/4.54∗ 4.36/4.45/4.48 4.51/4.64/4.70 4.56/4.68/4.72

4.20 4.61/4.83/4.99 4.48/4.56/4.59∗ 4.42/4.50/4.54 4.56/4.70/4.75 4.61/4.74/4.78

4.25 4.67/4.88/5.04 4.54/4.62/4.65∗ 4.47/4.56/4.59 4.62/4.75/4.80 4.67/4.79/4.83

4.30 4.72/4.94/5.10 4.59/4.67/4.71∗ 4.53/4.61/4.65 4.67/4.81/4.86 4.72/4.85/4.89

Table 6.4: Numerical values forb-quark masses in units of GeV for a givenMS massmb(mb), nl = 4 and three values of

α
(5)
s (mZ). Flavour matching was carried out atµ = mb(mb). Numbers with a star are given in the large-β0 approximation.

The 1S and kinetic masses are frequently used in the theoretical description of inclusive B meson decays [67].

wherejbµ(x) ≡ b̄(x)γµb(x). Using causality and the optical theorem one can relate theoretically calcu-
lable derivatives ofΠ(q2) at q2 = 0 to moments of the total cross sectionσ(e+e−→ b b̄),

Mn =
12π2Q2

b

n!

(
d

dq2

)n
Π(q2)

∣∣∣∣
q2=0

=

∫
ds

sn+1
Rbb(s) , (6.11)

whereRbb ≡ σ(e+e−→ b b̄)/σ(e+e−→µ+µ−). From the comparison of the theoretical moments and
those based on experimental data forRbb, it is possible to determine the bottom quark mass [68]. Since
the sum rules in Eq. (6.11) involve inclusive quantities referring only to global duality, they are believed
to be one of the most reliable tools to extract QCD parameters. However, it is necessary to restrict the
values ofn to ensure that the moments are indeed sufficiently inclusive.

In general, one can distinguish between two regions inn, which require a different theoretical
treatment. For low values ofn the moments are dominated by relativistic dynamics and scales of order
of the heavy quark massmb. This allows to apply the usual expansion in the number of loops for
the theoretical computations, and theMS scheme is an appropriate choice for the heavy quark mass
parameter. However, the lack of data forRbb in the continuum regions above the quarkonium resonances
introduces model-dependent errors. On the other hand, for large values ofn the continuum regions are
suppressed and the moments become dominated by the quarkonium resonance region where good sets
of data have been obtained in the past. However, the theoretical predictions of moments for large values
of n is more complicated since the usual loop expansion breaks down and the size of non-perturbative
effects increases. Here, summations of higher order contributions proportional to powers of(αs

√
n)

need to be carried out in order to capture the relevant non-relativistic perturbative information [69, 70],
and the threshold masses discussed above are appropriate choices for the heavy quark mass parameter.
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Author mb(mb) other mass comments, Ref.

spectral sum rules

Voloshin 95 mpole = 4.83 ± 0.01 8 < n < 20, NLO; no theo. uncert. [69]
Kühn 98 mpole = 4.78 ± 0.04 10 < n < 20, NLO [73]
Hoang 98 mpole = 4.88 ± 0.09 4 < n < 10, NNLO [70]
Melnikov 98 4.20 ± 0.10 M1GeV

kin = 4.56 ± 0.06 x < n < x, NNLO [56]
Penin 98 4.21 ± 0.11 mpole = 4.80 ± 0.06 8 < n < 12, NNLO [74]
Jamin 98 4.19 ± 0.06 7 < n < 15 [75,76]
Hoang 99 4.20 ± 0.06 M1S = 4.71 ± 0.03 4 < n < 10, NNLO [77]
Beneke 99 4.26 ± 0.09 M2GeV

PS = 4.60 ± 0.11 6 < n < 10, NNLO [78]
Hoang 00 4.17 ± 0.05 M1S = 4.69 ± 0.03 4 < n < 10, NNLO,mc 6= 0 [51]
Kühn 01 4.21 ± 0.05 1 < n < 4, O(α2

s ) [6]
Erler 02 4.21 ± 0.03 O(α2

s ) [79]
Eidemüller 02 4.24 ± 0.10 M2GeV

PS = 4.56 ± 0.11 3 < n < 12 [80]
Bordes 02 4.19 ± 0.05 O(α2

s ) [81]
Corcella 02 4.20 ± 0.09 1 < n < 3, O(α2

s ) [31]
Ahmady 04 4.21 ± 0.01 1 < n < 4, O(α2

s ) only scale+ mom. uncert. [82]

Table 6.5: Collection in historical order of recent bottom quark mass determinations in units of GeV from spectral sum rules.

The uncertainties quoted in the respective references havebeen added quadratically. All numbers have been taken from the

respective publications.

Moreover, there is an upper “duality” bound for the possiblechoices ofn since the energy range
contributing to the moments, which is of ordermq/n, needs to be larger than the typical hadronization
scaleΛQCD [70, 71]. In the case ofRbb and the determination of the bottom mass, this bound is around
n = 10. The low-n and the large-n ranges are believed to be well separated with their boundarybeing
approximately atn = 4. A good number of analyses exists for small and large values of n and respecting
the cancellation of theO(ΛQCD) renormalon contributions associated to the choice of the quark mass
definition. For low as well as for large values ofn it is presently believed that non-perturbative effects
are negligibly small, based on the size of the contributionsfrom the non-perturbative gluon and quark
condensates in the OPE [1]. Alternative views about the validity of the standard OPE (see e.g. Ref. [72])
have not been accounted for in any analysis so far. In the following the advantages and disadvantages
of the two types of sum rules are reviewed. Results for bottomquark masses obtained in recent sum
rule analyses have been collected in Tab. 6.5 and a graphicalsummary is presented as the red circles in
Fig. 6.4.

Non-relativistic sum rules

The large-n sum rules have the advantage that the experimentally unknown parts of thebb̄ continuum
cross section above theΥ resonance region are suppressed. A crude model for the continuum cross
section is sufficient and causes an uncertainty in theb-quark mass below the10 MeV level. Depending
on which moment is used the overall experimental uncertainties in theb-quark mass are between15
and20 MeV. Theoretically, large-n sum rules are characterised by the fact that the dynamics is non-
relativistic. It can be shown that the average three-momentum and the average kinetic energies of the
quarks scale likemb/

√
n andmb/n, respectively. Thus forn ≤ 10 the moments can be considered

as being dominated by perturbation theory up to non-perturbative effects that can be described by the
standard OPE [1] in terms of local condensates. The leading-order gluon condensate contributions to
the large-n sum rules were determined in Refs. [69, 83] and shown to contribute at the level of permille
for n ≤ 10 [69]. None of the analyses discussed below therefore included any non-perturbative effects.
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Fig. 6.4: Collection in historical order of recent bottom quark mass determinations. The red circles represent sum ruleresults,

the green triangles Upsilon 1S determinations, the blue squares lattice QCD results and the purple upside down trianglea

determination from semileptonicB decays. The full diamond gives our global average formb(mb). The darker and lighter

shaded areas represent our subjective error estimates corresponding to a1σ error and a range respectively. Our average and the

related error estimates are further discussed in section 3.6.

It should be noted, however, that in practice a strong hierarchy of all relevant dynamical scales,mb ≫
mb/

√
n≫ mb/n ≫ ΛQCD, is difficult to achieve numerically. So a successful application of the large-n

sum rules is based on a balance between a good non-relativistic expansion and a good convergence of
the OPE series. Over the past years there has been a revived interest in non-relativistic sum rules because
new theoretical developments allowed for the systematic determination ofO(v2) ∼ O(1/n) (NNLO)
corrections to the spectral moments [51,56,70,74,77,78].

All analyses found that the NNLO corrections were as large oreven larger than the NLO cor-
rections and various different methods were devised to extract numerical values for the bottom quark
mass. In Refs. [51, 56, 77, 78] threshold masses were implemented accounting for the renormalon prob-
lem. This removed one source of the bad perturbative behaviour, but it was found that a considerable
theoretical uncertainty remained, coming from the theoretical description of the production and annihi-
lation probability of thebb̄ pair. In Refs. [56] and [78] the kinetic and the PS mass were determined
from fits of individual moments. It was found that the NLO and NNLO results for the bottom mass
differ by about200 MeV. In Ref. [56] it was argued that the results form an alternating series and a
value ofmb,kin(1GeV) = 4.56 ± 0.06(ex,th) GeV was determined. In Ref. [78] only the NNLO results
were accounted based on consistency arguments with computations of theΥ(1S) mass and the result
mb,PS(2 GeV) = 4.60±0.02(ex)±0.10(th) GeV was obtained. In Ref. [77] the 1S mass was employed
and aχ2-fit based on four different moments was carried out. It was found that the large normalisation
uncertainties drop out at NLO and NNLO and that the results for the mass at NLO and NNLO showed
good convergence. The result wasmb,1S = 4.71 ± 0.02(ex) ± 0.02(th) GeV. It was also shown that the
sum rule analysis gives only very weak constraints on the value of the strong coupling and that sum rules
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are in fact not a very competitive tool to determineαs with high precision. A subsequent analysis [51]
which included the effects of the nonzero charm mass yieldedmb,1S = 4.69± 0.02(ex)± 0.02(th) GeV.

Relativistic sum rules

The small-n sum rules have the disadvantage that the unknown parts of thebb̄ continuum cross section
above theΥ resonance region constitute a substantial contribution tothe spectral moments. The advan-
tage is that the computation of the theoretical moments is less involved since usual perturbation theory
in powers ofαs can be employed. In Ref. [6] the theoretical moments at orderO(α2

s ) were used and it
was found that the perturbative behaviour of the theoretical moments is good if theMS mass scheme is
used such that the pole mass ambiguity of orderΛQCD is properly cancelled. For the bottom quark mass
determination it was assumed that the unknown experimentalcontinuum cross section agrees with the
perturbation theory prediction and subsequently the result mb(mb) = 4.21 ± 0.05 GeV was determined.
Compatible results were also obtained in an earlier analysis at largern [75,76] which employed theMS
mass at a lower scaleµ ≈ 3 GeV, in order to improve the stability of the sum rule. A more conservative
O(α2

s ) analysis in Ref. [31] using the same approach as employed in Ref. [6], but accounting also for
finite charm mass effects, uncertainties coming from the experimental continuum region and for inconsis-
tencies in the averages for theΥ(4S) andΥ(5S) data obtained the resultmb(mb) = 4.20±0.09 GeV. In
the same analysis non-perturbative effects in terms of the gluon condensate based on two-loop matching
coefficients [84] were analysed and found to be negligible.

Alternative approaches

Besides the relativistic and non-relativistic sum rules discussed above, also alternative approaches em-
ploying other types of QCD sum rules have been investigated in the literature. These shall be briefly
discussed in what follows. In Ref. [79], Erler and Luo performed an analysis based on the dispersion
relation

12π2
[
Π(0) − Π(−t)

]
= t

∫
ds

s

Rbb
s+ t

, (6.12)

in the limit t→∞, which is rather sensitive to the continuum contribution, together with low-nmoments.
The parameters of a certain ansatz for the shape of the continuum were constrained from the resulting
sum rule, and a combined analysis led tomb(mb) = 4.21 ± 0.03 GeV. In Ref. [80], on the other hand,
besides the conventional moments of Eq. (6.11) which are evaluated atq2 = 0, Eidemüller also studied
moments being evaluated atq2 = − 4m2

bξ rather than atq2 = 0. A variation of the parameterξ then
allows to modify the relative size of the various theoretical as well as phenomenological contributions,
thus gaining further information on the system under investigation. Furthermore, for the theoretical
spectral function at small velocities, a non-relativisticdescription was employed, whereas the relativistic
description was chosen at large velocities. In addition, inthe intermediate region, different choices for
the matching of the two regions were studied. The resulting bottom quark mass then turned out to be
mb(mb) = 4.24 ± 0.10 GeV. Finally, in Ref. [81], Bordes, Penarrocha and Schilcher investigate finite
energy sum rules similar to the analysis of the hadronicτ decay width. In the dispersion integral, a third
degree polynomial was added, and the parameters were chosensuch as to minimise the effect of the
continuum contribution and the corresponding uncertainties. The final result for the bottom quark mass
obtained from this analysis wasmb(mb) = 4.19 ± 0.05 GeV.

Recently, the analysis of inclusive semileptonic B decays has emerged as a new precise tool to
determine the bottom mass taking advantage of the large amount of statistics accumulated at B-factories
and the theoretical developments in heavy quark physics. Ina global fit of various shape variables in
semileptonic B→D decays the bottom 1S mass was determined asmb,1S = 4.68± 0.04 GeV [85] which
is in very good agreement with the large-n sum rule analysis of Hoang [51] which also included the
effects of a non-zero charm quark mass.
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Author mc(mc) other mass comments, Ref.

spectral sum rules

Eidemüller 00 1.23 ± 0.09 M1GeV
PS = 1.35 ± 0.10 3 < n < 7 [89]

Penarrocha 01 1.37 ± 0.09 FESR,O(α2
s ) [86]

Kühn 01 1.30 ± 0.03 1 < n < 4, O(α2
s ) [6]

Erler 02 1.29 ± 0.05 O(α2
s ) [79]

Ioffe 02 1.28 ± 0.02 O(α2
s ) [87]

Eidemüller 02 1.19 ± 0.11 M1GeV
PS = 1.30 ± 0.12 4 < n < 7 [80]

Hoang 04 1.29 ± 0.07 n = 2, 3, O(α2
s ) [32]

Table 6.6: Collection in historical order of recent charm quark mass determinations in units of GeV from spectral sum rules.

The uncertainties quoted in the respective references havebeen added quadratically. All numbers have been taken from the

respective publications.

3.3 Charm quark mass from Charmonium sum rules

The determination of the charm quark mass from charmonium sum rules proceeds in principle in analogy
to the bottom case. However, one needs to account for the factthat forRcc and the determination of the
charm mass, the distinction between large- and low-n moments is much more delicate becausemc is
much smaller thanmb and in fact not much larger thanΛQCD. Here, the upper duality bound forn is
already around3 or 4 and non-perturbative contributions need to be included numerically. The small
range of allowed values ofn leaves basically no space at all to carry out the non-relativistic summations
that can be applied in the bottom quark case because the corresponding techniques are only valid for
largen and as long asmq/n is larger thanΛQCD. On the other hand, even forn ≤ 4 the non-relativistic
region close to thecc̄ threshold can have a considerable contribution to the moments, while the model-
dependences from the experimentally unknown continuum region can still be significant. Due to the
recent BES data [13] for thee+e− total cross section in the range up to5 GeV a good part of the charm
continuum region can be deduced using reasonable assumptions for the non-charm cross section. For a
reliable (error) analysis these issues need to be taken intoaccount.

In Tab. 6.6, determinations ofmc from Charmonium sum rules within the last years have been
summarised. A graphical representation of these results isalso shown as the full circles in Fig. 6.5. A
conservative investigation of the issues discussed above in the case of the relativistic sum rule was carried
out in the very recent work [32], where also a discussion of the previous works [6,79,86,87] was given. In
particular, it was found in Ref. [32] that different ways to compute the perturbative series for the moments
appear to converge to different predictions if the standardmethods to estimate theoretical errors are
employed, a situation known also from predictions for hadronic τ decays [88]. Non-relativistic sum rules
for charmonium have been investigated in Refs. [80, 89]. Generally,mc turns out to be somewhat lower
in the non-relativistic case, but due to the low scale the resummation also introduces large uncertainties.
To conclude, for the charm quark mass determinations relativistic sum rules appear to be more reliable
than non-relativistic ones.

3.4 Bottom and charm quark mass from the 1S resonances

Compared to the sum rule methods described in the previous sections the heavy quarkonium masses are
more exclusive quantities. However, since heavy quarkoniaare colour singlet objects and their interac-
tions with the QCD vacuum is suppressed at least byp2/m2, p being the average quark three-momentum,
it is worth to consider also the heavy quarkonium masses as analternative method to extract QCD pa-
rameters, and in particular the heavy quark masses. At this point it is instructive to mention that the
momentum transferred between the heavy quark and anti-quark is Euclidean. Therefore, computations
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Fig. 6.5: Collection in historical order of recent charm quark mass determinations. The red circles represent sum rule results,

the green triangles J/Ψ 1S determinations and the blue squares quenched lattice QCDresults. The full diamond gives our global

average formc(mc). The darker and lighter shaded areas represent our subjective error estimates corresponding to a1σ error

and a range respectively. Our average and the related error estimates are further discussed in section 3.6.

of the spectrum do, at least to low orders in the perturbativeexpansion, not rely on local-duality and the
crucial issue is whether perturbative calculations are applicable for the range of the relevant dynamical
scales and whether the influence of the long-range parts of the potential is significant. It is obvious that
for precise determinations of the heavy quark masses one hasto be in a situation where the dynamics can
be described to good approximation by a weak coupling analysis and that non-perturbative effects are
subleading. While in the sum rules the average three-momentum and kinetic energy of the quarks can be
influenced by adjusting the value ofn, for the quarkonium states these scales are fixed by internalQCD
dynamics. Thus some care has to be applied in the determination and the interpretation of the results
obtained for the quarkonium masses. The average three-momentum transfer in the bottomonium is of
order of or below2 GeV whereas in the charmonium case is of order of or below1 GeV. The corre-
sponding average values of the quark kinetic energies are even lower. Thus it appears clear from the very
beginning that only the ground states should be considered as tools for extractions of QCD parameters,
cf. however Chapter 3, Sec. 2.31 for a perturbative calculation of the levels. In the following, recent
work is reviewed where for the bottomonium and charmonium ground states is was assumed that a weak
coupling analysis is possible.

Heavy Quarkonium Mass

It is convenient to work within an effective field theory framework. Since in the cases of bottomonium
and charmonium the assumptionmv2 ≫ ΛQCD appears unrealistic, one might start with “optimistic”
counting thatmv2 ∼ ΛQCD. The effective theory pNRQCD has been applied to describe this situa-
tion [90–93]. (The effective theory vNRQCD has been constructed for the casemv2 ≫ ΛQCD [94–96].)
In the pole mass (OS) scheme the heavy quarkonium mass has thefollowing structure,

Mnlj = 2mpole +
∞∑

m=2

Am,OS
nlj (νus)α

m
s + δMUS

nlj (νus) , (6.13)
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whereνus is a cutoff scale of ordermv2 that cancels in the sum (for the perturbative sum this dependence
first appears inA5,OS

nlj ) and

δMUS
nlj (νus) =

TF
3Nc

∫ ∞

0
dt〈n, l|re−t(HOS

o −EOS
n )r|n, l〉〈gEa(t)φ(t, 0)adj

ab gE
b(0)〉(νus) (6.14)

The present status of the perturbative computations is as follows. The complete NNLO result has
been computed in Refs. [74,97–99], theO(mα5

s logαs) NNNLO terms in Refs. [100–104], the complete
resummation of logs at NNLL in Refs. [96,105], the NNNLO large-β0 result in Refs. [51,106], and some
computations that complete the NNNLO result (up to the stillmissing three loop corrections to the static
potential) in Refs. [107–109]. It should be noted that theseNNNLO results were obtained assuming that
mv2 ≫ ΛQCD, i.e. that the ultrasoft scale is perturbative. Nevertheless these computations are useful if
one can identify the coefficientA5,OS

nlj (νus) by separating, in a specific scheme, the contributions coming
from the soft scale and those coming from the ultrasoft scale. The result obtained in Ref. [109] represents,
up to the three-loop static potential coefficient, the sum

A5,OS
nlj (νus)α

5
s + δMUS

nlj (νus)|O(α5
s ) pert. . (6.15)

In principle, for the ground state of bottomonium, also finite mass charm effects have to be taken into
account, since the soft scale is of the order of the charm mass. Estimates of finite charm mass effects are
known up to NNLO [51,110–112].

For the non-perturbative piece in Eq. (6.14), assumingmv2 ≫ ΛQCD, one can perform an expan-
sion in local condensates. The leading and subleading termsare known [113–116]. An approach how to
estimate the effect of even higher order condensates based on a delocalised expansion of short-distance
effects was proposed in Ref. [117, 118]. However, as discussed above, in the more realistic situation
wheremv2 ∼ ΛQCD the explicit functional form of the chromoelectric correlator is needed. On the
other hand, in the situationΛQCD ≫ mv2 the non-perturbative corrections to the potential scale as∼ r2

(see [93,119]) and new non-perturbative effects could exist [120]. Another point of concern relevant for
the casemv2 ∼ ΛQCD was pointed out in Ref. [96] using the vNRQCD framework. It was pointed out
that there could be more non-perturbative effects than those encoded in Eq. (6.14) based on pNRQCD,
since the soft and ultrasoft renormalisation scales are correlated and the running of the potential coeffi-
cients is affected by ultrasoft mixing effects for all scales belowm. Therefore, once the ultrasoft scale
approachesΛQCD also the coefficients of the potentials can become affected by non-perturbative effects.

Renormalons

If one applies the results above expressed in the pole mass scheme to heavy quarkonium ground states a
quite bad convergence of the perturbative series,Am,OS

nlj ∼ m!, is found. This situation is symptomatic
for any quantity that has a strong dependence on the heavy quark mass and also exists for the sum rules
reviewed in Sec. 3.2. Here, the bad convergence is coming from the perturbative corrections to the static
potential [121], which renders the prediction of the binding energy ambiguous to an amount of order
ΛQCD although the left-hand side of Eq. (6.13) is an observable and ambiguity-free. This problem is
directly related to the existence of the pole mass renormalon [45, 46] mentioned before in Sec. 3.1 and
represents a general feature of the pole mass scheme. It is related to an artificially strong sensitivity to
small momenta in the pole mass scheme that renders the pole mass definition ambiguous to an amount
of orderΛQCD, but it is, to the present knowledge, not related to any physical effect. In fact, it can be
shown in the Schrödinger equation that the ambiguities (and the dominant large corrections) cancel in
the sum of twice the pole mass and the static potential [57,122,123]. Thus the resolution to the problem
comes by obviating the pole mass and expressing it in terms ofso-called threshold masses [45,57,60,64]
(see Sec. 3.1) so that the ambiguities cancel explicitly within the coefficients of the perturbative series;
cf. also Sec. 2.31 of Chapter 3 for a discussion about the renormalon subtraction in the spectrum.
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Author mb(mb) other mass comments, Ref.

Υ(1S) mass

Beneke 99 4.24 ± 0.09 M2GeV
PS = 4.58 ± 0.08 NNLO [78]

Hoang 99 4.21 ± 0.07 M1S = 4.73 ± 0.05 NNLO [124]
Pineda 01 4.21 ± 0.09 M2GeV

RS = 4.39 ± 0.11 NNLO [64]
Brambilla 01 4.19 ± 0.03 NNLO, pert. th. only [125]
Penin 02 4.35 ± 0.07 NNNLO [109]
Lee 03 4.20 ± 0.04 NNNLO [66]
Contreras 03 4.24 ± 0.07 NNNLO [126]

mc(mc) J/Ψ(1S)

Brambilla 01 1.24 ± 0.02 NNLO [127]

Table 6.7: Collection in historical order of recent bottom and charm quark mass determinations in units of GeV from theΥ(1S)

and J/Ψ(1S) resonances. The uncertainties quoted in the respective references have been added quadratically. All numbers have

been taken from the respective publications.

One may also employ theMS mass scheme using the upsilon expansion [60, 61]. Numerically
the resulting series have been shown to converge well [63,106] leading to reliable predictions. However,
there are a few conceptual issues that should be mentioned. Employing theMS mass scheme in the effec-
tive theory framework introduces a bilinear quark mass termof O(mαs) into the action, which formally
breaks the non-relativistic power-counting since all leading order terms in threshold mass schemes are
of ordermv2 [57, 124]. (In fact, the same happens in HQET.) Numerically this means the first order
corrections in theMS scheme are larger than in threshold mass schemes. The corresponding effect in
tt̄ physics has been demonstrated to be substantial [124] whilefor the bottom, theO(mαs) term does
not seem to be that large numerically, being much smaller than the typical values of the soft scale in
the Υ(1S). Conceptually this means theMS mass extracted from the quarkonium mass has a smaller
parametric precision than threshold masses. Another issuerelated to the use of theMS mass is that it is
impossible to avoid parametrically large logarithmic terms. If one uses a low scale∼ mαs one obtains
logarithms ofmαs/m from the series of the pole-MS mass relation; if one uses the high scale∼ m,
one obtains logarithms ofmαs/m andmα2

s/m from the series in Eq. (6.13). For the bottomonium case
these logarithms are, however, not numerically large and donot seem to spoil the perturbative expansion
in practice. On the other hand, if one uses a prescription different from the upsilon expansion to avoid
large logarithmic terms the cancellation of the renormalonambiguity is incomplete.

Determination of the bottom and charm mass

In the following the different determinations of the bottomquark mass available in the literature are
reviewed. The results are collected in Tab. 6.7. They have also been included as the full triangles in
Figs. 6.4 and 6.5. In the following the main features of theseanalysis are summarised. In the first three
references as well as in Ref. [109] no finite charm mass effects were included. In Ref. [78] a NNLO
analysis was made in the PS mass scheme. The result obtained for theMS mass was less precise as
at the time of the analysis the conversion from the pole to theMS scheme was not yet known with the
required accuracy. Reference [124] contained a NNLO analysis in the 1S scheme, while in Ref. [64] the
RS scheme was used at NNLO. The latter reference also contained an analysis at NNNLO including the
logs at this order as well as the largeβ0 result. In Ref. [125] a NNLO analysis was made including charm
mass effects in the 1S scheme.1 Non-perturbative effects were not taken into account. In Ref. [109] a
computation at NNNLO in the pole mass scheme was achieved, upto the still missing three-loop cor-

1The importance of the charm mass effects were first pointed out in Ref. [110].
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rections to the static potential, which were taken from the Pade-estimates of Ref. [128].2 The difference
with the other results could be due to the presence of the renormalon as well as the fact that the ultrasoft
contribution was computed within perturbation theory. Moreover, specific choices for renormalisation
scale have been employed. In fact, using the upsilon expansion the authors of Ref. [109] also obtained
mb(mb) = 4.274 as the central value, which is consistent with the other results. In Ref. [66] a NNNLO
analysis was made in a scheme similar to the RS one. In this reference the ultrasoft contribution was
treated perturbatively. Reference [126] contains a very similar analysis but the ultrasoft contribution was
treated in a different way than the soft contribution. Because the situationmv2 ≫ ΛQCD is not quite
realistic, it is illustrative reanalysing these NNNLO results without the US contribution. In the results of
Ref. [126] it is possible to eliminate the ultrasoft contribution in a scheme-dependent way, which shifts
theMS bottom mass by around−50 MeV. There has also been a determination of the charm mass from
theJ/Ψ(1S) mass [127]. The authors performed a NNLO analysis in the1S scheme but did not account
for non-perturbative contributions.

In the analyses discussed above, only the cancellation of the leading IR renormalon of the pole
mass and the singlet static potential have been taken into account. But there are also subdominant renor-
malons that eventually could play a role and the following parametric consideration is useful (see also the
discussion in Sec. 2.31 Chapter 3). On the singlet static potential side, one expects the first subleading
ambiguities from aO(Λ3

QCDr
2) IR renormalon. From the pole mass in Eq. (6.13) there is aO(Λ2

QCD/m)
renormalon that is not cancelled in general in threshold mass schemes. It depends on the relative size of
ΛQCD andmα2

s which of the ambiguities is parametrically larger. In the casemv2 ∼ mα2
s ≫ ΛQCD,

where a description in terms of local condensates is appropriate, the leadinggenuinenon-perturbative
corrections to the quarkonium mass scale likem(ΛQCD/mαs)

4. However, this quantity is parametri-
cally much smaller than the non-perturbative effects associated to the subleading renormalons, either
from the pole mass or from the singlet static potential. In this case the leading remaining ambiguity
comes from the subleading pole mass renormalon ofO(Λ2

QCD/m) and the actual accuracy of the result
is set by the perturbative calculation and not by non-perturbative effects. In the more realistic situation
wheremα2

s ∼ ΛQCD, on the other hand, the subleading renormalon ambiguities from the singlet static
potential and the pole mass are of the same order as thegenuinenon-perturbative corrections.

3.5 Bottom and charm quark masses from lattice gauge theory

Lattice determinations of parameters of the QCD Lagrangianhave two components. First, long-distance
Monte Carlo calculations are used to fix the bare lattice quark massesmu0,md0, etc. and the bare lattice
coupling constantα0(a) to make hadron masses and decays to match experiment. (a is the lattice spac-
ing.) Second, short-distance calculations are used to ensure that short-distance physics with the lattice
regulator is the same as short-distance physics with dimensional regularisation. The lattice parameters
are converted to theMS parameters by calculating short distance quantities in both regulators and making
them agree. For example, a perturbative relation between the lattice bare quark mass and theMS mass
can be obtained by calculating the on-shell quark propagator with both regulators and requiring that they
agree. The relation between QCD parameters in the two regulators may also be obtained from less usual
quantities like the PCAC related quantity formed from the pseudoscalar density and the four-divergence
of the axial vector current

mPCAC =
〈S1|∂ ·A|S2〉
〈S1|P |S2〉

. (6.16)

(S1 andS2 may be any states.) The lattice short-distance quantities may be calculated with perturbation
theory as usual. They may also be calculated non-perturbatively, which makes possible robust lattice
short distance calculations.

Through the 1990s, most lattice phenomenology had some degree of quantitative control over all
sources of systematic error except one: the quenched approximation. In the last five years, unquenched

2All NNNLO analyses mentioned below used the estimates of Ref. [128].
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calculations have have become more and more common, allowing more serious comparison of different
lattice calculations. There are three main families of methods for including sea quarks in unquenched
calculations (for more details see the lattice introduction in Chapter 1). Each has distinct advantages and
complications. Wilson and clover fermions break chiral symmetry strongly at the lattice spacing, and
have practical complications in recovering it. In unquenched calculations, they have trouble reaching
light quark masses much belowms/2. Staggered and naive fermions can reach lightest quark masses with
greatest precision and least computer time, but have theoretical complications due to fermion doubling.
Domain wall and overlap fermions are theoretically the cleanest, but appear to be much more expensive
in computer time.

To fix the parameters of the lattice QCD Lagrangian, including the heavy quark masses, we are free
to use the hadronic quantities that are simplest for the lattice to calculate accurately. Stable particles, par-
ticularly mesons, require simpler lattice methods than unstable particles. Processes with a single hadron
present at a time are simpler than multihadron processes. The numerous masses and mass splittings in
the charmonium and bottomonium systems are especially suitable. Since the quarks are heavy, the dif-
ficult extrapolation of the valence quarks to the chiral limit is unnecessary. More importantly, the fact
that the valence quarks are nonrelativistic means that one can apply nonrelativistic arguments, EFT and
phenomenological potential models to gain a more solid understanding of systematic uncertainties than
is possible with light hadrons. It implies that we have better than usual understanding of the importance
of the various higher dimension correction operators that are used to improve the lattice Lagrangian. We
expect in advance, for example, that some of the uncertaintyarising from imprecise settings of correction
operators likeψΣ ·Bψ is cancelled in spin-averaged masses like(3Mψ+Mηc)/4. On the other hand, the
fact that quark momenta in quarkonia are larger than they arein light hadrons makes some discretisation
errors larger. A meson like theDs, which also has a tame chiral extrapolation, is also particularly simple
to calculate on the lattice.

A variety of methods has been proposed to obtainMS masses from bare lattice quark masses
(see [129] for a review of some of the methods). The standard perturbative way is to calculate the on-
shell quark propagator on the lattice and in theMS scheme to a given order in perturbation theory and
define renormalisation constants so that they are equal. Vector and axial vector Ward identities may be
used to define a renormalised mass [130] which has been used inseveral ways to obtain theMS quark
mass. Methods using Schrödinger functional and step-scaling functions have been developed [131].

Almost all existing unquenched lattice determinations ofmb use perturbation theory to relate the
lattice quark mass to theMS mass. The best determination of theb quark mass from Bottomonium is
the relatively old calculation of Davies et al. [132, 133], using NRQCD and two flavours of Wilson sea
quarks. They used the mass of theΥ to setmb. TheMS mass was obtained with first-order perturbation
theory from the bare lattice mass (or more precisely, from the energy shift between the meson mass
and the lattice mass). They obtained for theMS massmb(mb) = 4.26(4)(3)(10) GeV. This agrees
well with lattice determinations of the quark mass from theB meson mass. For example, Gimenez
et al. [134,135] use the static approximation for theb quark, and use two flavours of unquenched Wilson
fermions. Incorporating a stochastic estimate of the third-order perturbative correction [136] they obtain
mb(mb) = 4.21(3)(5)(4) GeV. In the quenched approximation, Heitger and Sommer [137] use step-
scaling methods with the static approximation for theb quark. They use non-perturbative Ward identity
based methods to calculate the renormalisation constants,and obtainmb(mb) = 4.12(7)(4) GeV. Divitiis
et al. [138] use step-scaling methods with a relativistic formulation of both the heavy and light quarks,
and non-perturbative Ward identity based determinations of the renormalisation constants. They obtain
mb(mb) = 4.33(10) GeV.

Unquenched determinations ofmc are just beginning to appear. A consistent lattice picture of
the charm quark mass exists from quenched calculations froma few years ago. Using the charmonium
spin-averaged 1S mass to setmc and the 1P-1S splitting to fix the lattice spacing, Juge [139], following
Kronfeld [140], obtainedmc(mc) = 1.27(5) GeV. For the charm quark action, he used the clover action
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with the Fermilab heavy quark interpretation. He used a second order perturbative expansion to relate the
lattice andMS masses. The one-loop coefficient was obtained in the usual way. The two-loop coefficient
was calculated by calculating the charm quark propagator atseveral very small values ofαs and fitting
the results to a perturbative expansion.

This result is likewise compatible with results using theDs meson to set the quark mass. For ex-
ample, Becirevic, Lubicz, and Martinelli [141] related thequark masses ofMS and the lattice using the
vector and axial vector Ward identities. The lattice part ofthe calculation was done non-perturbatively.
They obtainedmc(mc) = 1.26(3)(12) GeV. Rolf and Sint [131] have used the Schrödinger func-
tional approach to calculate the renormalisation factors for the quark mass. They obtainedmc(mc) =
1.301(34) GeV whenFK was used to set the lattice spacing. Divitiis et al. [138], using the methods
described previously, obtainmc(mc) = 1.319(28) GeV. All of these quenched calculations contain an
additional uncertainty comparable to their stated uncertainties from the quantity used to set the lattice
spacing, arising from the quenched approximation. Preliminary unquenched results by Dougall, May-
nard, and McNeile at Lattice 2004 [142, 143] are consistent with this picture. Other unquenchedmc

determinations are in progress and will appear this year.

3.6 Final averages formb andmc

In the previous sections we have presented the various bottom and charm quark mass determinations
available in the literature and gave detailed discussions on the methods that were used to obtain the
respective central values and uncertainties. A compilation of the individual numerical results from QCD
sum rules, the 1S resonance and lattice QCD is displayed in Fig. 6.4 for the bottom quark mass and in
Fig. 6.5 for the charm quark mass.

One of the general features of the analyses is that the theoretical component of the uncertainty is
substantial, sometimes the dominant component. Some of themore precise results relied on additional
assumptions and on specific prescriptions, and some of the more recent analyses obtained larger uncer-
tainties than older ones because they considered new theoretical aspects. Therefore, the quoted errors
are subjective and do not have any statistical meaning. Procedures such as taking a weighted average are
meaningless a priori.

For this reason, first of all, the central values for bottom and charm quark masses are obtained by
simply taking the mean value of all presented determinations with equal weights. Concerning our current
knowledge of the corresponding uncertainties, we have decided to present two different approaches. For
the first approach, we try to infer from figures 6.4 and 6.5 whata sensible1σ deviation should be if
the distribution of the various determinations could be interpreted statistically. In figures 6.4 and 6.5
this “one standard deviation” uncertainty has been displayed by the darker gray area which numerically
corresponds to

mb(mb) = 4.22 ± 0.05 GeV and mc(mc) = 1.28 ± 0.05 GeV. (6.17)

Our second approach consists in presenting ranges for the quark mass values in which the respectiveMS
masses are located to some high degree of probability. These“ranges” then read

mb(mb) = 4.12 − 4.32 GeV and mc(mc) = 1.18 − 1.38 GeV. (6.18)

and correspond to the lighter gray area in figures 6.4 and 6.5.

3.7 Future Opportunities

The determination of the bottom and charm quark masses from heavy quarkonium data represents a by
now classic problem initiated by the early works on the QCD operator product expansion [1]. In recent
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years an impressive array of developments has led to a more refined understanding of the uncertainties in-
herent to the methods that can be applied and to a number of newhigher order perturbative computations.
Nevertheless, there are a number of issues that are still open.

So far all numerical analyses based on non-relativistic quantities relied on fixed-order perturba-
tion theory. The renormalisation group improved computations already applied in the context of top
pair production at threshold could be applied here as well. In contrast to the top quark case, however,
where the hierarchy of relevant scales is large and a renormalisation group improved treatment appears
indispensable, the summation of logarithms for bottomonium and charmonium quantities will mainly
serve as a cross-check for the fixed-order methods. Moreover, the proper renormalisation group treat-
ment of the charmonium and the higher excited bottomonium states is not fully understood yet because
for these systems the ultrasoft scale appears to be below thehadronic scaleΛQCD. In any case, analyses
based on renormalisation group improved perturbation theory would represent a valuable achievement
toward a better understanding of the behaviour of perturbation theory to bottomonium and maybe also
charmonium states.

A number of perturbative results at the NNNLO level exists for the quarkonium energy levels. As
mentioned in the review, all these analyses determined the contributions coming from the ultrasoft scale
perturbatively, which is, however, not realistic, particularly for higher radial bottomonium states and the
charmonium states in general. Here, the systematic factorisation of the ultrasoft effects and a treatment
based on non-perturbative methods could lead to a better understanding and more realistic estimate of the
theoretical errors. In particular, the non-perturbative treatment of ultrasoft effects might also shed more
light on the validity of the assumption that the leading order solution corresponds to a Coulomb-type
bound state for quarkonium systems for which the ultrasoft scale is non-perturbative. Such an analysis
might be even useful for quantities like the large-n moments used in bottom quark mass determinations
and for the bottomonium ground state where there are good reasons for the assumption that the ultrasoft
scale can be treated perturbatively.

A complementary approach toward a better understanding of non-perturbative effects, particularly
for quarkonium systems where the ultrasoft scale is believed to be perturbative, would be the determina-
tion of quark and gluon condensate contributions beyond leading order. Here, first principles determina-
tions of the quark and gluon condensates from lattice simulations would be quite important. At present
the matching coefficients of the condensates are only known at leading-order in the non-relativistic ex-
pansion. Results at the next-to-leading order level would provide further tests for the approximation in
terms of a series of local condensates. Likewise, effects ofsubleading condensates in the non-relativistic
framework could be analysed more systematically.

Much programmatic work remains to be done combining the various ingredients that have been
applied to heavy quark mass determinations on the lattice. All calculations need to be repeated with three
flavours of unquenched light sea quarks. It should be possible to extend all the perturbative calculations
to two-loop order at least. When this has been accomplished,an agreement between perturbative and
non-perturbative determinations ofmb andmc to around 30–50 MeV should be possible.

4. Strong coupling constant from Quarkonia

4.1 Strong coupling from Upsilon decays and sum rules

Heavy quarkonia leptonic and non-leptonic inclusive decayrates, in principle, provide means to deter-
mine the strong couplingαs using perturbative QCD. Precise data are available from thedecay widths
of the1−− J/ψ(1S) andψ states and theΥ resonances. Assuming that the hadronic and leptonic decay
widths of the heavy quarkonium states can be factorised intoa non-perturbative part, and a calculable
perturbative part, ratios of partial decay widths can be predicted. The ratio of the total hadronic decay
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width of theΥ(1S) and its leptonic partial width is then given by [144–146]

Rµ(Υ) =
Γ(Υ→hadrons)

Γ(Υ→µ+µ−)

=
10(π2 − 9)α3

s (Mb)

9πα2
em

[
1 +

αs

π

(
−19.36 +

3β0

2

(
1.161 + ln

2Mb

MΥ

))]
. (6.19)

Theoretical corrections to Eq. (6.19) arise from two sources. Corrections of orderv2, due to the relativis-
tic nature of theQQ̄ system have been analysed in [146]. Further corrections of non-perturbative nature,
due to the annihilation from higher Fock states (“colour-octet” contribution), can only be estimated and
have been discussed in [147,148]. Both types of correctionsare more severe for the charmonium and the
higherΥ states. Thus for a determination ofαs theΥ(1S) state should be used.

Employing the experimental valueRµ(Υ) = 39.11 ± 0.4 [30], the section on Quantum Chromo-
dynamics in the Review of Particle Physics quotesαs(Mb) = 0.177 ± 0.010 without reference, whereas
the original work [147] obtainsαs(Mb) = 0.186 ± 0.032. The uncertainty is fully dominated by theory,
and mainly originates from the above mentioned colour-octet contributions as well as the residual scale
dependencies. Varying the renormalisation scale as well asthe pole quark massMb = 4.6−4.9 GeV, the
next-to-leading orderα4

s correction in (6.19) is around 30-40%. Such a large NLO corrections entails that
also the still unknown NNLO term could be sizeable. Altogether, the error estimate∆αs(Mb) ≈ 0.03
appears realistic at the present stage, and it is unclear, how the result∆αs(Mb) = 0.01, quoted in the
PDG, can be justified.3

In the past there have also been a number of analysis [70, 73, 75, 77, 149] attempting the determi-
nation ofαs from the large-n Upsilon sum rules described in Sec. 3.2 with realistic errorestimates. The
analyses were based on simultaneous fits for the bottom quarkmass andαs using several moments. In
these analyses uncertainties∆αs(Mb) ≈ 0.03 − 0.05 were found. In view of these remarks, the deter-
mination ofαs from heavy quarkonium properties does not appear to be a method that can compete with
other more precise methods based on perturbation theory at higher scales or from the hadronicτ -decay
rate [30,150]. However, heavy quarkonium analyses may provide a useful cross-check for other methods.

4.2 Strong coupling constant from lattice QCD

Lattice determinations of the strong coupling constant have the same two components as lattice deter-
minations of other standard model parameters: fixing bare lattice parameters from hadronic data, and
conversion of lattice parameters intoMS parameters. Spin-averaged splittings in charmonium and bot-
tomonium are excellent quantities for determining the lattice spacing in GeV. Davies et al. [151] recently
reported unquenched lattice calculations of the simplest heavy and light quark quantities with 2+1 (two
light and one strange) flavours of unquenched staggered fermions. Unlike the previous unquenched
calculation mentioned, these used the physical number of light quark flavours. In addition, the use of
staggered fermions allowed the use of much lighter light quark masses, as low asms/6. The results,
which were dominated by quarkonium splittings, showed good, few per cent agreement among lattice
spacings obtained from the various quantities. In particular, the 1P-1S splitting in theψ system and the
1P-1S, 2S-1S, etc. splittings in theΥ system all yielded the same lattice spacing to high accuracy.

The factor relating the bare lattice andMS couplings, however, is large, roughly a factor of two at
typical lattice spacings, making the conversion demanding. Early lattice determinations of the physical
coupling used a mean-field improved coupling constant,αs = α0/TrUP , to reduce the uncertainty due to
the large tadpole contributions to the conversion which areresponsible for much of the poor perturbative
behaviour. (TrUP is the trace of the plaquette operator on the lattice.) [152]. Subsequent work on

3The small uncertainty presented forαs from quarkonia in the PDG [30], pulls down the globalαs average quite noticeably,
as can also be seen from figure 9.1 in Ref. [30].
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perturbative methods proposed obtaining improved coupling constants from Monte Carlo measurements
of small Wilson loops [153]. Lüscher and collaborators proposed non-perturbative methods for obtaining
physical couplings via the Schrödinger functional [154].

Very recently, Mason et al. [155] have reported third-orderperturbative results relating the cou-
plings via many small Wilson loops and Creutz ratios. The many determinations agree with each other
and agree with asymptotic freedom over a large range ofq2. Combined with the lattice spacings ob-
tained in [151], this work yieldsαMS(MZ) = 0.117(1), in good agreement with the world average.
Quark masses and other standard model parameters based on the calculations of Ref. [151] will soon
appear.

Booth et al. [156] have used two-flavour simulations of the less physically transparentr0 (defined
from the heavy quark potential) to set the lattice spacing, and perturbation theory via the plaquette to
obtain physical coupling constant. They obtain a result significantly lower than the above and than the
world average. However, the perturbation theory resultingfrom Wilson sea quarks contains large, poorly
convergent contributions from the fermionic graphs, and the calculation employs two rather than three
light sea quarks.

The third-order perturbative determination of Mason et al.[155] is unlikely to be extended with
perturbative methods in the near future. Future progress inαs determinations from the lattice may await
the fruition of unquenched non-perturbative methods forαs determination.

5. NRQCD and the Velocity Renormalisation Group

In this section we discuss some of the more conceptual aspects involved in using effective theory methods
for Non-relativistic QCD. In particular we review issues regarding the power counting and renormalisa-
tion of these theories. For motivation it is useful to ask what properties we desire from an effective field
theory of non-relativistic particles. The EFT should

1. have degrees of freedom that reproduce the IR divergencesof the full theory in its entire region of
validity and thus have no large logs in matching calculations,

2. have a well defined power counting inv so that the expansion is systematic,

3. exhibit all the expected symmetries of the physical problem, spin symmetries, gauge symmetries
etc.,

4. start with a regulator independent Lagrangian, so that different choices of regulators and renormal-
isation schemes can be systematically implemented,

5. have a consistent renormalisation procedure so that UV divergences leave the theory well defined,
and anomalous dimensions and renormalisation group evolution can be computed.

The original NRQCD [157–159] (see also Chapter 1, Secs. 2.2 and 2.3) was formulated with the aim of
separating the short distance physics at the scalem from the long distance physics at the non-relativistic
momentum and energy scales,mv andmv2. This effective theory has one distinct quantum field for each
of the low energy quarks, antiquarks, and gluons. It succeeds at the majority of the above criteria but has
well studied issues regarding item 2. In particular, the EFTmatrix elements and diagrams do not have
a unique scaling withv as emphasised in Refs. [160, 161].4 From a modern viewpoint this is due to the
fact that one gluon field is used to describe both soft and ultrasoft gluon effects, and the power counting
for these two gluons differs [162–164]. In particular the soft gluons are responsible for binding while the
ultrasoft gluons give real radiation and have couplings which need to be multipole expanded [165,166].
A second complication is that, although a smallv ≪ 1 guarantees that the scalesm ≫ mv ≫ mv2

are well separated, the dispersion relation,E = p2/(2m), couples themv2 energy andmv momentum
scales together and affects the renormalisation group evolution [160].

4This version of NRQCD still satisfies the power counting in a weaker form since the subleading terms in thev expansion
can in principle be obtained from higher order terms of the leading diagrams. This subtlety is therefore not important until
calculations are done beyond leading order inv where both soft and ultrasoft effects become important.
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One approach to resolving the power counting issue is to consider in sequence themv andmv2

scales and the soft and ultrasoft gluons. One first considersan NRQCD theory with soft gluons, and
then “integrates out” themv scale into nonlocal potential operators for the effective theory with ultrasoft
gluons. This EFT is known as pNRQCD [90, 93]. While the soft NRQCD theory does not have av
power counting, thev power counting is obtained in the final pNRQCD theory. This construction has
the advantage of avoiding the double counting gluon effectsin a simply way, and also corresponds to the
Wilsonian picture of integrating out scales in step-wise fashion,m→mv→mv2. Further details about
the pNRQCD approach can be found in Chap. 3.

A second approach to resolving the power counting issue accounts for the correlation in energy
and momentum scales from the start. In this case there is onlyone EFT below the scalem and it simul-
taneously contains soft and ultrasoft gluons. This EFT is known as vNRQCD [95, 96, 160, 167]. It has
the advantage that power counting automatically induces the correct correlation between the ultrasoftµU
and softµS renormalisation scales,µU = µ2

S/m ≡ mν2, that preserves the dispersion relation. Renor-
malisation group evolution inν is known as the velocity renormalisation group (vRGE), and incorporates
the correspondence betweenµU andµS . In this section we give a brief review of the vNRQCD approach
for the casem≫ mv ≫ mv2 ≫ ΛQCD relevant for QED and non-relativistictt̄ systems.5

The effective vNRQCD Lagrangian can be separated into ultrasoft, soft, and potential components,
L = Lu + Ls + Lp. The presence of both soft and ultrasoft gluons immediatelybrings up the issue of
double counting. To avoid double counting the effective theory is constructed such that the ultrasoft
gluons reproduce only the physical gluon poles wherek0 ∼ k ∼ mv2, while soft gluons give only those
with k0 ∼ k ∼ mv. The scales for the gluon momenta are influenced by the quark propagators, so the
quark-gluon interactions must be constructed in such a way that we will not upset this scaling. InLu
this is achieved by the multipole expansion of interactions, which is enforced by a phase redefinition
that separates labelp ∼ mv and residual∼ mv2 momenta. This ensures that ultrasoft gluon momenta
are always much smaller than the quark three-momenta. InLs this is achieved by integrating out the
intermediate static HQET like fermion propagators into theeffective soft vertices [160] and by the pull-
up mechanism [104]. The pull-up mechanism refers to the manner by which all soft loops in vNRQCD
are made infrared finite while at the same time the ultraviolet divergences in ultrasoft loops are made to
correspond directly to the hard scalem.

For example, the first few terms in the vNRQCD ultrasoft Lagrangian are

Lu =
∑

p

{
ψ†

p

[
iD0 − (p− iD)2

2m
+

p4

8m3
+ . . .

]
ψp + (ψ→χ)

}
− 1

4
Gµνu Guµν + . . . ,(6.20)

whereGµνu is the ultrasoft field strength andψp is the quark field with label momentump, while χ
is the field for antiquarks. In dimensional regularisation the covariant derivative has the formDµ =
∂µ + iµǫU guA

µ, whereµU = mν2 andgu = gu(µU ) is the renormalised ultrasoft QCD coupling. The
soft LagrangianLs can be found in [95,160,167] and couples soft fields to the potential quarks with the
soft QCD couplinggs = gs(µS) (µS = mν). Finally the potential Lagrangian has terms like

Lp = −µ2ǫ
S V (p,p′)ψ†

p′ψpχ
†
−p′χ−p + . . . , (6.21)

where the coefficient functionV (p,p′) acts like a potential (as do time ordered products ofLs vertices).
For equal mass fermions in QCD perturbatively matching ontothe first three orders inv gives terms

V (p,p′) = (TA ⊗ T̄A)

[V(T )
c

k2
+

V(T )
k π2

m|k| +
V(T )
r (p2 + p′2)

2m2k2
+

V(T )
2

m2
+

V(T )
s

m2
S2

5Up to NNLO this situation is basically equivalent to the casewheremv2 ∼ ΛQCD, since the only obvious difference
is that we must be careful to stop renormalisation group running before any couplingαs(µ) becomes non-perturbative, so
µ ≥ few × ΛQCD. The main difference at higher order is that in the latter scenario matrix elements involving ultrasoft gluons
which are N3LO become non-perturbative.
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+
V(T )

Λ

m2
Λ(p′,p) +

V(T )
t

m2
T (k) + . . .

]
+ (1 ⊗ 1)

[V(1)
c

k2
+

V(1)
k π2

m|k| +
V(1)

2

m2
+

V(1)
s

m2
S2 + . . .

]
,

S =
σ1 + σ2

2
, Λ(p′,p) = −iS · (p′ × p)

k2
, T (k) = σ1 · σ2 −

3k · σ1 k · σ2

k2
, (6.22)

wherek = p′ − p is the momentum transfer and the colour and spin factors havethe appropriate
index contractions with the fields in Eq. (6.21). In Eq. (6.20) and (6.21) the couplings are defined with
dimensional regularisation and it is worth noting that the factors ofµǫU andµǫS in Lu,s,p are uniquely
determined by mass dimension andv power counting ind = 4−2ǫ dimensions [167] (see [96] for further
detail). The renormalised couplings depend on the parameter ν, i.e.Vi = Vi(ν). In section 6.3 additional
Wilson coefficients are defined for the dominant current relevant for heavy quark pair production ine+e−

annihilation,c1(ν), as well as coefficients for subleading production currents, c2,3(ν). Apart from the
renormalisation scale for the couplings, thev power counting of an arbitrary diagram is universally
determined by the powers ofv assigned to operators, and therefore have no explicit dependence on the
choice of regulator. Ambiguities regarding how multipole expanded interactions renormalise operator
products were resolved in Ref. [96].

Since we are considering the casemv2 ≫ ΛQCD the majority of computations are purely pertur-
bative. In this case they can be performed in three stages,

i) matching QCD atµU = µS = m (ν = 1) onto vNRQCD,

ii) running with the velocity renormalisation group fromν = 1 to ν = v0 wherev0 is a number of
order the typical velocity in the non-relativistic bound state (v0 ≃ 0.15 for tt̄), and

iii) computing the EFT matrix elements atν = v0.

From an EFT point of view the most novel aspect of these steps is the resummation of logarithms by
running inν. The correlation of energy and momentum cutoff scales in theevolution turns out to be
crucial to the proper resummation of logarithms in many cases. In Ref. [168] it was shown for the
first time that anomalous dimensions and the vRGE could be used to predictlnα contributions in QED
bound states like Hydrogen, positronium, and muonium. For positronium theα7 ln2 α hyperfine splitting
corrections andα3 ln2 α corrections to decay rates were correctly reproduced, and theα8 ln3 α Lamb
shift was predicted.6 These results give a non-trivial consistency check on the vNRQCD approach to
renormalisation. Further consistency checks from subdivergences are discussed in Refs. [170, 171]. In
Ref. [172] it was shown that the correlation of energy and momentum scales is necessary to compute
these QED corrections involvinglnk α with k ≥ 2. In QCD the correlation in energy and momentum
cutoffs is also known to be crucial to resumming logs in the production current [160,171,173,174].

The running of the nonrelativistic QCD potentialsVi in vNRQCD was worked out in [95,104,173]
and for theci current coefficients in Refs. [94,170,173]. The running of the static potential due to ultrasoft
effects in the pNRQCD formalism was determined in Ref. [175]. In Ref. [105] and also [96,174] an error
was corrected in some of the previous vNRQCD publications from a missing set of spin-independent
operators.7 All results for the vector current coefficientc1 at NLL order and the running of the potentials
Vc,k,2,r,s,Λ,t have now been checked by two independent groups. The renormalisation group improved
results were applied tott̄ production near threshold in Refs. [170, 176], and significantly reduced the
uncertainty in previous fixed order NNLO computations [52].For renormalisation group improvedtt̄
production near threshold all the necessary components in steps i), ii), and iii) are known at NNLL order
except for the full NNLL order computation forc1, and are included in the state of the arttt̄ analyses.

The necessary additional computations forc1 at NNLL were discussed in Refs. [170,171]. A par-
tial result was obtained for the NNLL running ofc1 which fully incorporates the non-mixing part of the
anomalous dimension [171]. This calculation required correctly associating the divergences in three-loop

6For Hydrogen theα8 ln3 α terms resolved a controversy in favour of Karshemboim’s original result [169].
7Numerically, the change turned out to be insignificant for phenomenologicaltt̄ applications as discussed in Sec. 6.32.
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vertex graphs with renormalisation of operators in the effective theory.8 At N3LO the results are consis-
tent with the fixed order computation in Ref. [177]. Updates for the changes due to a corrected operator
basis and coming from the new results for the NNLL order running of the dominant vector current were
made in Ref. [96] and [178] respectively. More details on thett̄ analyses are given in Sec. 6.32. Finally,
computations of the running of the spin-dependent potentials beyond the leading logarithmic approxima-
tion order and some applications forbb̄, bc̄ andcc̄ systems can be found in Refs. [179–181] for pNRQCD.
In Ref. [181] also the spin-dependent part of the mixing contributions toc1 at NNLL was determined. In
these references the renormalisation group running is called the nonrelativistic renormalisation group.

6. Top pair production at threshold in e+e− collisions

6.1 Physics of the top threshold

With a weight of around175 GeV, the top quark is the heaviest known quark flavour and plays an
important role in the understanding of the mass generation in the Standard Model and of electroweak
symmetry breaking. Top–antitop quark pair production close to the threshold, i.e. for centre of mass
(c.m.) energies

√
s ≈ 2mt ≈ 350 GeV, will provide an integral part of the top quark physics program

at the nexte+e− Linear Collider, which is supposed to be the next major accelerator project after the
LHC [182,183]. In this kinetic regime thett̄ cross section rises as soon as sufficient amount of energy is
available to produce the top–antitop quark pair. Since almost all energy is spent on the top quark masses,
the top quarks are non-relativistic and their velocities are small,v ≪ 1. Due to the large top quark width,

Γt(t→bW ) ≈ GF√
2

m3
t

8π
≈ 1.5 GeV ≫ ΛQCD , (6.23)

the would-be toponium resonances overlap and the totaltt̄ production cross section line-shape is a
smooth function of the energy. Theoretically this means that non-perturbative effects are strongly sup-
pressed and can be neglected for studies of the total cross section [184–186].

The total cross section fore+e−→γ∗, Z∗→tt̄ has the form

σγ,Ztot (s) = σpt

[
F v(s)Rv(s) + F a(s)Ra(s)

]
, (6.24)

whereσpt = 4πα2/(3s) is the muon pair cross section. The vector and axial-vectorR-ratios are

Rv(s) =
4π

s
Im

[
−i
∫
d4x eiq·x

〈
0
∣∣T jvµ(x) jvµ(0)

∣∣ 0
〉 ]

,

Ra(s) =
4π

s
Im

[
−i
∫
d4x eiq·x

〈
0
∣∣T jaµ(x) jaµ(0)

∣∣ 0
〉 ]

, (6.25)

whereq = (
√
s, 0) andjvµ (jaµ) is the vector (axial-vector) current in the Standard Modelthat produces a

quark-antiquark pair. With bothγ andZ exchange the prefactors in Eq. (6.24) are

F v(s) =

[
Q2
q −

2s vevqQq
s−m2

Z

+
s2(v2

e + a2
e)v

2
q

(s−m2
Z)2

]
, F a(s) =

s2 (v2
e + a2

e)a
2
q

(s−m2
Z)2

, (6.26)

where

vf =
T f3 − 2Qf sin2 θW
2 sin θW cos θW

, af =
T f3

2 sin θW cos θW
. (6.27)

Here,Qf is the charge of fermionf , T f3 is the third component of weak isospin, andθW is the weak
mixing angle. In the threshold region the axial-vector contribution coming from the Z exchange is
suppressed by orderv2 and, numerically, at the level of a few percent [62,187].

8The two-loop soft corrections to the1/m|k| potentials obtained in Ref. [107] were used as an input.
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Fig. 6.6: Theoretical prediction for the top pair production cross section without beam effects and its dependence on changes of

a) the value of the strong coupling, b) the top quark width, and c) the inclusion of a Standard Model (SM) Higgs boson. Changes

relative to the central value (solid lines) are shown by dashed red lines. In c) there are two solid lines, the lower black line is the

decoupling limit for the Higgs boson (mH→∞), and the upper blue line is for a SM Higgs with massmH = 115 GeV. The

parametersM1S = 175 GeV,Γt = 1.43 GeV,αs(MZ) = 0.118, yt = 0 andν = 0.15 have been used unless stated otherwise.

The figures have been obtained in Ref. [170,176] using vNRQCDat NNLL order.

The cross section rises rapidly at the point where the remnant of a toponium 1S resonance can be
formed. From the energy where this increase occurs, the top quark mass (in threshold mass schemes)
can be determined with uncertainties at the level of100 MeV, whereas shape and height of the cross
section near threshold can be used to determineΓt, the coupling strength of top quarks to gluons,αs,
and, if the Higgs boson is not heavy, the top Yukawa couplingyt = (2

√
2GFm

2
t )

1/2 [188,189]. For the
determination of the top quark width only very few other methods are known. In Fig. 6.6 the dependences
of the prediction for the totaltt̄ cross section at threshold on changes ofαs, Γt andyt are displayed. The
dependence of the cross section onαs andyt comes to a good approximation from the potential between
the top quark pair. The QCD Coulomb potential, which is responsible for the binding-effects at thett̄
threshold, has the form

VQCD(r) = −CF
αs(µ)

r
(6.28)

at leading order and deepens whenαs is increased. This leads to an increase of the cross section as the
tt̄ pair is bound together more strongly. Similarly, in the Standard Model the dominant effect of a light
Higgs exchange can be understood from a Yukawa-type potential of the form

Vtth(r) = − y2
t

4π

e−mHr

r
, (6.29)

which also deepens for a stronger Yukawa coupling. In scenarios beyond the Standard Model such
as Supersymmetry, the effects of Higgs exchanges can be larger than in the Standard Model due to
modified couplings and due to the fact that Higgs mass limits are lower, Finally, the dependence on
Γt can be easily understood from the fact that for smallerΓt the resonance structure becomes more
pronounced. The prediction in Fig. 6.6 have been made, exemplarily, in the 1S mass scheme. In threshold
mass schemes the position of the 1S peak has, in general, onlylittle dependence onαs, yt, Γt and
other parameters such as the renormalisation scale. Therefore in threshold mass schemes the top mass
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for the remaining curves: (b) initial-state radiation (ISR); (c) ISR and beamstrahlung; (d) ISR, beamstrahlung and single-beam

energy spread. The figure has been taken from Ref. [203].

measurement has only little correlation with other theoretical parameters. From differential quantities,
such as the top momentum distribution, [190,191] the forward–backward asymmetry or certain leptonic
distributions, [192–195] one can obtain measurements ofΓt, the top quark spin and possible anomalous
couplings [196].

The top mass determination represents the most important task of a threshold line-shape measure-
ment. In addition to the quite small expected error on the topquark mass, thett̄ line-shape measurement
has the feature that the corresponding mass scheme is unambiguously defined since the location where
the cross section rises is a stable (and perturbatively calculable) function if threshold masses are em-
ployed. With respect to both aspects the top mass measurement from a threshold scan is superior to the
reconstruction method as applied e.g. at hadron colliders.This is because the line-shape measurement
relies on counting the number of colour singlettt̄ pairs, while reconstruction is based on the determina-
tion of a top four-momentum from the top decay products, which unavoidably leads to larger ambiguities
since the top quark is coloured.

6.2 Experimental simulations fore+e− collisions

A considerable number of experimental studies were carriedout in the past to assess the feasibility of top
threshold measurements of the total cross section and certain distributions [197–202]. Apart from the
standard experimental issues related to the event selection and the identification oftt̄ pairs, the treatment
of background, efficiencies and detector effects, which need to be accounted for to measure the cross
section line-shape, a crucial role is played by the luminosity spectrum and the absolute energy scale
of the e+e− beam. (For a recent experimental review see Ref. [203].) Theluminosity spectrum arises
from the effects of initial state radiation, beamstrahlungand the beam energy spread and leads to a loss of
luminosity and a redistribution of collision energy down tolower energies. The latter effect is particularly
important since it effectively smears out the resonance structure visible in Fig. 6.6. Likewise a precise
knowledge of the absolute energy scale is crucial.

In Fig. 6.7 (taken from Ref. [203]) the effects of the three sources of the luminosity spectrum
on the cross section obtained for a fixed nominal c.m. energy are shown. The effects are substantial.
Thus the precise knowledge of the luminosity spectrum for any nominal c.m. energy of thee+e− beam
is crucial for the measurement of the threshold line-shape.Since the luminosity spectrum is partially
machine-dependent it has become standard for top thresholdstudies to account for the complete lu-
minosity spectrum (including initial state radiation) during the experimental simulation. Thus it is the
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Fig. 6.8: The energy dependence of the three observablesσtot, the peak position of the momentum distribution andAFB as

expected from a simulation of the threshold scan. For the topquark massM1S = 175 GeV is assumed. (Figure taken from

Ref. [202].)

convention not to include the luminosity spectrum for the theoretical predictions. Since the luminos-
ity spectrum cannot be fully predicted a priori in a machine-independent way it needs to be constantly
measured while the top threshold scan is being performed. The luminosity spectrum can be deduced
by using the acollinearity distribution ofe+e−→e+e− Bhabha scattering which depends on the energy
difference of the initiale+ ande− beams [204], while the absolute energy scale can be determined from
spectrometers.

In a more recent simulation study by Martinez and Miquel [202] the size of the experimental
uncertainties for simultaneous measurements of the 1S mass, αs(MZ), Γt andyt in a top threshold run
at ane+e− Linear Collider was examined, based on measurements of the total cross section, the top
three-momentum distribution and the forward-backward asymmetry for a 9+1 point threshold scan using
a total integrated luminosity of300 fb−1, see Fig. 6.8. The analysis assumed perfect knowledge of the
luminosity spectrum and the absolute energy scale and thus reflects the experimental uncertainties from
other sources. Fixingyt to the Standard Model (SM) value Martinez et al. obtained∆M1S = 19 MeV,
∆αs(MZ) = 0.0012 and∆Γt = 32 MeV from a three-parameter fit. In a one parameter fit, fixing
all other parameters, they obtainedδyt/yt =+0.18

−0.25. In a fit whereΓt is fixed to the SM value andαs is
constrained toαs(MZ) = 0.120 ± 0.001 they obtainedδM1S = 27 MeV andδyt/yt =+0.33

−0.54. In a fit
where onlyαs is constrained toαs(MZ) = 0.120±0.001 they obtainedδM1S = 31 MeV, δΓt = 34 MeV
andδyt/yt =+0.35

−0.65 for a Higgs mass ofmh = 120 GeV. Note that the sensitivity on the top Yukawa
coupling strongly decreases for increasing Higgs mass. It is therefore likely that only weak constraints
on the Yukawa coupling can be obtained if the Higgs is considerably larger than the current LEP limit.

Recently, a first study of the uncertainties in the measurements of the luminosity spectrum (exclud-
ing the effect of linac energy spread) has been carried out byBoogert [205]. The luminosity spectrum is
typically expressed in terms of the scaled c.m. energyx =

√
s′/

√
s, where

√
s′ is the event c.m. energy
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after beamstrahlung, ISR and beam spread and
√
s is the nominal pre-collision energy. The cross section

after the inclusion of the luminosity spectrum is

σ′tot(s) =

∫ 1

0
dx L(x)σtot(x

2s) (6.30)

whereL(x) is a probability distribution representing the luminosityspectrum. Unlike the analysis per-
formed by Martinez and Miquel, a near perfect detector was considered with a constant detector effi-
ciency for all scan points and only the cross section information was used. The theoretical cross section
smeared with the luminosity spectrum was fitted with the sametheoretical cross section smeared by the
corresponding reconstructed luminosity spectrum. This fitwas performed for an 11 point threshold scan
with a integrated luminosity per scan point of30 fb−1, withM1S andαs(MZ) as free parameters, while
Γt is fixed. Systematic shifts ofδM1S = Mfit

1S −M1S = −44 MeV andδ(αs) = αfit
s − αs = −0.0016,

were observed, significantly larger than the statistical errors obtained in the three parameter fit of Ref.
[202].

The results of Boogert and similar studies must be taken withcaution as the luminosity spectrum
and its reconstruction varies significantly between different linear collider designs and the detail in which
the particle acceleration, focusing and collision dynamics are simulated. The development of linked
accelerator, collision dynamics, hard scattering and detector reconstruction simulations will enable more
realistic determination of the expected systematic errorson the top mass.

Finally, other observables such as the forward-backward asymmetry and top three-momentum
distribution, discussed in Sec. 6.4, must also be modified due to the effects of the luminosity spectrum
and included into a complete analysis of the top threshold with realistic luminosity spectra.

6.3 Theoretical status fore+e− collisions

With the excellent experimental prospect in view it is obvious that a careful analysis and assessment of
theoretical uncertainties in the prediction of the total cross section and various distributions is mandatory.
Initially, a number of leading order [206] and next-order computations, [188,190–195,207] were carried
out. The latter relied basically on QCD-inspired potentialmodels that used phenomenological input from
Υ and charmonium data. As such they did not represent true first-principles QCD calculations and there
was no systematic way how the computations could be consistently improved to include higher order
radiative or relativistic corrections. Moreover it was notclear, at a level of precision of order 100 MeV,
how the top quark mass appearing in these computations relates to a Lagrangian mass in QCD.

6.31 Fixed order approach

The fixed order expansion of the non-relativistic heavy quark pair production cross section has the
schematic form

R =
σtt̄

σµ+µ−
= v

∑

k

(αs

v

)k {
1 (LO);αs, v (NLO);α2

s , αsv, v
2 (NNLO)

}
, (6.31)

wherev is the top velocity and where the indicated terms are of leading (LO), next-to-leading (NLO),
and next-to-next-to-leading order (NNLO). The LO terms proportional to(αs/v)

n are the well-known
Coulomb singularities and arise from the iteration of the interaction between thett̄ pair created by the
QCD Coulomb potential. Parametrically, one countsαs/v of order1 for the entire threshold regime. The
systematic computation of the expansion in this scheme became possible after adopting the concepts of
effective theories in the framework of NRQCD [146, 208]. Consistent fixed order computations up to
NNLO were then worked out in Refs. [62, 99, 209–220]. The expansion in the fixed order scheme is
obtained by identifying the corresponding contributions in the cross section from the various momentum
regions. Since the contribution from each region has an unambiguous scaling in the top velocity the
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Fig. 6.9: The total normalised photon-inducedtt̄ cross sectionR at the Linear Collider versus the c.m. energy in the threshold

regime at LO (dotted curves), NLO (dashed) and NNLO (solid) forαs(MZ) = 0.119, Γt = 1.43 GeV andµ = 15, 30, 60 GeV.

Hoang–Teubner used the 1S massM1S = 173.68 GeV, Melnikov–Yelkhovsky the kineticMkin(15 GeV) = 173.10 GeV,

and Beneke–Signer–Smirnov and Yakovlev the PS massMPS(20 GeV) = 173.30 GeV. The plots were given in Ref. [52]

from results provided by Hoang–Teubner, Melnikov–Yelkhovsky, Beneke–Signer–Smirnov and Yakovlev. The effects of the

luminosity spectrum are not taken into account.

expansion can be carried out systematically. The contributions of the same order can then be summed by
using the Schrödinger equation and time-independent perturbation theory.

The results obtained in this scheme were not just some new higher order corrections, but led to
a number of surprising and important insights. Although themethods and techniques used to perform
the computations differed among the groups, it was generally found that the NNLO corrections to the
location where the cross section rises and to the height of the cross section were found to be much
larger than expected from the results at NLO. The large corrections to the location of the rise obtained
initially [99, 214, 215] were found to be an artifact of the use of the on-shell pole mass definition and it
was realized that the top pole mass cannot be extracted with an uncertainty smaller thanO(ΛQCD) from
non-relativistic heavy quark–antiquark systems [57, 121,123]. (See Sec. 3.4.) Subsequently, carefully
designed threshold mass definitions (Sec. 3.1) were proposed to allow for a stable extraction of the top
quark mass parameter [57,60–62,220].

In Ref. [52] the results for the normalised total photon-induced cross sectionQ2
tR

v of a number
of groups were compiled and compared numerically in detail using an equivalent set of parameters to
analyse the scheme-dependence of the fixed order approach. Since the axial-vector current contributions
are only a small correction at the percent level it is justified to consider only the photon-induced cross
section. Figure 6.9 shows the results obtained in Ref. [52] in different threshold mass schemes where
the respective values of the threshold masses were obtainedfrom the topMS mass valuemt(mt) =
165 GeV as a reference point. It was concluded that the perturbative uncertainty in the determination of
threshold masses from the peak position (i.e. when beam smearing effects are neglected), is between50
and80 MeV. It was also pointed out that theMS mass can be determined with a comparable perturbative
precision, only ifαs(MZ) is known with an uncertainty of around0.001. This restriction arises from
the relatively large orderαs correction in the relation between threshold masses andMS mass. For
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example, for a given measurement of the 1S mass, let’s sayM1S = 175 GeV± δM1S, andαs(MZ) =
0.118 ± x 0.001 the result formt(mt) reads [62]

mt(mt) =

[
175 − 7.58 − 0.96 − 0.23 ± δM1S ± x 0.07

]
GeV (6.32)

where the first four numbers represent the perturbative series up to NNLO (three-loops). For a discussion
of the behaviour of perturbative corrections at the next order see Refs. [63, 109]. The results in Fig. 6.9
also show a large uncertainty in the normalisation of the cross section. This uncertainty is particularly
puzzling, because there is no obvious physical reason for its existence. At present it does not seem to be
related to renormalon-type higher order corrections, although it has also been speculated that the large
size of the corrections could have some infrared origin thatmight be cured by accounting for off-shell
effects of the toponium dynamics [221]. On the other hand, ithas been shown in Ref. [103,177] that the
dominant N3LO logarithmic corrections to the cross section of (relative) orderα3

s ln2 v andα3
s ln v are not

small. It was estimated in Ref. [52] that the present theoretical relative uncertainty in the normalisation
of the cross section in the fixed order approach is at least at the level of20%. This seems to jeopardise
precise measurements of the top width, the top quark coupling to gluons and the Higgs boson. At present
the only way to possibly improve the situation in the fixed order approach seems to be the determination
of N3LO or even higher order corrections in order to learn more about the structure of the perturbative
series.

6.32 Renormalisation group improved approach

Apart from the Coulomb singularities proportional to powers of αs/v, which have to be summed ac-
cording to the scheme shown in Eq. (6.31) there is one additional source of potentially large higher
corrections coming from logarithms of the top massmt = 175 GeV, the average top three-momentum
pt ∼ 25 GeV and the average kinetic energyEt ∼ 4 GeV. Terms such asαs(mt) ln(m2

t/E
2
t ) ∼ 0.8 can

spoil the fixed order expansion, as discussed before, and should to be summed to all orders. The scheme
where all such logarithmic terms are summed consistently has the form

R =
σtt̄

σµ+µ−
= v

∑

k

(αs

v

)k∑

i

(αs ln v)i ×

×
{

1 (LL) ;αs, v (NLL) ;α2
s , αsv, v

2 (NNLL)

}
, (6.33)

where the indicated terms are of leading-logarithmic (LL),next-to-leading-logarithmic (NLL), and next-
to-next-to-leading-logarithmic order (NNLL). The expansion in Eq. (6.33) is called “renormalisation
group improved” perturbation theory. Since the fixed-orderapproach relies on the identification of the
contributions from the hard, soft, potential and ultra softmomentum regions in full QCD diagrams, it
only accounts for the anomalous dimension associated with the running of the strong coupling and cannot
be used to carry out renormalisation group improved computations for the top threshold cross section.
Moreover, in fixed order expansions it is not clear a priori which scale to use for the couplings in the
highest computed order.

To achieve the expansion scheme in Eq. (6.33) one needs to apply a full effective theory description
where all resonating degrees of freedom responsible for thett̄ low energy dynamics are implemented
as fields of an effective theory and where all contributions from off-shell effects are integrated out.
The logarithmic terms mentioned above are associated with UV-divergences in the effective theory and
can be summed up after renormalisation of the effective theory operators and solution of the resulting
renormalisation group equations. In this formulation all logarithmic terms are contained in the Wilson
coefficients of the effective theory operators after they have been run to the low energy scale. On the
other hand, all matrix elements are free of any large logarithmic contributions. Since the logarithmic
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terms mentioned above involve only perturbative scales much larger thanΛQCD, the effective field theory
description for thett̄ total cross section at threshold allows for purely perturbative computations of the
Wilson coefficients as well as of the low-energy matrix elements.

Renormalisation group improved computations that can be applied to the total top threshold cross
section have been carried out in pNRQCD and vNRQCD. In addition to the operators in the respective
effective Lagrangians also external currents need to be defined that describe the production of the top
quark pair for non-relativistic momenta through the electroweak interactions. The vector (3S1) currents
relevant at NNLL order have the formJvp = c1Op,1 + c2Op,2, where [170]

Op,1 = ψp
†σ(iσ2)χ

∗
−p , (6.34)

Op,2 =
1

m2
ψp

† p2σ(iσ2)χ
∗
−p ,

and the relevant axial-vector (3P1) current isJap = c3Op,3, where

Op,3 =
−i
2m

ψp
† [σ,σ · p ] (iσ2)χ

∗
−p . (6.35)

The corresponding annihilation currentsO†
p,i are obtained by complex conjugation. The currentsOp,2,3

contribute only at the NNLL level. The NNLL total cross section is then written in the form

σtt̄ = c21 Im[A11(
√
s) ] + c1c2 Im[A12(

√
s) + h.c.] + c23 Im[A33(

√
s) ] , (6.36)

where theci are the Wilson coefficients of the currents and theAij are the Fourier transforms of time
ordered products of the currentsOp,i andO†

p,i. The first term contributes at the LL level, while the
second and third terms contribute at NNLL order only. TheAij are obtained from the zero-distance
Green functionG(r = 0, r′ = 0,

√
s − 2mt) of a two-body Schrödinger equation. At present, analyses

of the total top pair cross section at threshold at NNLL orderwithin renormalisation group improved
perturbation theory have only been presented in the framework of vNRQCD [170, 176] (see Sec. 5.).
The Wilson coefficients of the potentials in the Schrödinger equation and of thev2-suppressed currents
are known at NNLL order for the cross section [95, 96, 104, 105, 167, 173–175], whereas the Wilson
coefficientc1 of the leading order vector current is only fully known at NLLorder [94, 96, 173, 174].
Recently, the NNLL order non-mixing contributions to the anomalous dimension ofc1 coming from
genuine three-loop vertex diagrams in vNRQCD were computedin Ref. [171]. These corrections were
found to be comparable to the NLL contributions. The NNLL order corrections associated to the higher
order running of the couplings that mix into the NLL order anomalous dimension ofc1 are still unknown.
Figure 6.10 shows the photon-induced total cross section inrenormalisation group improved perturbation
theory obtained in Ref. [178]. The curves show the LL (dottedblue lines), NLL (dashed green lines)
and NNLL (solid red lines) cross section for the vNRQCD scaling parameterν = 0.15, 0.2 and0.3,
αs(Mz) = 0.118, Γt = 1.43 andm1S = 175 GeV. Compared to the fixed order results discussed above
there is an improvement in the convergence and the remainingscale variation, but the NNLL order curves
are still shifted by a positive correction similar to the fixed order predictions (see Fig. 6.9). In Ref. [178]
the present theoretical uncertainty in the normalisation of the NNLL order cross section was estimated
as δσtt̄/σtt̄ = 6%. Here, the determination of the still missing mixing contributions to the NNLL
anomalous dimension ofc1 is needed to get a more complete picture on the theoretical uncertainties.
The spin-dependent mixing contributions have been determined in Ref. [181]

6.33 Treatment of unstable particles

For the theoretical description of the top threshold dynamics it is not possible to treat the top quark
as a stable particle because within the Standard Model the top quark is expected to have a width of
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Fig. 6.10: The photon-induced top pair threshold cross section for M1S = 175 GeV,αs(Mz) = 0.118 andΓt = 1.43 GeV

in renormalisation group improved perturbation theory in vNRQCD at LL (dotted lines), NLL (dashed lines) and NNLL (solid

lines) order. For each order curves are plotted for the renormalisation parameterν = 0.15, 0.20, and0.3. The effects of the

luminosity spectrum are not included.

approximatelyΓt ≈ 1.5 GeV, which is comparable to the average kinetic energy of theproduced top
quarks. For the total cross section, as long as one is not interested in any differential information of the
decay process, the finite width effects can be implemented asmodifications of the effective theory Wilson
coefficients that arise when the effective theory is matchedto the Standard Model. These modifications
lead to additional real and imaginary contributions. Such imaginary contributions are a well known
concept in quantum mechanics of inelastic processes where particle decay and absorption are described
by potentials and coefficients carrying complex coefficients. Due to the unitarity of the Standard Model
the optical theorem used in Eq. (6.25) still holds in the effective theory.

At leading order in the non-relativistic expansion, due to gauge invariance, the only modification
in the effective theory matching conditions caused by electroweak effects are related to an additional
imaginary mass term proportional to the total on-shell top width [186],

δL =
∑

p

ψ†
pi

Γt
2
ψp +

∑

p

χ†
pi

Γt
2
χp . (6.37)

Since one has to apply the counting ruleΓt/mt ∼ α2
s ∼ v2 [62] this leads to

i

k0 − p2

2mt
+ δmt + i

2Γt
(6.38)

for the form of the top quark propagator, whereδmt is related to the top mass scheme that is used
for the computations. For the total cross section this is equivalent to a shift of the c.m. energy into
the positive complex plane,

√
s→√

s + iΓt. [186] For the total cross section the results of Refs. [186,
222–224] show that this prescription remains valid even at next-to-leading order due to cancellation
of QCD non-factorisable corrections connecting the top quark production and decay. The full set of
electroweak corrections to the effective theory matching conditions at next-to-next-to-leading order is
currently unknown, although some contributions have been identified at this order. [62, 225–230] These
results indicate that these corrections are at the level of afew percent.

For differential observables a number of leading order analyses have been made in the past in
order to assess their physics impact (see Sec. 6.4). However, a systematic description of electroweak
effects in differential observables, which would require aconsistent theory describing unstable top and
antitop quarks, does not exist at this time. First steps towards such a theory have been undertaken in
Ref. [231,232].
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6.34 Non-perturbative effects

As discussed above, all scales in the effective field theory calculation are large compared toΛQCD, andtt̄
production can be calculated in perturbative QCD. Nevertheless, as we are aiming at a very high accuracy,
the question about the size of possible residual non-perturbative effects is legitimate. Such effects can
be estimated through the interaction of the non-relativistic tt̄ system with long-range fluctuations of the
gluon field, see Chapter 3, Sec. 2.3. In the approximation of aconstant (w.r.t. the size and life-time of
the tt̄ state) chromoelectric field these corrections can be parametrised in form of the gluon condensate
〈0|αsGµνG

µν |0〉. In Ref. [233] an explicit formula was derived, and it was found that the corrections due
to the gluon-condensate are strongly energy dependent but small and decreasing with increasingmt, Γt.
For a realistic top mass and width they are completely negligible (of the order10−4 for the cross section)
compared to the uncertainties from the perturbative treatment, see also [234]. This result also agrees with
studies of the influence of the long-distance part of phenomenological QCD potentials. [188,235] There,
the effect from a linearly rising potential (or even more drastic deviations from the coulombic form) was
shown to be irrelevant, a reflection of the extremely short life-time of thett̄ system.

6.4 Studies of distributions and polarised beams

With the expected high luminosity at TESLA it is clear that, apart from the scan of the total cross sec-
tion through the threshold regime, detailed measurements of distributions will become feasible. Such
distributions will help to disentangle correlations betweenmt andαs and improve the accuracy of the
determination of the top quark mass. Even more important, the measurement of distributions will al-
low for detailed studies of the top quark’s couplings (and possible deviations from SM expectations) in
production and decay oftt̄. Detailed analyses have been carried out by the European andAsian Linear
Collider study groups in the past years, partly before the NNLO (and NNLL) improved calculations for
the total cross section became available. However, important information may be gained from those
leading order (partly higher order improved) analyses, and, eventually, higher order corrections should
be calculated also for observables beyond the total inclusive cross section.

In the following we will discuss the momentum distribution of top quarks, measurements of the
forward-backward asymmetryAFB and the issue of top quark polarisation and polarisede− (and possibly
e+) beams.

6.41 Momentum distribution of top quarks

As is clear from the picture of non-relativistic, quasi-bound top quarks having a sizeable decay width,
even at fixed c.m. energy

√
s, t andt̄ are not produced with a well defined momentum but with a broad

distribution. In the picture of non-relativistic Quantum Mechanics this momentum distribution is pro-
portional to the square of the (momentum-space) wave function and can be measured by reconstruction
of the top decays. Figure 6.11 shows theoretical predictions for typical momentum distributions for two
different values ofmt but the same fixed c.m. energy. The shaded bands come from the variation of
αs = 0.118 ± 0.003. It is clear from Fig. 6.11 that the peak position of the momentum distribution is
much more sensitive tomt than toαs which mainly influences the normalisation.

6.42 The forward-backward asymmetryAFB

Top pair production through a virtualZ boson leads to a smallP wave in addition to the dominantS
wave contribution. Interference ofS andP wave results in a forward–backward asymmetry defined as

AFB =
1

σtot

(∫ 1

0
d cos Θ −

∫ 0

−1
d cos Θ

)
dσ

d cos Θ
(6.39)

which is of order 10% but energy dependent with a minimum of about 5% close to the energy of the
1S peak (see Fig. 6.8 in Sec. 6.2). AsAFB comes from theoverlapof the (smeared out)1S and1P

413



0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 10 20 30 40 50 60

e+e-→ t + ..

Etot = 349 GeV

mt = 174.5 GeV175.5

αs = 0.118 ± 0.003

pt[GeV]

dσ
dpt

[pb/GeV]

Fig. 6.11: Momentum distribution of the top quark for two different values ofmt at the same fixed c.m. energyEtot = 349

GeV. The bands arise from variation ofαs as indicated. (Figure taken from Ref. [236].)

would-be resonances, it is sensitive to the top quark widthΓt and, to a lesser extent, toαs.

In experimental simulations, the momentum distribution and the forward-backward asymmetry
have been used in addition to the total cross section in orderto add valuable information and to increase
the accuracy of the determination ofmt, αs, Γt and possibly even the top Yukawa couplingyt, see the
discussion in Section 6.2 above.

6.43 Polarisation

Near threshold,S wave production dominates, and the spins oft, t̄ are aligned with the electron beam di-
rection. Therefore, even for unpolarised incominge+, e− beams the longitudinal top quark polarisation is
still ∼ 40%. With polarised beams one can obtain a sample of highly polarised top quarks near threshold,
and with a tunable polarisation of thee− beam the top quark polarisation could be selected. Quantita-
tively, for a realistic longitudinale− polarisation,Pe− = +80% (−80%), and unpolarised positrons,
Pe+ = 0, one would arrive at+60% (−90%) polarised top quarks! This level would be further enhanced
if the e+ beam would be polarised as well.

Because of the large top quark width this polarisation is transferred to the top decay products
practically without hadronization effects. As in additionthe top spin can be well measured through the
angular distribution ofW decay leptons,tt̄ production near threshold is also a very interesting field for
spin physics.

While the top quarks are mainly polarised longitudinally, polarisation transverse and normal to the
production plane is induced throughS − P wave interference effects and the QCD threshold dynamics,
see [193–195] for details. It is interesting to note that normal polarisation is sensitive to the (electric,
weak and strong) EDM of the top quark and could, if measured tobe larger than predicted, signal CP
violation beyond the SM. With tunablee± polarisations and measurements at several c.m. energies, the
different effects from the top quarks couplings toγ, Z andg could be disentangled [196]. Such analyses
in the threshold region would complement top coupling measurements in the continuum at larger c.m.
energies and can have an unexpectedly high sensitivity due to the tunable polarisation.

6.44 Rescattering corrections

Since the typical energy transfer at threshold is comparable to the top quark width there is in general
no factorisation between production and decay oft and t̄. In principle one would have to calculate
e+e−→W+ bW− b̄, including non-resonant backgrounds. However, the non-factorisable corrections
due to gluonic cross-talk betweent ↔ b̄, t̄ ↔ b andb ↔ b̄ are suppressed in the total cross section
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as mentioned above [186, 194, 195, 222–224]. The situation is different for exclusive observables which
are in general affected by final state corrections at NLO. Forthe momentum distribution,AFB and the
top quark polarisation there exist results for these rescattering corrections in the non-relativistic approx-
imation, see [194, 195]. They are of the expected parametricsize (orderαs) and slightly reduce the
momentum of the top quarks. Depending on the c.m. energy and the e± polarisation, they also lead
to a sizeable change ofAFB. Similarly, the different components of the top quark polarisation can be
strongly affected. Therefore, realistic experimental studies should take the rescattering corrections into
account. Nevertheless, observables have been constructedwhich are independent of thett̄ production
dynamics and rescattering corrections and only probe the decay of the polarisedt, t̄, even in the presence
of anomalous decay vertices [194,195,237,238].

6.5 Future Opportunities

The study of the problem of top quark pair production at threshold has, starting with the first pioneering
works about 15 years ago, led to impressive results, including the recent development of effective field
theories for heavy quarkonia. Nevertheless, many problemsremain to be solved. Among them are, as
discussed above, the complete computation of the NNLL corrections (renormalisation group improve-
ment) for the total cross section. Complementary information about the behaviour of the perturbative
expansion and independent cross-checks will also be gainedthrough further advances in fixed-order cal-
culations beyond NNLO. Such results would also contribute to the matching conditions of a NNNLL
renormalisation group improved computation of the cross section. Some of the N3LO contributions are
already known [103, 177], and more is to be expected as the technology to carry out such computations
is in principle available.

On the conceptual side, a consistent treatment of electroweak corrections including the instability
of the top quark and interferences with non-resonant final states is still missing. These effects should be
more important for differential cross sections, but a relevant impact on the total cross section cannot be
excluded. Closely connected to this issue is the problem of rescattering corrections. NLO calculations
have shown their relevance for distributions, but a consistent treatment within the effective field theory
context will require further breakthroughs in the treatment of unstable particles.

With the Tevatron Run II and at the future LHC, hadroproduction of tt̄ is growing out of the
discovery era and entering the phase of precision measurements. Consequently top threshold dynamics
may also play a role there. Similarly, the production process γγ→tt̄ (e.g. through the option of laser
backscattering at a futuree+e− collider) is not explored with the same accuracy as the production in
e+e− annihilation [219, 239]. The formulation of the threshold dynamics in the framework of effective
field theories may also be suitable to calculate the threshold production of coloured particles in extended
models, like e.g. squark pairs in supersymmetry, systematically and with higher precision.

Hopefully, in a not too far future from now, a futuree+e− Linear Collider will be in operation. To
make best use of the anticipatedtt̄ threshold data, fully realistic simulations including experimental cuts
are needed. This requires the theoretical treatment of differential distributions, width and rescattering
effects as discussed above, but also the simulation of detector and beam effects as discussed in Section
6.2. In this respect further collaboration between experiment and theory will be crucial to extend the
existing simulations which were performed within the regional study groups preparing for the nexte+e−

Linear Collider.
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[194] R. Harlander, M. Jeżabek, J.H. Kühn and M. Peter, Z. Phys. C73 (1997) 477, hep-ph/9604328.

[195] M. Peter and Y. Sumino, Phys. Rev. D57 (1998) 6912, hep-ph/9708223.
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[238] Y. Sumino and M. Jeżabek, Acta Phys. Polon. B29 (1998) 1443.

[239] A. Czarnecki and K. Melnikov, Phys. Rev. D65 (2002) 051501, hep-ph/0108233.

424



Chapter 7

CHARM AND BEAUTY IN MEDIA

Conveners:D. Kharzeev, M. P. Lombardo, C. Lourenço, M. Rosati, H. Satz

Authors: S. Datta, O. Kaczmarek, F. Karsch, D. Kharzeev, S. R. Klein, V. Laporta, M. P. Lombardo,
C. Lourenço, L. Maiani, P. Petreczky, F. Piccinini, A. D. Polosa, L. Ramello, R. Rapp, V. Riquer,
M. Rosati, H. Satz, E. Scomparin, R. Vogt, F. Zantow

1. Introduction1

Quarkonium in media is a topic which is central to the ultrarelativistic heavy ion program. In recent years
this subject has been among the focal points of discussion atmeetings such as “Quark Matter”. (“The
Quark Matter” series is traditionally the main forum of the high energy heavy ion community). Indeed,
in these collisions – “little bangs” – one hopes to recreate matter as it was at the very beginning of the
universe: a hot system with deconfined quarks and gluons and no chiral symmetry breaking.

This fascinating possibility calls for a number of theoretical and phenomenological studies. The
QCD phase diagram and the mechanisms of chiral symmetry restoration, screening, and deconfinement
at high temperature and baryon density needs to be understood. A theory of the initial conditions must
be developed and the equilibration of the plasma, if any, must be assessed in real experiments. It is also
necessary to identify the thermodynamical region which is being explored and to study nonequilibrium
effects. Finally, observables must be defined which providephysical signatures in real experiments.

Quarkonium plays a very important role in these phenomena. Indeed, quarkonium suppression was
long ago suggested as a signal of deconfinement [1]. Due to their small size, quarkonia can, in principle,
survive the deconfinement phase transition. However, because of color screening, no bound state can
exist at temperaturesT > TD when the screening radius,1/µD(T ), becomes smaller than the typical
bound-state size [1]. Later it was realized that dramatic changes in the gluon momentum distributions at
the deconfinement phase transition result in a sharp increase in the quarkonium dissociation rates [2–4].
Both the magnitude [5] and the energy dependence [6] of charmonium dissociation by gluons result in
significant suppression of thecc states even forT < TD but higher than the deconfinement transition
temperature,Tc. Moreover, close toTD the thermal activation mechanism is expected to dominate [7,8].
The relative importance of gluon dissociation and thermal activation is governed by the ratio of the
quarkonium binding energyǫ(T ) and the temperatureT , X(T ) ≡ ǫ(T )/T [9]. At X(T ) ≪ 1 thermal
activation dominates while forX(T ) ≫ 1 the dominant mechanism is “ionization” by gluons.

Dissociation due to color screening was studied using potential models with different parameter-
izations of the heavy quark potential [10–13] to determineTD. All these studies predicted that excited
charmonium states (χc, ψ′) will essentially dissolve atTc while the ground stateJ/ψ will dissociate
at 1.1–1.3 Tc. Some potential models also predicted a strong change in thebinding energy, see e.g.

1Authors: D. Kharzeev, M. P. Lombardo, C. Lourenço, M. Rosati, H. Satz
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Ref. [12]. Recently, charmonium properties were investigated using lattice calculations [14, 15] which
indicate that the ground states exist with essentially unchanged properties at temperatures around1.5Tc.

Lattice investigations suggest that at low temperatures,T < 1.5Tc, screening is not efficient and
therefore gluon dissociation may be the appropriate sourceof quarkonium suppression. One should also
keep in mind that non-equilibrium effects in the very early stages of a heavy-ion collision, when the
energy density is highest, should be considered for quarkonium suppression. Not much is known about
these effects. However, they may be an even more important source of quarkonium suppression than a
thermalized system, see e.g. Ref. [16].

To use heavy quarkonium as an effective probe of the state of matter in QCD, we should also have
good theoretical control over the scattering amplitudes ina hadronic gas.

While addressing the issues outlined above, we will face questions familiar to the heavy quark
and the thermodynamics communities. To fully understand the behaviour of quarkonium in media, these
two communities should communicate and interact. For further background material and a review of the
results as of Summer 2003, see Ref. [17].

The behavior of quarkonium in cold nuclear matter can be usedto better understand the nuclear
medium. For example, quarkonium can also be used to study nuclear parton distributions, particularly
that of the gluon. In addition to hadroproduction studies, quarkonium photoproduction is directly sensi-
tive to the nuclear gluon distribution.

2. QCD in media, and the lattice approach2

This section introduces strong interactions ‘in media’ using the field theory of QCD as the basic theoret-
ical framework. We build on work presented in the ‘Introduction to QCD’ and ‘General Tools’ sections
of this Yellow Report and briefly discuss basic aspects whichare not covered there but are used in the
rest of this Chapter.

We first discuss the phases of QCD – i.e. the fate of chiral symmetry and confinement at high
temperature and density. We then introduce lattice thermodynamics, the main theoretical tool for study-
ing equilibrium characteristics of the phase diagram. In doing so, deconfinement, screening, and spectral
modifications – which are discussed at length in the following – will be briefly touched upon.

Our main interest is in heavy ion colliders experiments where the baryon density is relatively
small. Lattice high density calculations are far less mature then those at high temperature. In particular,
no results for heavy quarks have been obtained in the high density regime. Hence we will focus on the
physics of QCD at high temperature.

Let us first consider the fate of confinement at high temperature. A sketchy view of the screening
mechanism, already at work atT = 0, is the recombination of a (heavy) quark and antiquark with pairs
generated by the vacuum,QQ → qQ + qQ. At high temperature it becomes easier to produce light
qq pairs from the vacuum. Hence it is easier to ‘break’ the colorstring between a (heavy) quark,Q,
and antiquarkQ. In other words, we expect color screening to increase (sharply) at a phase boundary,
eventually leading to quark and gluon liberation, the quarkgluon plasma. Lattice simulations indicate
that enhanced screening occurs at aboutT ∼ 200 MeV, in a range accessible to collider experiments (see
e.g. [18] for a recent review).

Consider now the fate of chiral symmetry at high temperatureobtained by following the behaviour
of the chiral condensate〈ψψ〉. One picture of the highT QCD transition can be drawn by using the
ferromagnetic analogy of the chiral transition whereψψ can be thought of as a spin field taking values
in real space, but oriented in the chiral sphere. Chiral symmetry breaking occurs when〈ψψ〉 6= 0,
corresponding to the ordered phase. By increasingT , disorder increases, and〈ψψ〉→0, restoring chiral
symmetry. Lattice simulations suggest that chiral symmetry restoration and enhanced screening happen

2Author: M. P. Lombardo
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Fig. 7.1: The phase diagram of QCD for two massless flavors (left) and what is expected for realistic values of the quark masses

(right). From M. Stephanov [19].

at the same temperature within the numerical accuracy.

These seemingly simple pictures of chiral symmetry restoration and deconfinement at high tem-
perature are complicated by a number of considerations. A finite quark mass breaks the chiral symmetry
of the Lagrangian while screening can be rigorously relatedto deconfinement only at infinite quark
mass. Rigorously speaking, the two mechanisms we are concerned with are defined in two opposite
limits: zero mass for chiral symmetry and infinite mass for confinement. For two (massless) flavors the
transition seems to be of second order while the transition with three (massless) flavour turns out to be
first order. We have to find out how the two flavor picture morphswith the three flavor one. In addition,
it may well be that theUA(1) symmetry, broken at zero temperature, is effectively restored at high tem-
perature, further complicating the patterns of chiral symmetry. It is also worth mentioning in this brief
introduction that, even if the string ‘breaks’, bound states might well survive, giving rise to complicated,
nonperturbative dynamics above the critical temperature,characterising the strongly-interacting quark
gluon plasma. In addition to these conceptual difficulties,there are calculational problems since the
phenomena we are concerned with are well outside the reach ofperturbative calculations.

One goal of our subgroup is to understand how all of these phenomena affect the heavy quark
spectrum when the phase boundary in Fig. 1 is crossed. Here, we show the phase diagram of QCD in the
temperature and chemical potential plane. The diagrams for‘light QCD’ (two massless quarks), and for
realistic values of theu, d ands masses, were built using symmetry arguments and model calculations.
The informal discussion presented here should already suggest that the physics of heavy quark bound
states in media is driven by a rich and complex admixture of chiral symmetry restoration and enhanced
screening, requiring both lattice and analytic studies. Recent advances will be presented in the next
sections.

As a last introductory remark, we review a few basic facts about finite temperature field theory [20]
and its formulation on the lattice [21]. In equilibrium fieldtheory, the grand canonical partition function,
Z(V, T, µ) completely determines the thermodynamic state of a system according to:

P = T
∂ lnZ

∂V
(7.1)

N = T
∂ lnZ

∂µ
(7.2)

S =
∂[T lnZ]

∂T
(7.3)

E = −PV + TS + µN (7.4)
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while the physical observables〈O〉 can be computed as

〈O〉 =
Tr(Oρ̂)

Z
. (7.5)

In short, the problem is to representZ for QCD at finite temperature and design a calculational scheme
to describe it.

The partition function,Z, is the trace of the density matrix of the system,ρ̂, so that

Z = Tr ρ̂ (7.6)

ρ̂ = exp[(−H − µN̂)/T ] (7.7)

whereH is the Hamiltonian,T is the temperature and̂N is any conserved number operator. Introducing
the integral,S(φ,ψ), of the Lagrangian density whereTe is the temporal extent in Euclidean space,

S(φ,ψ) =

∫ Te

0
dt

∫
d3xL(φ,ψ) , (7.8)

andZ is defined as

Z =

∫
dφ dψ exp[−S(φ,ψ)] . (7.9)

Comparing the path integral representation of the partition function, Eq. (7.9), with the statistical
mechanics representation, Eq. (7.7), we can identify the finite temporal extent of the Euclidean space,
Te, with the reciprocal of the system temperature [20]. The only missing ingredients are the boundary
conditions for the fields in Eq. (7.9) which follow from the (anti)commuting properties of the (fermi)bose
fields, implying

φ̂(~x , 0) = φ̂(~x , β) (7.10)

for bosons and
ψ̂(~x , 0) = −ψ̂(~x , β) (7.11)

for fermions. Fermions and bosons obey antiperiodic and periodic boundary conditions, respectively, in
the time direction.

Finite temperature lattice field theory is then straightforward since temperature comes for free.
Because the lattice has a finite extent,Nta, temperature is given byT = 1/Nta. The discretization
procedure is the same as at zero temperature and most of the standard lattice techniques, reviewed in the
introductory Sections above, carry over to finite temperature. Such a field theoretic approach to finite
temperature QCD allows us to put thermodynamics and spectral calculations on the same footing.

3. QCD at finite temperature: color screening and quarkoniumsuppression3

On quite general grounds, it is expected and, in fact, confirmed by lattice simulations that strongly
interacting matter undergoes a transition to quark gluon plasma at high temperature and density. One
of the most prominent properties of this state of matter is the screening of color forces between static
quarks. The associated screening length (often referred toas the chromoelectric or non-Abelian Debye
length) is inversely proportional to the temperature.

Heavy quarkonia, unlike usual (light) hadrons, may exist inthe quark gluon plasma due to their
relative small sizes. However, above some temperature the screening radius eventually becomes smaller
than the typical quarkonia radii, leading to their dissolution. This physical picture was used by Matsui
and Satz to propose quarkonium suppression as a signal for deconfinement in heavy ion collisions [1]. In

3Section coordinator: P. Petreczky; Authors: S. Datta, O. Kaczmarek, D. Kharzeev, F. Karsch, M. P. Lombardo, P. Petreczky,
H. Satz, F. Zantow
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fact, it was found that theJ/ψ dissolves above but close to the deconfinement temperatureTc. Estimates
of the dissociation temperature based on the screening picture have some shortcomings. It is not clear to
what extent many body effects present in the strongly coupled quark gluon plasma can be approximated
by modification of the interaction between the two heavy quarks. Unfortunately, it is also not trivial to
define the screening radius.

Although a detailed understanding of screening phenomena at large distances is still missing, it
is evident that in this regime the temperature is the dominant scale and consequently will control the
running of the QCD coupling,i.e. g ≃ g(T ) for (rT ≫ 1, T ≫ Tc)4. However, at short distances,
r · max(T, Tc) ≪ 1, hard processes dominate the physics of the quark gluon plasma even at high
temperature and it is expected that a scale appropriate for this short distance regime will control the
running of the QCD coupling,i.e. g ≃ g(r). The interplay between short and large distance length scales
plays a crucial role for a quantitative understanding of hard as well as soft processes in dense matter. It
will, for instance, determine the range of applicability ofperturbative calculations for thermal dilepton
rates or the production of jets as well as the analysis of processes that can lead to thermalization of the
dense matter produced in heavy ion collisions. Moreover, the short and intermediate distance regime
also is most relevant for the discussion of in-medium modifications of heavy quark bound states which
are sensitive to thermal modifications of the heavy quark potential as well as the role of quasi-particle
excitations in the quark-gluon plasma.

Another powerful tool to study the dissolution of quarkoniastates in the plasma is the correspond-
ing meson spectral functions.

The first subsection will be devoted to a general discussion of screening in hot matter and the
running coupling and its observable implications. Next, wediscuss direct lattice calculations of the
spectral functions. These simulations grow extremely expensive at larger quark mass, which require a
fine spacing, andb quark physics seems to be out of reach within this approach. It is then natural to
consider NRQCD thermodynamics – a new theoretical tool. We will comment on this new possibility at
the end.

3.1 Color screening and running coupling

The simplest way to understand the screening phenomenon is to consider the potential between an arbi-
trarily heavy (but not static) quark and antiquark in perturbation theory. At zero temperature the potential
can be calculated from the Born heavy quark-antiquark scattering amplitude in the non-relativistic limit.
In the Born approximation, the potential in momentum space is just the scattering amplitude which, at
lowest order in the non-relativistic expansion, is

−4

3
g2D00(k) (7.12)

whereD00(k) is the propagator in the Coulomb gauge [22]. Using the leading order perturbative form,
D00(k) = 1/k2, we recover the Coulomb potential in coordinate space.

Now consider the high temperature plasma phase. Assuming that the heavy quark and antiquark
are well defined quasi-particles, the scattering amplitudeis

−4

3
g2 1

k2 + Π00(k)
, (7.13)

whereΠ00(k) is the medium induced gluon self-energy. At leading order and small momenta,Π00(k)
is gauge independent and leads to a non-zero mass term in the gluon propagator,m2

D ≡ lim
k→0

Π00(k) =

4We use the deconfinement temperatureTc as a characteristic energy scale rather than a more conventionally usedΛ-
parameter.
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1

3
g2T 2(N +

1

3
Nf ). Thus we obtain the screened Coulomb potential

−4

3

g2

4πr
exp(−mDr) (7.14)

as a function of distancer.

Another way to discuss color screening which is also suitable for nonperturbative (lattice) study,
is to consider the partition function in the presence of a static quark-antiquark pair normalized by the
partition functionZ(T ) of the system without static charges which can be written as [23]

Zqq(r, T )

Z(T )
=

1

Z(T )

∫
DAµDψDψe

−
∫ 1/T
0

dτ
∫
d3xLQCD(τ,~x )W (~r )W †(0)

= 〈W (~r )W †(0)〉

where the Wilson line or Polyakov loop is defined as

W (~x ) = Peig
∫ 1/T
0 dτA0(τ,~x ) .

The above partition function contains all color orientations of the staticQQ pair. Using projection
operators one can formally define the partition function forcolor singlet (1), color octet (8), and color
average (av) channels as [24,25]

Z
(1)
qq (r, T )

Z(T )
=

1

3
Tr〈W (~r )W †(0)〉 (7.15)

Z
(8)
qq (r, T )

Z(T )
=

1

8
〈TrW (r)TrW †(0)〉 − 1

24
Tr〈W (r)W †(0)〉 (7.16)

Z
(av)
qq (r, T )

Z(T )
=

1

9
〈TrW (r)TrW †(0)〉 . (7.17)

Only the color average partition function is manifestly gauge invariant. To define the singlet and
octet partition functions one may replace the Wilson line bydressed gauge invariant Wilson lines [26] or
one may fix the Coulomb gauge in Eq. (7.15). These two definitions were shown to be equivalent [26]
(see also [27]). Having defined the partition function in thepresence of a static quark-antiquark pair, the
change in the free energy,Fi, the internal energy,Vi, and the entropy,Si, of the static quark-antiquark
pair relative to a system with no static charges are calculated as

Fi(r, T ) = −T ln

(
Z

(i)
qq (r, T )

Z(T )

)
= Vi(r, T ) − TSi(r, T ) (7.18)

Vi(r, T ) = T 2 ∂

∂T
ln

(
Z

(i)
qq (r, T )

Z(T )

)
= −T 2∂[Fi(r, T )/T ]

∂T
(7.19)

Si(r, T ) = −∂Fi(r, T )

∂T
i = 1, 8, av . (7.20)

We concentrate on the color singlet case in the following. Inleading order perturbation theory,F1 is
dominated by 1-gluon exchange and is therefore also given byEq. (7.14) [23]. For this reason the free
energies were (mis)interpreted as potentials. However,F1 generally contains anr-dependent entropy
contribution which starts at orderg3 in perturbation theory so thatV1 = F1 only at leading order.
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Fig. 7.2: The free energy (left) and the internal energy (right) of staticQQ pair in the plasma phase.

Recently the color singlet free and internal energies of static quark antiquark pair have been studied
in lattice simulations of SU(3) gauge theory [28, 29]. Belowthe deconfinement transition temperature,
T < Tc, F1(r, T ) shows a linear rise withr, as expected in the confined phase. In the plasma phase
(T > Tc) bothF1(r, T ) andV1(r, T ) approach a finite value forr → ∞, indicating the presence of color
screening. The numerical results forF1 andV1 in the plasma phase are shown in Fig. 7.2. For small
distances,r < 0.2 fm, and temperatures close toTc bothF1 andV1 coincide with theT = 0 potential, as
expected since, at small distances, medium effects are negligible and the free energy of the staticQQ pair
is simply the interaction energy, i.e. the heavy quark potential at zero temperature. In general, however,
the free energy and the internal energy show quite differentT - andr-dependences.

The perturbative short and large distance relations for thesinglet free energy have recently been
used to define a running coupling at finite temperature [30],

αqq(r, T ) =
3r2

4

dF1(r, T )

dr
. (7.21)

In general, however, the definition of a running coupling in QCD is not unique beyond the validity range
of 2-loop perturbation theory; aside from the scheme dependence of higher order coefficients in the
QCDβ-functions it will strongly depend on non-perturbative contributions to the observable used for its
definition.

We compare the finite temperature results (symbols) to calculations performed at zero temperature
(lines) [31–34] in Fig. 7.3. These numerical results onαqq at distances smaller than0.1 fm cover also
distances substantially smaller than those analyzed so faratT = 0. They clearly show the running of the
coupling with the dominant length scaler also in the QCD plasma phase. For temperatures below3Tc
one finds thatαqq agrees with the zero temperature perturbative result in itsentire regime of validity,i.e.
for r <∼ 0.1 fm. At these temperatures thermal effects only become visible at larger distances and lead,
as expected, to a decrease of the coupling relative to its zero temperature value; at distances larger than
r ≃ 0.1 fm non-perturbative effects clearly dominate the properties ofαqq. It thus is to be expected
(and found) that the properties of a running coupling will strongly depend on the physical observable
used to define it [30].

3.2 Real time properties of finite temperature QCD, spectralfunctions

Most of the dynamic properties of the finite temperature system are incorporated in the spectral functions.
The spectral function,σH(p0, ~p ), for a given mesonic channelH in a system at temperatureT can be
defined through the Fourier transform of the real time two point functionsD> andD< or equivalently
as the imaginary part of the Fourier-transformed retarded correlation function [35],

σH(p0, ~p ) =
1

2π
(D>

H(p0, ~p ) −D>(p0, ~p ))
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=
1

π
ImDR

H(p0, ~p )

D
>(<)
H (p0, ~p ) =

∫
d4p

(2π)4
eip.xD

>(<)
H (x0, ~x ) (7.22)

D>
H(x0, ~x ) = 〈JH(x0, ~x ), JH (0,~0 )〉

D<
H(x0, ~x ) = 〈〈JH (0,~0 ), JH (x0, ~x )〉 , x0 > 0 . (7.23)

The correlatorsD>(<)
H (x0, ~x ) satisfy the well-known Kubo-Martin-Schwinger (KMS) condition [35]

D>
H(x0, ~x ) = D<(x0 + i/T, ~x ) . (7.24)

Inserting a complete set of states and using Eq. (7.24), one gets the expansion

σH(p0, ~p ) =
(2π)2

Z

∑

m,n

(e−En/T ± e−Em/T )|〈n|JH (0)|m〉|2

× δ4(pµ − knµ + kmµ ) (7.25)

where e.g.kn refers to the four-momenta of the state|n〉.
A stable mesonic state contributes aδ function-like peak to the spectral function,

σH(p0, ~p ) = |〈0|JH |H〉|2ǫ(p0)δ(p
2 −m2

H) , (7.26)

wheremH is the mass of the state. For an unstable particle, a smootherpeak is obtained with a width
related to the decay width. For sufficiently small decay widths, a Breit-Wigner form is commonly used.
As the temperature increases, the contributions from states in the spectral function changes due to col-
lision broadening, and, at sufficiently high temperatures,these states may be too broad to contribute to
the resonance any longer. Such a change in the contributionsto the resonance states and eventual ‘dis-
appearance of resonances’ in the thermal spectral functionhas been studied analytically, for example, in
the Nambu-Jona-Lasinio model in Ref. [36]. The spectral function as defined in Eq. (7.25) is directly ac-
cessible in high energy heavy ion experiments. For example,the spectral function for the vector current
is directly related to the differential thermal cross section for the production of lepton pairs [37]

dW

dp0d3p
=

5α2

27π2

1

p2
0(e

p0/T − 1)
σ(p0, ~p ) . (7.27)
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Then presence or absence of a bound state in the spectral function will manifest itself in the peak structure
of the differential dilepton rate.

In finite temperature lattice calculations, one calculatesEuclidean time propagators, usually pro-
jected to a given spatial momentum

GH(τ, ~p ) =

∫
d3xei~p .~x 〈TτJH(τ, ~x )JH(0,~0 )〉T (7.28)

where〈...〉T indicates a thermal trace, as in Eq. (7.22), andTτ refers to ordering in Euclidean timeτ .
This quantity is the analytical continuation ofD>(x0, ~p )

GH(τ, ~p ) = D>(−iτ, ~p ) . (7.29)

Using this equation and the KMS condition one can easily showthatGH(τ, ~p ) is related to the spectral
function, Eq. (7.22), by an integral equation

GH(τ, ~p ) =

∫ ∞

0
dωσ(ω, ~p )K(ω, τ) (7.30)

K(ω, τ) =
cosh(ω(τ − 1/2T ))

sinh(ω/2T )
. (7.31)

Equation (7.30) lies at the heart of attempts to extract spectral functions and properties of hadrons from
correlators calculated in lattice QCD. In what follows, we use Eq. (7.30) to extract the behavior of de-
generate heavy meson systems in a thermal medium from finite temperature mesonic correlators. Equa-
tion (7.31) is valid only in the continuum. It is not clear in general whether theGH(τ, ~p ) measured on
the lattice will satisfy the same spectral representation but it was shown in Ref. [38] that this is the case
for the free theory.

3.3 Charmonium at finite temperature: recent results on correlators and spectral functions

Direct investigations of the charmonia temperature modifications, using the Matsubara correlators as
suitable operators, have been available over the past 3-4 years. All such studies available at present are
based on quenched lattices, that is, they do not include any quark loops, even thermal quark loops (which
indicates scattering of thermal quarks off the medium). Excluding such loops may result in exclusion
of important physics belowTc since the thermal excitation of pions and meson resonances is considered
to be one of the main driving mechanisms of the QCD phase transition. Above the transition, at least
for J/ψ dissociation, the existing wisdom is that the thermal gluons are the more relevant variables.
Therefore, the description of quenched lattices should be at least qualitatively correct.

In the following, the current status of the direct lattice studies on charmonia are summarized. Only
the main results are described here. For detailed analysis of the systematics and other effects, please refer
to the original papers [39–41]. As already mentioned in the previous section, detailed information about
the hadronic properties are contained in the spectral function. In order to study thermal modifications
of hadrons, ideally Eq. (7.30) should be inverted to extractσ(ω, T ) from the thermal correlators. (In
the following, we will only be interested in mesonic states at rest in the heat-bath frame, i.e.,~p = 0 in
Eq. (7.30), and will omit the~p index altogether.) However, such an inversion is a notoriously ill-defined
problem, since the continuous function,σ(ω, T ) must be extracted from the correlators at a discrete
number of points. The first crack at this problem became possible with the introduction of Bayesian
techniques in lattice data analysis [42]. In the Maximum Entropy Method (MEM), one can determine
the most probable spectral function which describes the data, subject to known constraints like positivity,
asymptotic behavior, etc. [43]. At temperatures a few timesTc or higher, however, as we will see below,
it is tricky to extract the spectral function even with thesetechniques.

We begin with the low temperature phase where the larger extent of the temporal direction makes
it easier to extract the spectral functions. In Fig. 7.4 we show the spectral functions in the hadronic phase
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for the currentsJH in different representations. Figure 7.4(a) shows the spectral functions obtained at
0.75Tc on lattices with 0.04 fm spacing. The peaks at lowω correspond to the ground stateJ/ψ (VC),
ηc (PS),χc0 (SC) andχc1 (AX) respectively. Note that we do not discuss the2S and2P states because
these are indistinguishable from lattice artifacts. The properties of the states are reproduced quite well by
Fig. 7.4 since the peak position and the integrated width of the peak are in reasonable agreement with the
mass and residue obtained from a fit. Figure 7.4(b) shows spectral functions obtained from lattices with
0.02 fm spacing atT = 0.9Tc. A comparison of the two figures helps explain the nature of the peaks
at higherω, since they can be seen to scale approximately as the inverselattice spacing and therefore
are probably dominated by lattice artifacts [39, 44]. It is interesting to note that even at very highω the
structure of the spectral function is quite different from the free theory.

0

0.5

1

1.5

2

2.5

0 3 6 9 12 15

ρ(
ω

)

ω [GeV]

J/ψ

ηc

a)

χci

VC
PS
SC
AX

0

0.4

0.8

1.2

0 5 10 15 20 25 30

ρ(
ω

)

ω [GeV]

J/ψ

ηc
χci

J/ψ

b)

ηc
χci

J/ψ

ηc
χci

VC
PS
SC
AX

Fig. 7.4: Spectral functions for the vector, pseudoscalar,scalar and axial vector operators [39]. (a) Lattices at 0.75Tc with

a = 0.04 fm spacing and (b) at 0.9Tc anda = 0.02 fm. The ground state peaks correspond toJ/ψ, ηc, χc0 andχc1 ,

respectively. The labelχci
is used because theχc0 andχc1 are difficult to resolve on the figure.

It is possible to get a first idea of the temperature modification of the charmonia aboveTc by
looking at the Matsubara correlators measured at these temperatures. To factor out the trivial temperature
dependence of the kernel, Eq. (7.31), one can construct ‘model correlators’ by using the spectral function
from the hadron phase (Fig. 7.4). The measured correlators,G(τ, T ), are then compared with these
reconstructed correlators using Eq. (7.31):

Grecon(τ, T ) =

∫ ∞

0
dωσ(ω, T ∗)

cosh(ω(τ − 1/2T ))

sinh(ω/2T )
. (7.32)

HereT ∗ refers to a temperature belowTc. Figure 7.5 shows such a comparison for the1S and1P chan-
nels in two figures from Ref. [39]. While the comparison at 1.1Tc uses the spectral function constructed
atT ∗ = 0.75Tc, Fig. 7.4(a), the other temperatures use the spectral functions shown in Fig. 7.4(b), i.e.,
T ∗ = 0.9Tc. The figure clearly shows that the1S states are not strongly affected by the deconfinement
transition. For theηc we see no statistically significant change up to temperatures of 1.5Tc and only
very modest changes at 2.25Tc. For theJ/ψ, the ratioG(τ, T )/Grecon(τ, T ) shows no significant devia-
tions from unity at short Euclidean time,τ , a little aboveTc, while some small but significant deviations
are seen as one goes to higher temperatures. For the1P channels, large temperature modifications of
the correlator relative to the reconstructed correlator are seen when crossingTc, indicating that the1S
states undergo only very modest modifications up to 1.5 – 2Tc while the1P states suffer more serious
modifications.

In order to further understand the nature of thermal modifications of the states, it is necessary to
extract the spectral function directly from the correlators. Three groups have presented results for spec-
tral functions for the pseudo-scalar and vector charmoniumstates using the MEM. Since the extraction
becomes tricky at high temperatures and there are some differences in the results, it is useful to keep in
mind the initial differences between them. While all three work within the quenched approximation and
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use Wilson-type valence fermions, some differences exist in their approaches. The Bielefeld group uses
very fine isotropic lattices with the nonperturbatively improved clover action for the valence fermions.
Asakawa and Hatsuda use space-time anisotropic lattices, to allow more data points in the temporal di-
rection and use the unimproved Wilson action for the fermions. Umedaet al.also use anisotropic lattices
but use the tadpole-improved Fermilab action. They also usesmeared operators while the others use
point operators.

As Fig. 7.4 reveals, the structure of the spectral function at high ω, for the interacting theory
on lattice, is considerably different from the free spectral function [44]. The Bielefeld group uses this
high energy structure as part of the prior information when extracting the spectral function. The default
spectral function aboveTc, in their analysis, uses the high energy part of Fig. 7.4, continuously matched
tom1ω

2 at lowerω wherem1 is defined to match the spectral functions at temperatures below Tc. The
spectral functions for the1S states, obtained with this default model and the MEM analysis of Bryan [45],
are shown in Fig. 7.6. The error bars shown in the figure are standard deviations of the spectral functions
averaged over theω interval indicated by the horizontal error band (see [43], Eq. (5.13)). We see that, up
to 1.5Tc the1S states persist as bound states with no significant weakening. There is also no significant
change in mass on crossingTc. At 2.25 Tc, while the peak position is still not significantly changed,
a depletion of the peak strength — the area under the peak — is seen. Finally, at 3Tc no statistically
significant peak is seen.

Figure 7.6 suggests that in a gluonic plasma the1S charmonia survive as bound states till≥ 2Tc,
with no significant weakening up to≈ 1.5Tc and then a gradual weakening, perhaps due to collision
broadening. Since these results are for point operators, the results for the vector current, Fig. 7.6(b),
will be directly connected to the thermal dilepton rate. Further results for point operators come from
Asakawa and Hatsuda who use the free continuum asymptotic form of the spectral function,≈ m1ω

2,
as their default model. Their latest results [46] are shown in Fig. 7.7. They find a sharp bound state,
with little significant thermal modification, up to 1.62Tc, in complete agreement with Fig. 7.4 up to 1.5
Tc. On going to higher temperatures, however, their results seem to suggest a sharp disappearance of the
bound states at some temperature, with no statistically significant peak being seen at 1.9Tc [40] and, in
preliminary results, already at 1.7Tc [46]. While the exact dissolution temperature is probably not ex-
pected to match the Bielefeld group, since the Bielefeld group uses a quark mass somewhat heavier than
the charm, if further analysis supports the dissolution at 1.7Tc then it will clearly suggest a qualitatively
different picture from the gradual dissolution shown in Fig. 7.6, and possibly suggest a drastic change
in the properties of the plasma between 1.6 and 1.7Tc. Although further analysis is needed to resolve
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Fig. 7.6: Spectral functions above deconfinement for (a) pseudo-scalar and (b) vector channels [39]. Here lattice spacing
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this issue, it is worth mentioning that no such sharp change is seen in the behavior of the correlators just
above 1.5Tc, either by the Bielefeld group (see Fig. 7.5) or by Umedaet al. [46].

Unlike the two previous groups, Umedaet al.use smeared operators with a smearing function of
the formw(~x ) = exp(−a|~x |b) where the parametersa andb are chosen to optimize the overlap with the
ground state. While use of a smeared operator has the advantage of a good overlap with the ground state,
so that it may be possible to extract the properties ofJ/ψ andηc more reliably, it has two disadvantages.
First, bound state dissolution must be carefully handled since smearing always mimics a bound state.
Second, the direct connection of the vector current correlator to the dilepton rate, Eq. (7.27, is lost. The
first problem can be dealt with by comparing results using a different level of smearing [41].

Figure 7.8 shows their results for the1S spectral functions. Evidence for the existence of a bound
state aboveTc is found for the1S states, in agreement with results of other groups using point operators.
No dramatic change between 1.4Tc and 1.75Tc is indicated in the properties of the peak. In addition,
Umedaet al. [41, 46] attempted a constrained fit of the correlators to obtain more accurate informa-
tion on the ground state properties such as thermal modifications of the mass and width. This analysis
with extended operators indicate that the masses of ground state charmonia do not change significantly
up to temperatures 1.7Tc. These studies also indicate a non-zero thermal width whichincreases with
temperature. The precise determination of the width, however, appears to be difficult.

We now summarize what direct lattice studies have told us about the properties of the1S states
in equilibrium with a plasma. The studies all agree that theJ/ψ and theηc survive the deconfinement
transition with little significant change in their properties. At least up to temperatures≈ 1.5 Tc such
states exist as bound states in the equilibrated plasma without significant weakening of the state. Here,
it may be worthwhile to also mention earlier results from Umedaet al. for these states [47]. In a study
where they looked at the fall-off of thecc spatial correlation, Umedaet al.previously concluded that the
1S states survive as bound states, up to temperatures of 1.5Tc, in a gluonic plasma. Another important
fact revealed by the recent studies is that no significant1S state mass reduction is seen aboveTc. If,
as was the prevailing wisdom, these states become CoulombicaboveTc, one may have expected an≈
400 MeV mass reduction which is not seen by any of the groups. Beyond 1.5Tc there seems to be
some disagreement between the different groups: while Ref.[39] and preliminary results from Umedaet
al. suggest a gradual disappearance of the state, perhaps due tocollision broadening, preliminary results
from Asakawa and Hatsuda suggest a sharp cutoff temperaturebelow 1.7Tc, beyond which the gluonic
plasma cannot support these bound states.

Results for the spatially excitedχc states are available so far only from the Bielefeld group. Aswas
shown in Fig. 7.5, the behavior of these states is considerably different from that of the1S states since
the correlators aboveTc differ substantially from the ones reconstructed from the spectral function below
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Tc, suggesting serious modification of these states due to deconfinement. The spectral functions can be
extracted from the correlators even though they are more noisy, making such an extraction somewhat
more difficult [39]. Figure 7.9(a) shows the spectral functions for the scalar channel. As before, as
part of the prior guess we provided the highω structure of the lattice spectral function in the interacting
theory, as obtained belowTc. The figure shows that theχc0 peak belowTc is not present already at 1.1
Tc. Figure 7.9(b) shows a similar result for the axial vector channel, indicating these states suffer serious
system modification, possibly dissolution, already just aboveTc.

3.4 Theory perspectives: NRQCD atT > 0

All studies of the charmonium spectral functions mentionedabove were done either using relativistic
Wilson fermions or Fermilab fermions. In both formulationsthe so-called Wilson term is introduced to
remove the doublers. This, however, strongly distorts the quark dispersion relation on the lattice leading
to the artifact peaks in the lattice spectral function. For heavy quarks an additional large discretization
error of ordermqa appears wheremq is the heavy quark mass, making bottomonium studies with rel-
ativistic actions very difficult although the Fermilab formalism can help to a certain extent. A useful
alternative, at least close toTc, where the conditionmq ≫ T is necessary for the approach to be valid,
could be to employ NRQCD atT > O. In this formulation, the scale related tomq is integrated out
so that this formulation has the advantage of being doubler free. Furthermore, since the spectral func-
tions scale as

√
ω instead of theω2 behavior of the relativistic formulation, the high energy part of the

spectral functions contribute less to the meson correlator. This can simplify the reconstruction of meson
properties, related to the low energy part of the vector spectral function. Some preliminary studies of the
charmonium spectral function in NRQCD at zero temperature were presented in Ref. [48].
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4. J/ψ absorption in heavy-ion collisions at finite temperature5

4.1 Cross section calculations

Since the original paper by Matsui and Satz [1] onJ/ψ suppression in heavy-ion collisions, a number of
studies onJ/ψ absorption in nuclear matter have been proposed to suggest other mechanisms than the
quark gluon plasma screening of thecc potential. We will use the words “suppression” and “absorption”
to distinguish between the plasma and non-plasma mechanisms responsible for the observed reduced
yield of J/ψ particles in heavy ions collisions.

According to Ref. [1], one should observe very fewJ/ψ in heavy-ion collisions because plasma
formation could weaken the effectiveness of the quarkoniumpotential and preventJ/ψ formation. But
what if no plasma phase is generated? TheJ/ψ can be produced in the early stages of the collision since
the energy is high enough to produce them. Their destiny is then related to the interactions they will
experience with the nuclear medium (the nuclear thickness theJ/ψ must traverse during the intepene-
tration of the two colliding nuclei) and with the hadron gas (a possible state excited from vacuum left
behind in the collision region by the two receding nuclei, assuming zero baryon number).

5Section coordinator: A. D. Polosa; Authors: V. Laporta, L. Maiani, F. Piccinini, A. D. Polosa, V. Riquer
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TheJ/ψN cross section,σabs, extracted from data isσabs = 4.3 ± 0.6 mb [49]. The exponential
absorption factor for theJ/ψ in nuclear matter is∝ exp(−x/λ), wherex is the distance traveled andλ
is the mean free path, given by

λ ≈ 1/(ρAσabs), (7.33)

whereρA is the nuclear density. Nuclear absorption alone cannot explain the anomalousJ/ψ suppres-
sion described as a function of length in Ref. [50]. This argument has been used in favor of a plasma
interpretation. On the other hand, nuclear absorption doesnot take into account interactions with all
hadrons (π, η,K, ρ, ω,K∗, φ...) that can be excited from vacuum when very high energy densities are
reached, as in heavy-ion collisions. Each of these particles is presumably able to interact with theJ/ψ,

reshuffling itscc content into an open charm final state such asD
(∗)
(s)D

(∗)
(s) . Can such interactions provide

an explanation of the anomalous suppression?

The description of these interactions is difficult because they cannot be derived from first principles
or extracted from independent experimental information. One has to resort to models of their dynamics
[51–58].

Dissociation of theJ/ψ by hadrons has been considered in several approaches, with rather dif-
ferent predictions for energy dependence and magnitude of the cross sections near threshold. Basically,
earlier calculations in the literature can be grouped into four classes:

• perturbative QCD based calculations (pQCD);

• quark interchange models;

• QCD sum rule calculations;

• meson exchange models.

The idea behind the pQCD method is that the interaction between heavy quark bound states and light
hadrons can be described perturbatively when the heavy quark mass is sufficiently large. The small
size of the heavy quark bound state allows for a multipole expansion of its interaction with external
gluons where the color-dipole interaction dominates at long range. Using pQCD, Peskin and Bhanot
and later Kharzeev and Satz [52] estimated the scattering cross sections ofJ/ψ with light hadrons,
finding very low values, less than0.1 mb at about

√
s = 5 GeV. The pQCD result was further improved

by including finite target mass corrections and relativistic phase space corrections [53]. However, the
collisions between mesons and theJ/ψ in heavy-ion reactions occur at low energy where the application
of pQCD is questionable.

In the case of quark interchange models, theJ/ψ dissociation cross section is calculated in terms of
non-perturbative quark exchanges between theJ/ψ and light hadrons using explicit non-relativistic quark
model wave functions for the initial and final hadrons. The largest contributions to the cross section come
from the energy region just a few hundred MeV above thresholdsince the overlap integrals are damped
by the external meson wave functions at higher momenta. The first calculation in this framework was
performed by Martins, Blaschke and Quack [54], finding aJ/ψ dissociation cross section by pions of
≈ 7 mb at about 1 GeV above threshold. Subsequently, similar calculations have been carried out with
different treatments of the confining interaction, obtaining lower cross sections (of the order of 1.5 mb at√
s ≈ 4 GeV) and have been extended toρJ/ψ andNJ/ψ interactions [55].

Another independent approach is given by the QCD sum rules [56]. This method relates the scat-
tering amplitude to a sum of operator vacuum-expectation-values (VEVs). It gives a model independent
result provided that the set of selected operators dominates the scattering amplitude in the chosen kine-
matic regime and that their VEVs are known experimentally. QCD sum rule calculations for the reaction

π + J/ψ→D(∗)D
(∗)

give cross sections at the mb level in the near-threshold region.

Finally, the meson-exchange model [57], is based on hadronic effective Lagrangians. Vector
mesons are treated as gauge bosons mediating the interactions between pseudoscalar mesons. An SU(4)-
invariant effective meson Lagrangian is assumed. One starts from a free Lagrangian of the formL0 =
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Tr(∂µP
†∂µP ) − 1/2Tr(F †

µνFµν) and derives the couplings between pseudoscalar and vector mesons
with the minimal substitution

∂µP→∂µP − i/2g[Vµ, P ]

Fµν→∂µVν − ∂νVµ − i/2g[Vµ, Vν ] , (7.34)

giving rise to three-vector meson couplings and four-pointcouplings. The values of the couplings are
obtained from experimental results via Vector Meson Dominance and SU(4) relations, although the as-
sumption of SU(4) symmetry is rather questionable. The moststudied channels are:πJ/ψ, ρJ/ψ,KJ/ψ
andK∗J/ψ where quite large cross sections, of the order of1 − 10 mb, have been obtained [58]. Since
the exchanged mesons are not pointlike, several studies have introduced form factors at the interaction
vertices at the price of introducing additional unknown or poorly known parameters. A strong depen-
dence on the shape and cutoff values of the form factors is found. Some authors calculate the interaction
vertices and form factors with the help of sum rules [59]. Thestate of the art of these calculations,
including an uncertainty band, is summarized in Fig. 7.10 [60]. For a nice review of these topics see
Ref. [61].

Fig. 7.10:TheJ/ψ-hadron cross sections calculated with QCD sum rules (band), short-distance QCD (dotted line),
meson-exchange models (dot-dashed lines) and the non-relativistic constituent quark model (dashed line) [60].

With the exception of pQCD, these approaches, each subject to different limitations, give cross
sections on the order of mb, in particular for initialπ’s andρ’s. This is a clear indication that the picture of
J/ψ absorption by nuclear matter as the only alternative mechanism to plasma suppression is incomplete
and that interactions withcomoving particlesin the hadron gas have to be taken into account. We will
not attempt to further review existing approaches. We instead focus on some more recent calculations
which do not fall in the four classes described above. The(π, η,K, ρ, ω,K∗, φ)J/ψ→D

(∗)
(s)D

(∗)
(s) cross

sections have recently been evaluated [63], based on the Constituent Quark Model (CQM). The CQM
was originally devised to compute exclusive heavy-light meson decays and was tested on a large number
of such processes [65]. The CQM is based on an effective Lagrangian which incorporates the heavy
quark spin-flavor symmetries and chiral symmetry in the light sector. In particular, it contains effective
vertices between a heavy meson and its constituent quarks, as shown on the left-hand side of Fig. 7.11,
which occur when applying bosonization techniques to the Nambu-Jona-Lasinio interaction terms of
heavy and light quark fields [66]. On this basis, we believe that the CQM is a more solid approach than
effective Lagrangian methods, often based on SU(4) symmetry.

We compute the effective trilinear,g3 = (π, η,K, ρ, ...)D
(∗)
(s)D

(∗)
(s) , or g3 = J/ψD

(∗)
(s)D

(∗)
(s) and

quadrilinear,g4 = (π, η,K, ρ, ...)J/ψD
(∗)
(s)D

(∗)
(s) , couplings. In Fig. 7.11 we show the diagrammatic

equation which has to be solved in order to obtaing4(g3) in the various cases. The right-hand side

440



���
���
���

�
c c 

q’ q

���
���
���

π,ρ,...
π,ρ,...

J/ψ

D*( )
D*( )D*( ) D*( )

=

Fig. 7.11:Basic diagrammatic equation to compute the couplingsg3 andg4.

represents the effective four-linear coupling to be used inthe cross section calculation. To obtain the tri-
linear couplings we suppress either theJ/ψ or one of the dashed lines representing the light resonances.
The effective interaction at the meson level (right-hand side) is modeled as an interaction at the quark-
meson level (left-hand side of Fig. 7.11).

The J/ψ is introduced using a Vector Meson Dominance (VMD) ansatz. In the effective loop
on the left-hand side of Fig. 7.11 we have a vector current insertion on the heavy quark linec while on
the right-hand side theJ/ψ is assumed to dominate the tower ofJPC = 1−− cc states mixing with the
vector current, for more details see Refs. [17, 67]. Similarly, vector particles coupled to the light quark
component of heavy mesons such asρ andω whenq = (u, d) andK∗, φ, when one or both light quarks
are strange, are also taken into account using VMD arguments. The pion and other pseudoscalar fields
have a derivative coupling to the light quarks of the Georgi-Manohar kind [68]. The final results for
σπJ/ψ andσρJ/ψ are displayed in Fig. 7.12.
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Fig. 7.12:Cross sections in CQM model. On the left-hand side, the crosssectionsπJ/ψ→D(∗)D(∗) modulated by
a form factor (ff) directly derived from the model [67] are shown. The case ofρJ/ψ interactions is technically
more complicated and it does not seem feasible to extract thedependency onEρ of these cross sections in the form
of a polar ff. If we compute physical quantities such as the mean free paths determined by the inverse of thermal
averages,〈ρ(ρ)σ〉T , whereρ(ρ) is theρ number density, the Boltzmann factor will serve as an exponential ff cutting
high energy tails faster than any polar ff.

The authors of Ref. [69] employ a relativistic quark model [70] to calculate amplitudes and cross
sections for the same processes discussed above with only pions in the initial state. Their model is based
on an effective Lagrangian which describes the coupling of hadronsH to their constituent quarks,q1 and
q2, given by:

Lint(x) = gHH(x)

∫
dx1

∫
dx2FH(x, x1, x2)q2(x2)ΓHλHq1(x1) + h.c. . (7.35)
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Here,λH andΓH are the Gell-Mann and Dirac matrices which describe the flavor and spin quantum
numbers of the meson fieldH(x). The vertex functionFH is given by:

FH(x, x1, x2) = δ

(
x− m1

m1 +m2
x1 −

m2

m1 +m2
x2

)
ΦH

(
(x1 − x2)

2
)
, (7.36)

whereΦH is the correlation function of two constituent quarks of mass m1 andm2. Moreover, for
ΦH , in momentum space, they chose the formΦ̃H(k2

E)
.
= exp(−k2

E/Λ
2
H), wherekE is a Euclidean

momentum [71]. The couplinggH is determined by the compositeness condition discussed in Ref. [69].
By using the corresponding Feynman rules, the S-matrix elements describing hadronic interactions are
obtained in terms of a set of quark diagrams.

In this approach, the dissociation processes are describedby box and resonance diagrams. The
details of the cross section calculations can be found in Ref. [69]; here we show the numerical results for
the cross sections as a function of

√
s.
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Fig. 7.13:The total cross section (dotted line) together with the contributions coming from theJ/ψ + π→D +D

(solid line),J/ψ + π→D∗ +D (dashed line) andJ/ψ + π→D∗ +D∗ (dot-dashed line) processes are shown.

In Fig. 7.13 the continuous line represents theJ/ψ + π→D +D cross section while the dashed
and the dot-dashed lines are forJ/ψ + π→D∗ +D andJ/ψ + π→D∗ +D∗, respectively. The dotted
line shows the total cross section as a function of

√
s. One can see that the maximum is about 2.3 mb at√

s ≈ 4.1 GeV. This value turns out to be smaller than the previous one,but still in the millibarn range.

To make a realistic computation of the effect of the interactions with the hadronic gas, several
things have to be considered.

1. There is a temperature dependence of absorption in the hadron gas due to the energy depen-
dence of the cross sections and to the fact that, as the temperature varies, the particle content and the
characteristics of the hadron gas change. One should calculate thermal averages〈ρσ〉T ≈ 1/λ. This
can be done, e.g., by simply using the Bose distribution withzero chemical potential in an ideal gas
approximation [62,63].

2. There is a problem of convergence. Including heavier resonances, on one hand, is disfavored
because of the Boltzmann factorexp(−M/T ). On the other hand, heavier resonances,h, integrate more
cross section at low momentum in thehJ/ψ→DD channel and have large spin multiplicities. The lowest
lying vector meson nonet, for instance, has a charge-spin multiplicity 9 times larger than that of pions. It
is difficult to asses a priori the relative weight of these twoeffects.

3. Some arguments indicate that there may be a limiting temperature of hadronic matter: the Hage-
dorn temperature,TH ≃ 177 MeV, [64]. To be credible, a purely hadronic interpretationof J/ψ absorp-
tion should be for temperaturesT ≤ TH .

4. The SPS collaboration NA50 studies theJ/ψ yield as a function of the collision centrality.
At a certain centrality there is some evidence of a discontinuous breakdown in theJ/ψ yield [73–75].
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Can such a discontinuity be explained by some hadronic absorption mechanism where cross sections are
expected to be mainly smooth polynomials?

Studying absorption versus suppression is like estimatingthe background to a weak signal. The
shape and size of the background can be crucial in assessing the reliability of the signal.

4.2 Comparison with data

As stated earlier, nuclear absorption can be taken into account by the factorexp(−ρAσabsL), whereρA
is the nuclear density andL the path length theJ/ψ’s traverse during the intepenetration of the two
colliding nuclei.

To compute the effect of the hadron gas also requires modeling the fireball produced by the two
receding nuclei. We will briefly describe the working hypotheses adopted in two recent papers [62,63].

1. The fireball is a zero baryon density region of approximatelyspherical shape which theJ/ψ has
to escape to be detected.

2. The fireball thermalizes as a hadron gas at temperatureT soon after its formation. Primary
collisions give rise mostly to pions with an average energy of about300 MeV and a density of few/(fm3)
and interaction cross sections of about10 mb. These parameters lead [72] to mean free paths of a fraction
of a fermi, much shorter than the linear dimensions of the fireball,≈ 5 − 10 fm.

3. The hadron gas is at zero chemical potential. This is an especially reasonable hypothesis for
pions.

4. We calculate the thermal averages〈ρσ〉T using an ideal gas at temperatureT . Interactions can
be taken into account by allowing higher and higher resonances in the gas.

5. The NA50 data [73–75] can be plotted as a function of collision centrality. The more central the
collision, the larger the average size of the fireball and thehigher the energy density.

We take both nuclear and hadronic absorption into account bythe convolution of two exponentials,
exp[−L(l)/λ] exp[−l/λ(T )] whereλ(T ) is the mean free path of theJ/ψ through the hadron gas,
l = 2RA − b,RA is the nuclear radius andb is the impact parameter. The first exponential is for nuclear
absorption while the second takes the thermal mean free paththrough a hadron gas into account. One
can introduce such a dependence onl by assuming that the energy density,ǫ, depends on the number of
nucleons divided by the effective surface area of the nuclear interaction as a function ofb [72]. Using the
energy-temperature relation appropriate to the hadron gas, one can determine the temperature profile as
function of centrality and the corresponding absorption profile.

In Fig. 7.14 (a) and (b) we show the calculated absorption (nuclear + hadron gas) superimposed
on the NA50 data [73–75]. The boxes show the Pb+Pb data while the stars give the S+U data. The
temperatures indicated on the curves are the temperatures at low centrality (the first three points from the
left). The hadron gas picture is more reliable in more peripheral collisions.

It is very interesting to note that the estimated temperatures are in the same region as the tempera-
ture expected for the phase transition and close to the temperatures measured at freeze-out from various
hadron abundances. The curve labeled withT = 175 MeV, whereT varies from175 to about195 MeV,
fits the data for low centrality but still falls short of reproducing the observed drop inJ/ψ production
abovel = 5 fm. The curve withT = 185 MeV fits the low centrality data and agrees relatively well with
the data in central collisions. However the temperature rises to200 MeV at l ≃ 11 fm, likely too high
for a hadron gas (see below).

The increase in temperature due to the increase in energy density that we find for the resonance
gas is less pronounced than in the case of a pure pion gas in Ref. [62] because the number of degrees of
freedom in the resonance gas increases appreciably with temperature. The extra energy density has to be
shared among more and more degrees of freedom and the temperature increases less than with a fixed
ǫ = CT 4 power law. This behaviour begins to reproduce that expectedfrom a Hagedorn gas with an
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exponentially increasing resonance density per unit mass interval [64,76,77].

The extrapolation to increasing centrality using the energy-temperature relation of the Hagedorn
gas is shown in Fig. 7.14 (b) withT = 175 MeV. The result is quite spectacular. The sharp rise of the
degrees of freedom due to the vicinity of the Hagedorn temperature makes the temperature of the gas
nearly constant so that the dissociation curve cannot become harder and the prediction falls far short
of explaining the drop observed by NA50. The simplest interpretation of Fig. 7.14 (b) is that with
increasing centrality, more energy goes into the excitation of more and more thermodynamical degrees
of freedom, leading to the final transition to the quark-gluon plasma. The curve shown represents the
limiting absorption from the Hadron gas so that anything harder would be due to the dissociation of the
J/ψ in the quark-gluon plasma.

Some words of caution are in order. In the framework of our calculation, it is certainly reasonable
to expect the relevant insertions in the quark loop of Fig. 7.11 to correspond to the Dirac matricesS, P ,
A, V , andT where the latter are dominated by the lowestqq, S-wave states we have been considering.
On the other hand, we cannot exclude that decreasing couplings of the higher resonances may eventually
resum up to a significant effect which would change the picture obtained by truncating the cross section
to include only the lowest states.

However, in all cases where this happens, such as in deep inelastic lepton-hadron scattering, the
final result reproduces what happens for free quarks and gluons. In our case, this would mean going
above the Hagedorn temperature into the quark and gluon gas,precisely what Fig. 7.14 (b) seems to tell
us.
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Fig. 7.14: Left-hand side: The exponential attenuation model compared to Pb+Pb (boxes) and S+U (stars)J/ψ
normalized to Drell–Yan for three different values of the initial temperature in the hadron gas. The curve labeled as
“nucl.” includes only nuclear absorption effects. The other curves include both hadron gas and nuclear attenuation.
Right-hand side: Same but for a Hagedorn gas. The curves labeled (a) and (b) show that there is no significant
centrality dependence of the temperature since (one of the two curves shown has the geometrical effect switched
off)

5. Shadowing and absorption effects onJ/ψ production in d+Au collisions6

The nuclear quark and antiquark distributions have been probed through deep inelastic scattering (DIS)
of leptons and neutrinos from nuclei. These experiments showed that parton densities in free protons
are modified when bound in the nucleus [78]. This modification, referred to collectively as shadowing,
depends on the parton momentum fractionx and the square of the momentum transfer,Q2. Thus, in
addition to the already aforementioned nuclear absorptionand secondary hadronic scattering effects,

6Author: R. Vogt
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initial state shadowing can also play a role, especially as the energy increases, simultaneously decreasing
the values of parton momentum fraction,x, probed in the collision.

Most models of shadowing predict that the modification should vary depending on position within
the nucleus [79] but DIS experiments are typically insensitive to this position dependence. However,
some spatial inhomogeneity has been observed inνN scattering [80]. Here we discuss the combined
effects of shadowing and absorption both in minimum bias d+Au collisions at RHIC and as a function of
centrality.

Our calculations employ the color evaporation model (CEM) which treats all charmonium produc-
tion identically tocc production below theDD threshold, neglecting color and spin. The leading order
(LO) rapidity distributions ofJ/ψ’s produced indA collisions at impact parameterb is

dσdA

dyd2bd2r
= 2FJ/ψKth

∫
dz dz′

∫ 2mD

2mc

MdM

{
F dg (x1, Q

2, ~r , z)FAg (x2, Q
2,~b − ~r , z′)

σgg(Q
2)

M2
(7.37)

+
∑

q=u,d,s

[F dq (x1, Q
2, ~r , z)FAq (x2, Q

2,~b − ~r , z′) + F dq (x1, Q
2, ~r , z)FAq (x2, Q

2,~b − ~r , z′)]
σqq(Q

2)

M2



 .

The partonic cross sections are given in Ref. [81],M2 = x1x2SNN andx1,2 = (M/
√
SNN ) exp(±y) ≈

(mJ/ψ/
√
SNN ) exp(±y) wheremJ/ψ is theJ/ψ mass. The fraction ofcc pairs below theDD thresh-

old that becomeJ/ψ’s, FJ/ψ , is fixed at next-to-leading order (NLO) [82]. Both this fraction and the
theoreticalK factor,Kth, drop out of the ratios. We usemc = 1.2 GeV andQ = 2mc [82].

We assume that the nuclear parton densities,FAi , are the product of the nucleon density in the
nucleus,ρA(s), the nucleon parton density,fNi (x,Q2), and a shadowing ratio,SjP,S(A,x,Q

2, ~r , z),
where~r and z are the transverse and longitudinal location of the parton in position space. The first
subscript, P, refers to the choice of shadowing parameterization, while the second, S, refers to the spatial
dependence. Most available shadowing parameterizations ignore effects in deuterium. However, we take
the proton and neutron numbers of both nuclei into account. Thus,

F di (x,Q2, ~r , z) = ρd(s)f
N
i (x,Q2) (7.38)

FAj (x,Q2,~b − ~r , z′) = ρA(s′)SjP,S(A,x,Q
2,~b − ~r , z′)fNj (x,Q2) , (7.39)

wheres =
√
r2 + z2 ands′ =

√
|~b − ~r |2 + z′2. With no nuclear modifications,SjP,S(A,x,Q

2, ~r , z) ≡
1. The nucleon densities of the heavy nucleus are assumed to beWoods-Saxon distributions withRAu =
6.38 fm andRPb = 6.62 fm [83]. We use the Hulthen wave function [84] to calculate the deuteron
density distribution. The densities are normalized so that

∫
d2rdzρA(s) = A. We employ the MRST LO

parton densities [85] for the free nucleon.

We have chosen shadowing parameterizations developed by two groups which cover extremes of
gluon shadowing at lowx. The Eskolaet al. parameterization, EKS98, is based on the GRV LO [86]
parton densities. Valence quark shadowing is identical foru andd quarks. Likewise, the shadowing of
u, d ands quarks are identical atQ2

0. Shadowing of the heavier flavor sea,s and higher, is, however,
calculated and evolved separately atQ2 > Q2

0. The shadowing ratios for each parton type are evolved to
LO for 1.5 < Q < 100 GeV and are valid forx ≥ 10−6 [87, 88]. Interpolation in nuclear mass number
allows results to be obtained for any inputA. The parameterizations by Frankfurt, Guzey and Strikman
(FGSo, the original parameterization, along with FGSh and FGSl for high and low gluon shadowing)
combine Gribov theory with hard diffraction [89]. They are based on the CTEQ5M [90] parton densities
and evolve each parton species separately to NLO for4 < Q2 < 104 GeV. Although thex range is
10−5 < x < 0.95, the sea quark and gluon ratios are unity forx > 0.2. The EKS98 valence quark
shadowing ratios are used as input since Gribov theory does not predict valence shadowing. The FGSo
parameterization is available for four different values ofA: 16, 40, 110 and 206 while FGSh and FGSl
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also includeA = 197. We useA = 206 for the gold nucleus with FGSo andA = 197 for the other
parameterizations.

Figure 7.15 compares the four homogeneous ratios,SEKS98 andSFGS for Q = 2mc. The FGSo
calculation predicts far more shadowing at smallx and larger antishadowing atx ∼ 0.1. The difference
is especially large for gluons. At very lowx, the gluon ratios for FGSo and FGSh are quite similar but,
in the intermediatex regime, the FGSh parameterization drops off more smoothly.On the other hand,
the FGSl parameterization levels off at a higher value ofSiP than the other two FGS parameterizations.
In the antishadowing regime, FGSh and FGSl are rather similar to the EKS98 result.

Fig. 7.15: The shadowing parameterizations are compared atthe scaleµ = 2mc = 2.4 GeV. The solid curves are EKS98, the

dashed, FGSo, dot-dashed, FGSh, and dotted, FGSl.

We now turn to the spatial dependence of the shadowing. We show results for a parameterization
proportional to the parton path length through the nucleus [91],

Sjρ(A,x,Q
2, ~r , z) = 1 +Nρ(S

j(A,x,Q2) − 1)

∫
dzρA(~r , z)∫
dzρA(0, z)

. (7.40)

whereNρ is chosen so that(1/A)
∫
d2rdzρA(s)Sjρ(A,x, µ2,~b , z) = Sj(A,x, µ2). Whens ≫ RA, the

nucleons behave as free particles while in the center of the nucleus, the modifications are larger than
the average valueSj . The normalization requires(1/A)

∫
d2rdzρA(s)SjP,ρ = SjP. While there are three

homogeneous FGS parameterizations, only two inhomogeneous parameterizations are provided. No spa-
tial dependence is given for FGSo, the case with the strongest gluon shadowing. We have checked the
available dependencies against those calculated usingSjFGSo,WS andSjFGSo,ρ and found that, at similar

values of the homogeneous shadowing ratios,SjFGSo,ρ is quite compatible with the available FGS inho-
mogeneous parameterizations. Therefore, to characterizethe spatial dependence of FGSo and EKS98,
we useSjP,ρ while the given inhomogeneous parameterizations are used for FGSh and FGSl.

To implement nuclear absorption onJ/ψ production in dA collisions, the production cross section
in Eq. (7.37) is weighted by the survival probability,Sabs, so that

Sabs(~b − ~s , z′) = exp

{
−
∫ ∞

z′
dz′′ρA(~b − ~s , z′′)σabs(z

′′ − z′)

}
. (7.41)
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wherez′ is the longitudinal production point, as in Eq. (7.39), andz′′ is the point at which the state
is absorbed. If shadowing is not considered andSabs = 1, σdA = 2AσpN . For Sabs 6= 1, σdA =
2AασpN . The nucleon absorption cross section,σabs, depends on where the state is produced and how
far it travels through nuclear matter. The effectiveA dependence is obtained from Eqs. (7.37) and (7.41)
by integrating overz′, z, andb. The contribution to the fullA dependence inα(xF ) from absorption alone
is only constant ifσabs is constant and independent of the production mechanism [92]. The observedJ/ψ
yield includes feed down fromχcJ andψ′ decays, giving

Sabs
J/ψ(~b − ~s , z′) = 0.58Sabs

J/ψ, dir(
~b − ~s , z′) + 0.3Sabs

χcJ (
~b − ~s , z′) + 0.12Sabs

ψ′ (~b − ~s , z′) . (7.42)

In color singlet production, the final state absorption cross section depends on the size of thecc pair
as it traverses the nucleus, allowing absorption to be effective only while the cross section is grow-
ing toward its asymptotic size inside the target. On the other hand, if thecc is only produced as a
color octet, hadronization will occur only after the pair has traversed the target except at very backward
rapidity. We have considered a constant octet cross section, as well as one that reverts to a color sin-
glet at backward rapidities. For singlets,Sabs

J/ψ, dir 6= Sabs
χcJ

6= Sabs
ψ′ but, with octets, one assumes that

Sabs
J/ψ, dir = Sabs

χcJ
= Sabs

ψ′ . As can be seen in Fig. 7.16, the difference between the constant and grow-

ing octet assumptions is quite small at large
√
S with only a small singlet effect aty < −2. Singlet

absorption is also important only at similar rapidities andis otherwise not different from shadowing
alone. Finally, we have also considered a combination of octet and singlet absorption in the context of
the NRQCD model, see Ref. [92] for more details. The combination of nonperturbative singlet and octet
parameters changes the shape of the shadowing ratio slightly. The results are shown integrated over im-
pact parameter for the EKS98 shadowing parameterization since it gives good agreement with the trend
of the PHENIX data shown later in this chapter.

Several values of the asymptotic absorption cross section,σabs = 1, 3 and 5 mb, corresponding
to α = 0.98, 0.95 and 0.92 respectively for absorption alone in e.g. beryllium and tungsten targets
are shown in Fig. 7.16. These values ofσabs are somewhat smaller than those obtained for the sharp
sphere approximation where the relation betweenσabs andα can be calculated analytically:σabs =
16πr20(1 − α)/9. The diffuse surface of a real nucleus and the longer range ofthe density distribution
results in a smaller value ofσabs than that found for a sharp sphere nucleus.

The right-hand side of Fig. 7.16 compares the EKS98 parameterization andσabs = 3 mb with the
FGS parameterizations at the same value ofσabs. In the region that PHENIX can measure, the EKS98
and FGSl results are essentially indistinguishable. The FGSh result lies between the FGSo and EKS98
results at forward rapidity but is also quite similar to FGShat negative rapidity.

In central collisions, the inhomogeneous shadowing is stronger than the homogeneous result. The
stronger the homogeneous shadowing, the larger the inhomogeneity. In peripheral collisions, the inho-
mogenous effects are somewhat weaker than the homogenous results but some shadowing is still present.
Shadowing persists in part because the density in a heavy nucleus is large and approximately constant
except close to the surface and partly because the deuteron wave function has a long tail. We also expect
absorption to be a stronger effect in central collisions. InFig. 7.17, we show the inhomogeneous shad-
owing and absorption results for EKS98 andσabs = 3 mb as a function ofb/RA for the dAu/pp ratio as
a function ofb relative to the minimum bias ratio on the left-hand side and the ratio dAu/pp as a function
of the number of binary collisions,Ncoll, on the right-hand side. The ratios are shown for several values
of rapidity to represent the behavior in the anti-shadowing(large negativey), shadowing (large positive
y) and transition regions (midrapidity).

The (dAu(b)/pp)/(dAu/pp) ratios, denoted dAu(b)/dAu(ave) on they-axis of the left-hand figure,
are all less than unity forb/RA < 0.7, with stronger than average shadowing and absorption, and rise
above unity for largeb/RA, weaker than average shadowing and absorption. The right-hand side shows
the dAu/pp ratios for the same rapidity values as a function of the number of collisions,Ncoll. The
dependence of the ratios onNcoll is almost linear. We do not show results forNcoll < 1, corresponding
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Fig. 7.16: Left-hand side: TheJ/ψ dAu/pp ratio with EKS98 at 200 GeV as a function of rapidity for (a) constant octet, (b)

growing octet, (c) singlet, all calculated in the CEM and (d)NRQCD. For (a)-(c), the curves are no absorption (solid),σabs = 1

(dashed), 3 (dot-dashed) and 5 mb (dotted). For (d), we show no absorption (solid), 1 mb octet/1 mb singlet (dashed), 3 mb

octet/3 mb singlet (dot-dashed), and 5 mb octet/3 mb singlet(dotted). Right-hand side: TheJ/ψ dAu/pp ratio at 200 GeV

for a growing octet withσabs = 3 mb is compared for four shadowing parameterizations. We show the EKS98 (solid), FGSo

(dashed), FGSh (dot-dashed) and FGSl (dotted) results as a function of rapidity.

to b/RA > 1.3 on the left-hand side, the point where those ratios begin to flatten out. The weakestNcoll

dependence occurs where the shadowing effect itself is weakest, aty = −2 at RHIC, in the antishadowing
region, as expected. The trends of the ratios as a function ofNcoll are consistent with the PHENIX data
from the north muon arm (y = 2) and the electron arms (y = 0) but the PHENIX results from the south
arm (y = −2) are much stronger than our predictions.

Thus the combination of shadowing and absorption seems to bein good agreement with the
PHENIX data from RHIC. It is more difficult to make predictions of shadowing for the CERN SPS
since the average values ofx at which theJ/ψ is produced are much higher,x ∼ 0.16 at

√
SNN = 20

GeV. In thisx region, the nuclear gluon shadowing ratio is either nearly crossing unity into the EMC
region (EKS98) or assumed to be unity (FGS), see Fig. 7.15. Therefore we have only shown results for
RHIC. At the LHC, thex values probed are significantly lower, leading to a strongershadowing effect
over all rapidity, see Ref. [91]. CombiningJ/ψ andΥ production results in dA collisions at RHIC and
the LHC could help map out the nuclear gluon distribution inx andQ2, both in minimum bias collisions
and as a function of centrality.

6. Quarkonium dissociation in hot QCD matter7

The use of heavy quarkonium suppression as a signature of deconfinement [1] requires understanding
dissociation mechanisms in the confined and deconfined phases of QCD matter. In this section, we
comment on the current calculations of quarkonium dissociation rates and possible ways to improve
them.

In the confined hadron gas, the interactions of quarkonium are traditionally treated in a low-
density approximation to the kinetic approach, where the survival probability is expressed through the
quarkonium–hadron dissociation cross sections. An overview of different approaches to calculating these
cross sections has been given previously. As discussed there, all of these approaches rely on certain as-

7Author: D. Kharzeev
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Fig. 7.17: Left-hand side: TheJ/ψ (dAu(b)/pp)/(dAu(ave)/pp) ratio as a function ofb/RA. Right-hand side: The ratio dAu/pp

as a function ofNcoll. Results are shown fory = −2 (dot-dashed),y = 0 (dashed) andy = 2 (solid) at 200 GeV for a growing

octet withσabs = 3 mb and the EKS98 parameterization.

sumptions and approximations, the accuracy of which is often difficult to assessa priori. Nonperturbative
interactions of light hadrons are still beyond the reach of reliable theroretical calculations, so the hope is
that the large heavy quark mass forming the quarkonium boundstate can lead to simplifications.

Among the approaches discussed before, the short-distanceQCD approach [2, 6] is based on the
assumption that the heavy quark mass is sufficiently large,mq ≫ ΛQCD, and the corresponding bound
state size,R ∼ 1/(mqαs), is sufficiently small for interactions with light hadrons of size∼ 1/ΛQCD can
be treated by using the multipole, or operator product, expansion. In leading twist (or, in the more intu-
itive language of the QCD multipole expansion, in the leading electric dipole approximation), the cross
section is expressed through Wilson coefficients (for the leading electric dipole operator, they describe
the electric polarizability of heavy quarkonium), and the gluon structure functions of light hadrons at the
scale determined by the size of theQQ state.

There are two main caveats to this approach. An analysis of the applicability of the multipole
expansion shows that not only the quarkonium size should be small,R ∼ 1/(mqαs) ≪ ΛQCD, but also
the binding energy (which determines, by the uncertainty principle, the characteristic interaction time)
has to be large,ǫ ∼ mqα

2
s ≫ ΛQCD. The latter inequality is only marginally justified for charmonium, at

the borderline between the perturbative and nonperturbative regimes. The second caveat is the knowledge
of the gluon structure function at large Bjorkenx, corresponding to low energies and relatively small
virtuality, ∼ ǫ. For theJ/ψ, the binding energy isǫ = 2MD −MJ/ψ ≃ 0.64 GeV. The gluon structure
function is not well determined at such low scales. Nevertheless, at largex the gluon structure functions
have to be relatively suppressed by quark counting rules which dictate at least a∼ (1 − x)4 suppression
atx→1 since the valence quarks dominate the light hadron structure functions at largex.

This naturally brings us to the possibility that the light quark exchanges, despite being suppressed
in the heavy quark limit, become important in the dissociation of charmonium states – in fact, most
of the approaches reviewed previously model such exchangesin different ways. At least in principle
the picture can be clarified by a lattice calculation of the quarkonium matrix elements involving quark
and gluon operators of different dimension. Such a calculation could establish a hierarchy of different
mechanisms of quarkonium dissociation. It would also be important for understanding the dynamics of
quarkonium production and decay. On the phenomenological side, many of the approaches can be tested
in quarkonium decays, e.g.ψ′→ψX (see e.g. Ref. [93] and references therein).
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Apart from the magnitude of the quarkonium dissociation cross section, one should also examine
the validity of the low-density approximation in the kinetic approach. This approach leads to the quarko-
nium dissociation rate,R =

∑
i viσiρi, where the sum runs over different hadron species with densities

ρi and dissociation cross sectionsσi andvi are the corresponding relative quarkonium-hadron velocities.
The survival probability of heavy quarkonium is then obtained by integrating over the time history of the
hadron gas. For example, an isentropic longitudinal expansion yields (see e.g. Ref. [94])

S ∼ exp

(
−
∑

i

viσiρi ln

(
ρi
ρf

))
, (7.43)

whereρif is a ”freeze-out” density at which the system falls apart andρi corresponds to the initial densi-
ties of the different hadron species.

Such treatment assumes the dominance of two-body interactions of the quarkonium and thus ap-
plies only at sufficiently low temperature. The dissociation process, by the uncertainty principle, takes
place over a time inversely proportional to the binding energy, ∼ 1/ǫ. The typical time between sub-
sequent thermal interactions at temperatureT is ∼ 1/T . The condition for the applicability of the
low-density approximation is thusǫ(T )/T ≫ 1. The binding energy can be modified in a thermal sys-
tem and is thus a function of temperature. Lattice results presented in the previous sections, especially
Section 3.3, indicate no substantial modification of the binding energy belowTc so that up toTc ∼ 200
MeV the ratioǫ(T )/T ≃ 3 is likely to be large enough to justify the kinetic approach.

In the deconfined phase, the original screening scenario canbe seen to correspond to the opposite
“weak coupling” limit of ǫ(T )/T ≪ 1. Indeed, the heavy quarkonium state binding energy vanishes
when it is screened out of existence. The lattice results presented in Section 3 indicate that this does not
happen for theJ/ψ until T ≈ 1.5Tc. Moreover, the previous lattice results indicate no significant change
in theJ/ψ mass up to these temperatures, suggesting that the weak coupling approach is not appropriate
even forTc ≤ T ≤ 1.5Tc. However, this does not mean that the quarkonia are not dissociated at
temperatures below1.5Tc since “ionization” of heavy quarkonia by gluons [2, 5] is still possible. An
estimate of the dissociation rate in this regime was given inRef. [7],

Ract =
(LT )2

6π
mq exp(−ǫ/T ) . (7.44)

HereL is the size of theqq system which is generally temperature dependent and can, inprinciple,
exceed the typical hadronic size,∼ 1/ΛQCD, in the deconfined phase. While this rate is moderate (at
T = 300 MeV andL = 1 fm, we findRact ≃ 0.05 fm−1), a medium with a lifetime of≈ 10 fm can
reduce the survival probability by factor of two. Thus, one cannot presently conclude from the lattice
results that there is noJ/ψ suppression in the deconfined phase below1.5Tc. A conclusive answer can
be given by lattice calculations once a reliable extractionof theJ/ψ width becomes possible.

Once the weak coupling limit ofǫ(T )/T ≪ 1 is reached, dissociation occurs very rapidly with a
rate [7]

Ract =
4

L

√
T

πmq
. (7.45)

This expression is easy to understand once we recall that thethermal velocity of a free particle in three di-
mensions isvth(T ) = 4

√
T/πmq where we recover the classical high-temperature limit for the thermal

activation rate

Ract =
vth(T )

L
. (7.46)

An estimate of Eq. (7.45) gives a large rate,Ract ∼ 1/fm suggesting that once the binding energy of
quarkonium becomes small compared to the temperature, dissociation occurs very rapidly and should
lead to strong suppression, as envisioned in the original scenario [1].
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7. Secondary charmonium production and charm-quark coalescence8

In recent years, a new element has been added to charmonium production in heavy-ion collisions with
the realization thatcc bound states might be recreated in later stages of the reaction. In Refs. [95–
99] secondary charmonium production was evaluated in the statistical model for hadron production,
motivated by the success of this framework in the description of light hadron species [100]. Whereas in
Ref. [95] theJ/ψ abundance was calculated simply in terms of its thermal density at the hadronization
temperature,Tc, yielding fair agreement with NA50 data [101, 102] at the SPS, Refs. [96–99] included
the notion that the (rather heavy) charm quarks are exclusively produced in primordial (hard) nucleon-
nucleon (NN ) collisions. This constraint is implemented by introducing a charm-quark fugacity,γc ≡
γc, to match the primordial number ofcc pairs,Ncc, to the total (hadronic) charm content in the fireball
at hadronization,

Ncc =
1

2
Nop

I1(Nop)

I0(Nop)
+ VFB(T ) γc(T )2

∑

Ψ

nψ(T ) . (7.47)

HereNop = VFB(T ) γc
∑

C nC(T, µB) andC = D, D, D∗, D
∗
, Λc . . ., runs over all known open

charm hadrons,VFB denotes the (centrality-dependent) hadronic fireball volume covering an appropriate
range in rapidity andI0,1 are modified Bessel functions. The number of charmonium states (Ψ = ηc,
J/ψ, ψ′ . . .) produced by “statistical coalescence” then follows as

N eq
Ψ (T, γc) = VFB(T ) dΨ γ2

c

∫
d3q

(2π)3
fψ(mψ;T ) (7.48)

wheredΨ is the spin-degeneracy. The statistical approach correctly reproduces theψ′-to-J/ψ ratio [103]
for sufficiently central Pb+Pb collisions (Npart ≥ 200) at the SPS. However, to describe the absolute
J/ψ andψ′ numbers in terms of statistical coalescence alone (implying that all primordially produced
charmonium states are suppressed), an enhancement of totalcharm production over the standard expec-
tation fromNN collision-scaledpp cross sections by a factor of∼ 3 is necessary. This requirement, as
well as the assumption of complete suppression of primordial charmonia, has been relaxed in the “two-
component model” of Refs. [104, 105] where statistical charmonium production has been combined
with a primordial component subject to suppression in both Quark-Gluon Plasma (QGP) and hadron
gas phases. As a result, it has been found that the (moderately) suppressed primordialJ/ψ component
prevails as the major yield at SPS energies, whereas statistical recombination is the dominant source
in central Au+Au collisions at RHIC, with interesting consequences for the excitation function, cf. the
left-hand side of Fig. 7.18.

As discussed in Section 3, an important new insight from QCD lattice calculations is that low-lying
charmonium states survive as resonance/bound states with finite width in the QGP up to temperatures of
about1.5 − 2Tc. This implies that these charmonium states can be formed notonly at the hadronization
transition, but also in the QGP. Of course, at the same time, dissociation reactions are operative, and the
evolution of theJ/ψ number should be described by kinetic theory within a Boltzmann equation. In
simplified form, the latter can be written as

dNΨ

dτ
= −Γ̂D NΨ + Γ̂F Nc Nc (7.49)

whereΓ̂D andΓ̂F are the charmonium dissociation and formation rates respectively. The inclusion of
the backward reaction in inelastic charmonium interactions such as,J/ψ +X1 ⇌ X2 + c+ c (D+D),
is, in fact, mandated by the principle of detailed balance. Akey question is then under which conditions
regeneration becomes quantitatively relevant. First, theequilibrium number ofJ/ψ mesons should be
comparable to initial production (after nuclear absorption). While at the SPS, whereNcc ≃ 0.2 in
central Pb+Pb collisions (based on binaryNN collision scaling), this is not the case, the situation is

8Author: R. Rapp
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Fig. 7.18: Left-hand side: excitation function of the ratioof J/ψ’s overcc pairs in central heavy-ion collisions (Npart = 360)

from SPS to RHIC energies [104,105] for theJ/ψ yield from quark gluon plasma suppressed primordial production (dashed),

secondaryJ/ψ production fromcc coalescence (dot-dashed) and the sum (solid). Right-hand side: Centrality dependence of

theJ/ψ yield, normalized to the number of primordialNN collisions, in Au+Au collisions at RHIC within a kinetic theory

framework including in-medium effects on both open and hidden charm states [108]. We showJ/ψ suppression with only

the loss term in Eq. (7.50) (dashed), secondaryJ/ψ production (dot-dashed), primordialJ/ψ’s subject to nuclear absorption

only (dotted) while the band around the solid line, representing the full solution of the rate equation, indicates the uncertainty

induced by varying the in-medium masses of open-charm hadrons.

more favorable at RHIC, where, according to current measurements [106, 107],Ncc ≃ 15 − 30 in
central Au+Au collisions. Also note that the higher QGP temperatures at RHIC presumably lead to
stronger suppression of the primordial component. Second,the amount of regeneration depends on the
momentum distributions of charm quarks. Thus, if the latterare in thermal equilibrium (along with
gluons and light quarks) and as long as a well-definedJ/ψ (resonance) state persists, Eq. (7.49) takes a
particularly simple and instructive form,

dNΨ

dτ
= −ΓΨ(T )

[
NΨ −N eq

Ψ (T, γc)
]
. (7.50)

An important point here is that the key ingredients to Eq. (7.50) are rather directly related to equilib-
rium in-medium properties of charm(onium) states,i.e., quantities which can be extracted from lattice
QCD: (i) the reaction rateΓΨ(T ) is the (inelastic) width of theΨ spectral function; (ii) the equilibrium
charmonium abundance,N eq

Ψ , given by Eq. (7.48), depends on the in-medium charmonium mass and,
via γc in Eq. (7.47), on the spectrum of open-charm states (including their in-medium masses). A recent
calculation including current knowledge from lattice QCD has been performed in Ref. [108]; results for
RHIC are shown on the right-hand side of Fig. 7.18, indicating appreciable sensitivity to the in-medium
open-charm threshold, mostly due to its impact onN eq

Ψ . This investigation has also shown that most of
the secondaryJ/ψ production occurs through resonance formation in the QGP. At full RHIC energy,
relative chemical equilibrium is reached close to the hadronization temperature and frozen thereafter due
to small reaction rates in hadronic matter, implying approximate agreement with the limiting case of
statistical coalescence models applied atTc, as discussed above.

The sensitivity of secondary production to the charm quark momentum distributions (i.e., devi-
ations from thermal equilibrium) has been addressed in Refs. [109, 110], as well as in recent transport
simulations [111, 112]: although the use of, e.g., primordial (perturbative QCD) charm quark distri-
butions reduces the regenerated yield appreciably, it still remains significantly larger than expectations
based on suppression scenarios alone. Measurements of elliptic flow ofD-mesons at RHIC, testing their
(early) thermalization, will therefore impose important constraints on models for charmonium regener-
ation. Similarly, since in coalescence approachesN eq

Ψ ∝ N2
cc (cf. Eqs. (7.47) and (7.48)), an accurate
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Years 1996-1998 1998-2000 2000

Energy (GeV/nucleon) 450 450 400

Target thicknessL/λI 26-39% 26-39% 26-39%

Targets Be, Al, Cu, Ag, W Be, Al, Cu, Ag, W Be, Al, Cu, Ag, W, Pb

Beam intensity (p/s) (4 − 13) × 108 (0.8 − 2.5) × 108 (9 − 13) × 108

J/ψ (×103) 350-800 80-180 38-68

Table 7.1: Summary of proton-nucleus data collected by NA50.

Year 1992 1995 1996 1998 2000

Energy (GeV/nucleon) 200 158 158 158 158

Target thicknessL/λI 20.5% 17% 30% 7% 9.3%

Beam-Target S+U Pb+Pb Pb+Pb Pb+Pb Pb+Pb

Beam intensity (ions/5 s) 8 × 107 3 × 107 5 × 107 5.5 × 107 7 × 107

J/ψ (×103) 113 50 190 49 129

Table 7.2: Summary of S+U data and Pb+Pb data collected by NA38 and NA50.

measurement of open-charm production will be essential forreliable predictions of charmonium yields
and spectra. Finally, it will be of great interest to extend both experimental and theoretical investigations
to the bottomonium sector.

8. Quarkonium production in nuclear collisions9

8.1 Charmonium suppression at the CERN SPS

The experimental study of charmonium production in collisions of light and heavy ions at ultrarelativis-
tic energies was carried out at the CERN SPS over 15 years (1986-2000) by experiments NA38 (see
Refs. [113,114] for initial results and [115,116] for the most recent ones) and NA50 (see Refs. [50,117–
120]). It is continuing with experiment NA60, taking data in2003 and 2004.

In addition, NA51 provided a reference measurement of charmonium production inpp andpd
collisions [121] while proton-nucleus,pA, reference data were collected by NA38 [116, 122] and, with
higher statistics, by NA50 [123,124].

The SPS energies, between 158 and 450 GeV per nucleon in a fixedtarget configuration, are well
suited for charmonium studies since theJ/ψ production cross section in the forward hemisphere (xF >
0) in proton-proton interactions is between 50 and 100 nb/nucleon (seee.g. Ref. [125]), well above
threshold. The high intensity experimental area at the SPS provides beam rates of about107 Pb ions/s
and109 protons/s which, with a branching ratioJ/ψ → µ+µ− of about 6% and a typical acceptance of
15%, resulted in samples of several tens of thousand ofJ/ψ collected for a given system. The statistics
collected (see Tables 8.1 and 7.2) made it possible to perform detailed studies ofJ/ψ andψ′ production
as a function of centrality in ion-ion collisions. The centrality was evaluated via the transverse energy,
ET , by NA38, as well as via the forward energy in the zero degree calorimeter,EZDC, and the charged
multiplicity, Nch by NA50.

The experimental program at the CERN SPS was developed in successive phases. At first, the pi-
oneering experiment NA38 [113] collected data with light ions (oxygen and sulphur) at 200 GeV/nucleon
and with proton beams at 450 GeV, using the NA10 dimuon spectrometer and an electromagnetic calorime-

9Section coordinator: M. Rosati; Authors: C. Lourenço, L. Ramello, M. Rosati, E. Scomparin
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ter as a centrality detector. Then, the second generation experiment NA50 [117] studiedJ/ψ production
in lead-lead collisions at 158 GeV/nucleon with new or improved centrality detectors, and in proton-
nucleus collisions with much higher statistics relative toNA38. Finally, experiment NA60 collected data
with Indium-Indium collisions at 158 GeV/nucleon and proton-nucleus collisions at 400 GeV with a new
silicon vertex spectrometer and a beam tracker (see next section).

In order to compare the hard production of charmonium statesin different collisions ranging from
pp to Pb+Pb, it is appropriate to define the cross section per nucleon-nucleon collision, obtained by
dividing the measured cross section by the product of the mass numbers,AB, of the colliding nuclei. In
the study of centrality, the measured Drell–Yan cross section can replaceAB since it has been verified
experimentally (see e.g. Refs. [74, 118]) that the Drell–Yan cross section is proportional to the number
of nucleon-nucleon collisions.

The nuclear dependence of the charmonium cross section is often parametrized asσpA = σppA
α,

whereα = 1 is expected for a hard process in the absence of nuclear absorption effects. A more ac-
curate description, valid also for light targets, is provided by the Glauber formalism [126]. A detailed
description of such formalism applied to bothpA and nucleus-nucleus collisions is given in Ref. [94].
The distribution of matter inside nuclei is described by 2-parameter or 3-parameter Woods-Saxon distri-
butions from a compilation of electron scattering measurements [127]. When comparing the centrality
evolution of different systems, a useful variable is the average path of thecc̄ pair through nuclear matter,
denoted byL.

The first NA38 results, obtained with 200 GeV/nucleon oxygenand sulphur beams, revealed [113,
114] thatJ/ψ production is suppressed in ion collisions, both relative to pU and as a function of the
transverse energy,ET . However, it was later found that the suppression pattern observed in S+U colli-
sions was compatible with the extrapolation of the trend observed inpA collisions. NA38 then collected
a significantly larger sample of S+U events (see Table 7.2), obtaining [115] absolute cross sections for
J/ψ,Bσψ = 7.78±0.04±0.62 µb,ψ′,Bσψ′ = 59.1±6.2±4.7 nb, and Drell–Yan in the mass window
2.9 < M < 4.5 GeV,σDY = 310±10±25 nb. Comparing the suppression pattern of the two resonances
it was found that theψ′ is more suppressed than theJ/ψ by at least a factor of two, even more so for
central collisions. A global study of this result together with pp andpd results from NA51 [121] andpA
results from NA38 [122] revealed (see Ref. [116], in particular Fig. 5) thatJ/ψ production exhibits a
continuous decreasing pattern frompp to S+U reactions (including the centrality dependence observed
in S+U interactions) which can be accounted for by normal nuclear absorption. On the other hand, theψ′

showed extra suppression in S+U interactions. Since theψ′ state is very loosely bound, it can be broken
into a pair of open charm mesons by purely hadronic interactions, independent of whether the produced
matter is confined or deconfined.

The understanding of the reference proton-nucleus data improved dramatically thanks to recent
high statistics measurements by NA50, see Table 8.1. Figure7.19 (see Ref. [74]) shows the absolute
J/ψ andψ′ cross sections, multiplied by the branching ratio to dimuons and divided by the target mass
numberA for the most recentpA data collected at 400 GeV. A fit using the Glauber formalism [94,126],
more accurate than the usualAα parametrization, leads to absorption cross sectionsσψabs = 4.2± 0.5 mb

andσψ
′

abs = 9.6 ± 1.6 mb. A difference between theJ/ψ andψ′ absorption cross sections is observed
already in proton-nucleus collisions, thanks to higher statistics and improved systematics relative to
NA38.

A more precise picture of normal nuclear absorption is obtained by combining the absolute cross
sections with the (J/ψ)/Drell–Yan ratios at all available beam energies. Using, in addition to the 400 GeV
p-A data, also the NA50 data collected with a 450 GeV proton beam [123, 124] and the NA51pp and
pd results [121], a simultaneous Glauber fit gives [74]σψabs = 4.3 ± 0.3 mb. The NA38 S+U data
at 200 GeV/nucleon have been reanalysed with the most recenttechniques. By fitting the reanalyzed
data to a centrality-dependent Glauber calculation for sixdifferent centrality regions (see Fig. 7.20 left),
σψabs = 7.3 ± 3.3 mb is obtained, statistically compatible with thepA cross section. A global fit to
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Fig. 7.19: TheJ/ψ (left) andψ′ (right) cross sections in proton-nucleus collisions with six different targets at 400 GeV,

measured by NA50, together with the result of the Glauber fits.

pp, pd, pA and S+U data, with separate normalizations for the three different (energy and rapidity)
kinematical conditions, leads toσψabs = 4.3 ± 0.3 mb (see Fig. 7.20 right). An extrapolation from the
200 GeV/nucleon S+U to the 158 GeV/nucleon Pb+Pb kinematical conditions is then made in order to
obtain the normal absorption curve against which the Pb+Pb results are compared.

The analysis of the Pb+Pb data collected in 1995, 1996 and 1998 (see Table 7.2) showed [117,118]
thatJ/ψ production, relative to Drell–Yan, is anomalously suppressed with respect to the normal nuclear
absorption pattern. This integrated result was complemented by detailed studies of theJ/ψ suppression
pattern as a function of collision centrality [50,119,120], determined fromET andEZDC, which suggests
that this extra suppression sets in for semi-central collisions, with the transition occurring over a rather
small range of centrality values. The suppression pattern,showing a departure from normal absorption
and then no saturation at highET , is currently interpreted in the quark-gluon plasma scenario as the
sequential suppression of twocc̄ states, first theχc and then theJ/ψ.

A more detailed analysis of Pb+Pb data revealed that the peripheral centrality data was affected by
a considerable admixture of Pb-air interactions, especially in the multi-target configuration used in 1996.
Therefore, more data were collected by NA50 in 2000 with a single target under vacuum. The 2000
Pb+PbJ/ψ result is shown on the left-hand side of Fig. 7.21 together with the absorption curve derived
from the analysis presented in Fig. 7.20. The departure fromthe ordinary nuclear absorption is still, in
the new data set, a striking feature. The Pb+Pb data are compared to other systems on the right-hand side
of Fig. 7.21.

A new result onψ′ production, recently obtained [75] from the 1998 and 2000 Pb+Pb data samples,
analysed with the most recent procedures, is presented in Fig. 7.22. The left-hand side shows the relative
suppression of the twocc̄ bound states for several systems ranging frompBe to Pb+Pb, as a function of
the productAB. As indicated above, theψ′ is more absorbed than theJ/ψ already inpA collisions.
Furthermore, a strongerψ′ suppression relative to theJ/ψ is observed for the heavier S+U and Pb+Pb
systems. On the right-hand side,ψ′ suppression relative to Drell–Yan is presented as a function of
centrality, expressed by the path lengthL. Theψ′ suppression is the same in S+U and Pb+Pb interactions
as a function of centrality and about three times stronger than inpA interactions.

In conclusion, experiments NA38, NA50 and NA51 provided valuable information onJ/ψ andψ′

production with proton and ion beams at the SPS fixed target energies. A synthesis of the main result,
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the different suppression patterns of the twocc̄ states, is presented in Fig. 7.23.

8.2 Recent studies of charmonium production in heavy-ion collisions at the SPS

Charmonium physics in ultrarelativistic nucleus-nucleuscollisions is now being studied at the SPS by
NA60. The experimental apparatus includes the muon spectrometer already used by NA50 and a vertex
spectrometer, based on silicon pixel detectors, that allows an accurate determination of primary and
secondary interaction vertices with a resolution better than 50µm. By matching the muons measured in
the muon spectrometer to tracks in the pixel telescope, simultaneously using coordinate and momentum
information, it is possible to overcome the uncertainties introduced by the multiple scattering and energy
loss fluctuations induced by the huge hadron absorber positioned in front of the muon spectrometer. The
consequent improvement in dimuon mass resolution is extremely impressive, and reaches a factor∼ 4
for low mass dimuons (M < 1 GeV), where multiple scattering is quantitatively more important. In the
charmonia mass region, NA60 reaches a mass resolution of≈ 70 MeV as opposed to≈ 105 MeV in
NA50, particularly important forψ′ studies.

In 2003, NA60 collected more than 200 million dimuon triggers in In+In collisions at 158 GeV/nu-
cleon. The choice of Indium, an intermediate mass nucleus, is particularly interesting for the study of
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the anomalousJ/ψ suppression observed by NA50 in Pb+Pb collisions. The onsetof the anomalous
J/ψ suppression occurs in semiperipheral Pb+Pb events, a region with potentially important systematic
uncertainties due to the presence of out-of-target events.For the lighter In+In system, the anomaly
should show up for comparatively more central events, thereby confirming this effect in a region where
systematics are easier to control.

Furthermore, other useful insights into the suppression mechanisms can be obtained by studying
the J/ψ yield as a function of centrality for both In+In and Pb+Pb, plotting the results as a function
of centrality using several variables such asL, the thickness of nuclear matter traversed by the char-
monium state, the number of participant nucleons,Npart, and the energy density,ǫ. In this way it may
become possible to precisely identify the centrality variable that governs the anomalous suppression and,
therefore, its origin. In particular, one could distinguish between the thermal (QGP) and geometrical
(percolation) phase transitions, both resulting in the suppression ofJ/ψ production but as a function of
different variables and with different thresholds in collision centrality.

Currently, preliminary results onJ/ψ suppression has been obtained by integrating the events
over the centrality rangeEZDC < 15 TeV. In Fig. 7.24 we show theJ/ψ / DY ratio for In+In collisions,
corresponding to about 50 % of the available statistics, compared with previous results from NA38,
NA50 and NA51. The comparison has been carried out both as a function ofL (left plot) andNpart (right
plot). In the latter figure the data points are plotted with respect to the normal nuclear absorption curve,
determined from thepAmeasurements, shown by the line on the left-hand side. The In+In measurement,
when normalized to the absorption curve, gives the value0.87±0.07. While the In-In point sits (at 7.0 fm)
to the left of the most central S+U value as a function ofL, as a function ofNpart we see the opposite.
Once all the Indium data have been analyzed, we should be ableto probe theJ/ψ suppression pattern
as a function of centrality, for5.5 < L < 7.8 fm and50 < Npart < 200, corresponding to the onset of
anomalousJ/ψ suppression.

8.3 Charmonium production in proton-nucleus collisions at158 GeV

The NA60 experiment was proposed to clarify several physicsquestions resulting from specific experi-
mental measurements made by previous SPS experiments, including the observation thatJ/ψ production
is suppressed in heavy-ion collisions with respect to the yields extrapolated from proton-nucleus data.
The NA60 In+In measurements have been made at the same energyas Pb+Pb to put hte results on an
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equal footing. However, to fully interpret theJ/ψ production patterns observed in nuclear collisions
as a function centrality, it is crucial to have a proper “reference baseline”, to extract any “anomalous
behaviour” specific to heavy ion collisions. Only with such a“normal nuclear absorption” curve we can
look for signatures of quark-gluon plasma formation in the heavy-ion data. However, this reference has
so far been based on proton-nucleus data collected at a rather different beam energies, 450 GeV (and a
small data sample at 400 GeV). Figure 7.25 summarizes those results.

The NA50 collaboration has also made use of the S+U data set collected by NA38 at 200 GeV.
While it is certainly true that the rescaling from 200 to 158 GeV is much more robust than from 450 GeV,
this data set has been used making the extra assumption that there is nothing new happening between
the proton-nucleus reference and the S+U collision system.We know, however, that theψ′ resonance
is considerably suppressed in S+U collisions with respect to its “normal nuclear absorption” pattern, es-
tablished by exclusively studying proton-nucleus interactions. Therefore, even though this assumption is
based on the compatibility of the results obtained fromp, O and S induced reactions, it remains neverthe-
less a questionable assumption which must be verified with a precise measurement. This problem does
not prevent us from directly comparing the In and Pb data since both sets were taken at exactly the same
energy, 158 GeV. However, the interpretation of the measured pattern in terms of “new physics” requires
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the comparison to an “expected” pattern, based on a purely conventional “normal nuclear absorption”.
Presently, this comparison is mostly limited by the accuracy with which we can rescale the measured
proton-nucleus points to the energy and kinematical domainof the heavy-ion measurements.

In 2004 the NA60 experiment has collected three days of data to studyJ/ψ production in proton-
nucleus collisions with a high intensity 158 GeV primary proton beam. This data sample will allow us to
directly establish a normal nuclear absorption reference based on proton induced interactions, minimiz-
ing systematic uncertainties and model-dependent assumptions.

The normal nuclear absorption pattern can be determined by comparing the measuredJ/ψ pro-
duction cross sections (or production yield with respect tohigh mass Drell–Yan) in proton-nucleus col-
lisions for several target nuclei with a calculation based on the Glauber scattering formalism. It can be
approximately expressed as an exponential function of the average length of nuclear matter the produced
charmonium state needs to traverse to get out of the nucleus,σpA(L) = σpp exp(−ρALσabs). This cal-
culation uses the Woods-Saxon nuclear density profiles. We can describe the measured data points by
adjusting a normalization coefficient and the absorption cross section,σabs, to get the absorption rate.

A priori, it may very well happen that the absorption cross section depends on the energy of the
interactions. In fact, it is well known that the NA50 experiment measured strongerJ/ψ absorption than
E866, for the samexF range (close to 0). The main difference is the proton beam energy: 800 GeV in
E866 and 450 GeV in NA50. Expressed in terms of the simpleAα parameterization, E866 gives values
of α around 0.95 while NA50 gives values closer to 0.92. If the difference is due to the change in energy,
we can easily imagine that at 158 GeV, the energy of the In and Pb beams, the value ofα would be even
smaller, equivalent to having a higher normal nuclear absorption cross section. Unfortunately, the energy
is not the only difference between NA50 and E866 and the change ofα is not understood well enough
to extrapolate to lower energy. For instance, it could be that theJ/ψ mesons produced at 800 GeV have,
on average, higher values ofpTand the value ofα increases withpT (Cronin effect).

Figure 7.26 shows the ratio between theJ/ψ and Drell–Yan (in the mass range2.9 < M <

Fig. 7.25: TheJ/ψ production cross sections inpA collisions at 400 and 450 GeV times the branching ratio to dimuons, in

the phase space window of the measurements (right axis), or with respect to the yield of Drell–Yan dimuons in the mass range

2.9 < M < 4.5 GeV (left axis). The data are plotted as a function ofL (left-hand side) and of the mass number of the nuclei

(right-hand side). The lines represent a fit in the frameworkof the Glauber nuclear absorption model, and result in a common

absorption cross sectionσabs = 4.3 ± 0.3 mb. The uncertainties on the result of the fit are representedby the dotted lines on

the left-hand side.
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4.5 GeV) production cross sections, as a function ofL, for the proton-nucleus and S+U data, collected
either at 450 or 200 GeV. The fit of the 400 and 450 GeV data points leads toσabs = 4.3 ± 0.5 mb. On
the left-hand side, we show what happens if we impose thisσabs when fitting the 200 GeV data points,
leaving the normalization of the curve free. On the right-hand side the 200 GeV data were independently
fitted, resulting inσabs = 6.8 ± 1.8 mb. The dotted lines indicate the uncertainty band, including both
the errors onσabs and othe normalization. These values indicate that the absorption cross section seems
to increase when the collision energy decreases, a tendencythat would match the 800 GeV data collected
by E866.

Fig. 7.26: Ratio of theJ/ψ and Drell–Yan yields measured inpA and S+U collisions, as a function ofL.

Besides the possible change ofσabs from 450 to 158 GeV, another very important unknown is the
normalization of the absorption curve at 158 GeV, needed to compare the In and Pb data. In principle, the
energy dependence of theJ/ψ production cross section should be calculable so that it would be possible
to estimate the normalization at 158 GeV from the 450 GeV data. In practice, however, such calculations
are not unique and are severely limited by nonperturbative contributions. The accuracy we need can only
be obtained from a measurement made at the same energy and in the same experiment that measured the
nuclear data.

Even if we assume thatσabs is not energy dependent and use the value determined at 400 and
450 GeV,σabs = 4.3 ± 0.5 mb, to build the nuclear absorption curve at 158 GeV, we stillneed to
determine its normalization. The NA50 collaboration has taken the normalization value determined at
200 GeV, assuming that the S+U andpA data share the sameσabs value, obtain the normalization at
158 GeV using the so-called “Schuler parameterization”. This procedure has the big advantage that
the energy difference is very small, thereby reducing the importance of the uncertainties on the energy
dependence. However, it has the disadvantage of imposing the extra assumption that theσabs value is
the same in proton-nucleus and S+U collisions (besides ignoring any energy dependence ofσabs). If we
accept that the S+U data does not need to be described by theσabs value derived from thepA data, we
must start from the 450 GeV normalization and scale it down to158 GeV, requiring accurate knowledge
of the energy dependence ofJ/ψ production.

Since we are comparing data expressed as the ratio between theJ/ψ and Drell–Yan cross sections,
the energy dependence of the Drell–Yan process also needs tobe accurately known in the same phase
space window to evaluate the scaling factor needed to normalize the 158 GeV data from 450 GeV.
Different parton distribution functions may give somewhatdifferent energy dependences although the
calculations are more robust. Unfortunately, the statistics collected in a few days will not allow us to
verify the energy dependence of the Drell–Yan production cross section.
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It should be clear by now that it is crucial to measure theJ/ψ absolute production cross section in
proton-nucleus collisions at 158 GeV, if we want to fully understandJ/ψ suppression. Such measure-
ments started in 2004 but should be repeated in the near future, with much higher statistics, to ensure a
proper baseline forψ′ and Drell–Yan production in heavy-ion collisions. We conclude by summarizing
the issue:

• The 450 GeV data points alone are not enough to determine the normal nuclear absorption at
158 GeV since the energy rescaling factors are too uncertain.

• The existing 200 GeV data points are also not enough because of their poor precision.
• The 450 and 200 GeV data sets, used together, would solve the problem if the absorption cross

section is the same for the two sets, an assumption presentlywithout solid experimental evidence.

Thus proton data at 158 GeV must be collected in order to establish a robust reference baseline
with respect to which the In+In and Pb+PbJ/ψ suppression patterns can be directly compared to place
the existence of “anomalous” effects in the heavy-ion data on more solid ground. The present systematic
errors due to the energy (and phase space) corrections and tothe absence of solid evidence that the
absorption cross section remains the same from 450 to 158 GeV, are the main sources of uncertainty in
the interpretation of the data collected in nuclear collisions.

8.4 Charmonium production at RHIC

We review here the first results on charmonia produced in nuclear collisions at the Relativistic Heavy
Ion Collider (RHIC). PHENIX is specifically designed to makeuse of high luminosity ion-ion, proton-
ion, and proton-proton collisions at the RHIC to sample rarephysics probes including theJ/ψ and other
heavy quarkonium states. The PHENIX experiment reported onJ/ψ production in p-p, d-Au and Au-Au
reactions at

√
sNN = 200 GeV [128–130].

The PHENIX experiment is able to measureJ/ψ’s through their dilepton decay in four spectrom-
eters: two central arms covering the mid-rapidity region of|η| < 0.35 and twiceπ/2 in azimuth and
two forward muon arms covering the full azimuth and1.2 < |η| < 2.4 in pseudorapidity. The cen-
tral spectrometers are comprised, from the inner radius outward, of a Multiplicity and Vertex Detector
(MVD), Drift Chambers (DC), Pixel Pad Chambers (PC), Ring Imaging Cerenkov Counters (RICH),
a Time-of-Flight Scintillator Wall (TOF), Time Expansion Chambers (TEC), and two types of Electro-
magnetic Calorimeters (EMC). This combination of detectors allows for the clean electron identification
over a broad range of transverse momentum. Each forward spectrometer consists of a precision muon
tracker (MuTr) comprised of three stations of cathode-strip readout chambers followed by a muon iden-
tifier (MuID) comprised of multiple layers of steel absorbers instrumented with low resolution planar
drift tubes. Muons at the vertex must have a mean energy of at least 1.9 GeV to reach the MuID system.
Further details of the detector design and performance are given in Ref. [131].

The data were recorded during the 2001/2002 and 2003 runs at
√
s = 200 GeV with 150 nb−1 and

350 nb−1 p-p collisions. Event samples were selected using online triggers and offline reconstruction
criteria as decribed in Ref. [128]. Unlike-sign pairs and, for background estimation, like-sign pairs were
combined to form invariant mass spectra. In Fig. 7.27, unlike-sign and like-sign invariant mass spectra
from the entire Run2pp data set are shown together. For electrons, the net yield in the mass region
2.8 - 3.4 GeV2 is 46, for muons inthe range of 2.71 - 3.67 GeV2 is 65.

TheJ/ψ cross sections were determined from the measured yields using

Bll
d2σJ/ψ

dydpT
=

NJ/ψ

(
∫
Ldt)∆y∆pT

1

Aǫ
(7.51)

whereNJ/ψ is the measuredJ/ψ yield,
∫
Ldt is the integrated luminosity,Bll is the branching fraction

for theJ/ψ to eithere+e− or µ+µ− pairs (PDG average value 5.9% [132]), andAǫ is the acceptance
times efficiency for detecting aJ/ψ. TheJ/ψ rapidity distribution obtained by combining the dielectron
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Fig. 7.28:J/ψ differential cross section, multiplied by the

dilepton branching ratio, versus rapidity as measured by

the central and muon spectrometers.

and dimuon measurements is shown in Fig. 7.28 with the muon arm data divided into two rapidity bins.
A fit to a shape generated with PYTHIA using the GRV94HO partondistribution functions is performed
and gives a total cross section, multiplied by the dilepton branching ratio of 5.9%, equal to:

BR × σJ/ψpp = 159 nb ± 8.5% (fit) ± 12.3% (abs) (7.52)

where the first uncertainty comes from the fit and thus includes both the statistical and point-to-point
systematics. The second uncertainty accounts for absolutesystematic errors.

Preliminary analysis is now available of the data recorded during the 2003 run at
√
s = 200 GeV

with 2.74 nb−1 d-Au collisions. In d-Au collisions, PHENIX is able to measure J/ψ production at
forward, backward and central rapidity probing moderate tolow x regions of the Au nucleus. The
covered rapidity region spans the expected shadowing, antishadowing and no shadowing regions. The
ratio between theJ/ψ yields observed in d-Au and p-p collisions divided by2×197 is shown in Fig. 7.29.
Solid error bars represent statistical and point to point systematic uncertainties. The dashed error bars
stand for the systematic uncertainties common to one spectrometer. An additional 13.4% global error
bar is not displayed.
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Fig. 7.29: Ratio between d-Au and p-pJ/ψ differential cross sections, divided by2 × 197, versus rapidity.

While this ratio is close to unity at backward rapidity, it issignificantly lower at forward rapidity,
where parton distributions are expected to be shadowed in a heavy nucleus. Theoretical predictions
[133, 134] are displayed on the figure for comparison. The shape is consistent with shadowing at lowx
and less suppression at largerx. Unfortunately, the statistical and systematic error barsmake it difficult
to distinguish among various shadowing models and models with various amounts of nuclear absorption.
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The Au-Au data at
√
sNN = 200 GeV used in this analysis were recorded during Run 2 at RHIC

in the fall of 2001. For three exclusive centrality bins, 0-20%, 20-40%, and 40-90% of the total Au-Au
cross section, we determined the branching fraction ofJ/ψ → e+e− (B=5.93 ± 0.10 × 10−2 [132])
times the invariant yield at mid-rapiditydN/dy|y=0.

In Figure 7.30 we show the results from the three Au-Au centrality bins and the proton-proton data
normalized per binary nucleon-nucleon collision as a function of the number of participating nucleons.
Note that for proton-proton reactions, there are two participating nucleons and one binary collision.
Despite the limited statistical significance of these firstJ/ψ results, we can address some important
physics questions raised by the numerous theoretical frameworks in whichJ/ψ rates are calculated. The
binary scaling expectations are also shown as a gray band. Wealso show a calculation of the suppression
expected from “normal” nuclear absorption using aσabs = 4.4 mb [123] and7.1 mb [94]. We show the
NA50 suppression pattern relative to binary scaling [119, 120], normalized to match our proton-proton
data point at 200 GeV. The data disfavor binary scaling whilethey are consistent with “normal” nuclear
absorption alone and also the NA50 suppression pattern measured at lower energies, within the large
statistical errors.

One model calculation [104,105] including just the “normal” nuclear and plasma absorption com-
ponents at RHIC energies is shown in Figure 7.31. The higher temperature (T ) and longer time duration
of the system at RHIC lead to a predicted larger suppression of J/ψ relative to binary collision scaling.

Many recent theoretical calculations also include the possibility for additional late stage re-creation
or coalescence ofJ/ψ states. In Ref. [104,105], both break-up and creation reactionsD+D ↔ J/ψ+X
are included. At the lower fixed target CERN energies, this represents a very small contribution due to
the small charm production cross section. However, at RHIC energies, where in central Au-Au collisions
around 10cc pairs are produced, the contribution is significant.

The sum of the initial production, absorption, and re-creation is shown in Figure 7.31.

A different calculation [135] assumes the formation of a quark-gluon plasma in which the mobility
of heavy quarks in the deconfined region leads to increasedcc coalescence. This leads to a very large
enhancement ofJ/ψ production at RHIC energies for the most central reactions.The model considers
the plasma temperature (T ) and the rapidity width (∆y) of charm quark production as input parameters.
Shown in Figure 7.31 are the calculation results forT = 400 MeV and∆y = 1., 2., 3.,and 4.. The narrower
the rapidity window in which all charm quarks reside, the larger the probability forJ/ψ formation. All
of these parameters within this model predict aJ/ψ enhancement relative to binary collisions scaling,
disfavored by our data.

Another framework for determining quarkonia yields is to assume a statistical distribution of
charm quarks that may then form quarkonia. A calculation assuming thermal, but not chemical equi-
libration [99], is shown in Figure 7.31.

Significantly larger data sets are required to address the various models that are still consistent
with our first measurement. Key tests will be thepT andxF dependence of theJ/ψ yield, and how these
compare with other quarkonium states such as theψ′.

9. Quarkonium production in nuclear collisions10

Quarkonium may be produced via photoproduction at hadron colliders. The electromagnetic field of a
proton or ion projectile acts as a field of virtual photons. These photons may collide with an oncom-
ing target nucleus to produce quarkonium. The photon flux is high enough to allow detailed studies of
charmonium photoproduction. The cross section is sensitive to the gluon content of the target. Photopro-
duction at the LHC reaches an order of magnitude higher energies than are possible at HERA. For ions,
the advance beyond existing data is even larger which may allow the first real low-x measurements of

10Author: S. R. Klein
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Fig. 7.30: TheJ/ψ yield per binary collision is shown

from proton-proton reactions and three exclusive central-
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above this is including backward reactions that recreate

J/ψ. The statistical model [99] result is shown as a dotted

curve for mid-central to central collisions just above that.

The four highest dashed curves are from the plasma coa-

lescence model [135] for a temperature parameter ofT =

400 MeV and different charm rapidity widths.

gluon shadowing.

Photoproduction has traditionally been studied with fixed target photon beams and at electron-
proton colliders. However, energetic hadrons also have significant electromagnetic fields and high energy
pp, pp andAA colliders can be used to study photoproduction at photon energies higher than those
currently accessible. These photoproduction reactions are of interest as a way to measure the gluon
distribution in protons at low Feynman−x. The Fermilab Tevatron, RHIC and the LHC (with both proton
and ion beams) all produce significant quantities of heavy quarkonium. Indeed,J/ψ photoproduction
may have already been seen by the CDF collaboration.

One unique aspect of photoproduction at hadron colliders isthat the initial system is symmetric
so that photoproduction can occur from either ion. Since these two possibilities are indistinguishable,
the amplitudes must be added. This interference significantly affects thepT spectrum of the produced
quarkonium. The relative sign of the two amplitudes dependson the symmetry of the system. The
symmetry is different forpp thanpp andAA colliders, leading to significantly differentpT spectra for
particle-particle and particle-antiparticle colliders.

9.1 Cross section calculation

The cross section for vector meson production is the convolution of the photon fluxdn/dk for photon
energyk with the photon-proton or photon-nucleus cross sectionsσγA [136,137]:

σ(A+A→ A+A+ V ) = 2

∫ ∞

0

dn

dk
σγA(k) dk . (7.53)

Here,A refers to any ion, including protons. The ’2’ is because either nucleus can emit the photon or be
the target. Interference between the two possibilities alters thepT distribution but does not significantly
affect the total cross section.
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The rapidity,y, of a produced state with massMV is related to the photon energy throughy =
ln(2k/MV ). Using this relation in Eq. (7.53) and differentiating gives

dσ

dy
= k

dn

dk
σγA→V A(k) . (7.54)

At mid-rapidity, y = 0, the photon energies for the two possibilies (as to which nucleus emitted the
photon) are equal. However, away from mid-rapidity, the photon energies are different,

k1,2 =
MV

2
exp(±y) (7.55)

so that the amplitudes for the two possibilities are also different.

We now consider the ingredients in the cross section in turn.The photon flux from a relativistic
hadron is given by the Weizsäcker-Williams formalism. Oneimportant detail is the form factor of the
emitter.

For protons, the form factor was considered by Drees and Zeppenfield. They use a dipole form
factorF (Q2) = 1/(1 +Q2/(0.71GeV2))2 for the proton, and found [138]:

dn

dk
=

α

2πk

[
1 + (1 − z)2

](
ln I − 11

6
+

3

I
− 3

2I2
+

1

3I3

)
(7.56)

wherez = W 2
γp/s, A = 1 + (0.71GeV2)/Q2

min andQ2
min ≈ (k/γ)2. Here,Wγp is theγp center of

mass energy, and
√
s is the proton-proton center of mass energy. This photon spectrum is similar to that

of a point charge with a minimum impact parameter ofbmin = 0.7 fm.

Drees and Zeppenfeld neglected the magnetic form factor of the proton which is important only
at very high energies [139]. They also required that the proton remain intact. If the proton is allowed
to be excited, the effective flux increases considerably [140]. However, in this case, one or both protons
dissociate, producing hadronic debris. We will ignore thispossibility here since the debris considerably
complicates event selection.

For ion-ion collisions, the cutoff conditions are somewhatdifferent. For a vector meson to be
observable, the two nuclei must miss each other, withbmin = 2RA, whereRA is the nuclear radius. The
effective photon flux from a chargeZ nucleus is the flux striking an incoming nucleus subject to that
constraint. This is within 15% of the flux integrated over therequirementr > 2RA, given analytically
by [141]

dn

dk
=

2Z2α

πk
(XK0(X)K1(X) − X2

2
[K2

1 (X) −K2
0 (X)]) (7.57)

whereX = kr/γ~. More detailed calculations find the photon flux numericallyby determing the photon
flux from one nucleus that interacts in another, subject to the criteria that the two nuclei do not interact
hadronically.

As a check of the photon flux rates, we consider an alternate calculation that replaces the proton
form factor with a hard cutoff,bmin = 1.0 fm. This stricter requirement slightly decreases the effective
photon flux.

The leading-order vector meson photoproduction cross section for a vector meson with massMV

is [142]
dσ(γp → V p)

dt

∣∣∣∣
t=0

=
α2
sΓee

3αM5
V

16π3
[
xg(x,M2

V /4)
]2
. (7.58)

More recent and more sophisticated calculations have considered the use of relativistic wave functions,
off-diagonal parton distributions, and NLO contributions[143, 144]. Parton-hadron duality has also
been used to study quarkonium production. Calculations give cross sections∼30-50% larger than the
pQCD results, depending onWγp [144]. The QCD calculations are in reasonable agreement with data on
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J/ψ [145] andΥ [146] [147] production at HERA. TheΥ data has limited statistics, and, consequently,
significant uncertainties.

To assess the viability of photoproduction at hadron colliders, we use simple cross section param-
eterizations to estimate the rates:

σγp(Wγp) = 1.5W 0.8
γp pb (7.59)

for J/ψ, and
σγp(Wγp) = 0.06W 1.7

γp pb (7.60)

for Υ(1S) whereWγp is in GeV. Both H1 and ZEUS estimate that roughly 70% of the signal is from the
Υ(1S) state. The cross section for theψ′ is expected to be about 15% of that for theJ/ψ.

One drawback for this parameterization is that there is a significant discontinuity at threshold,
Wγp = mp +mJ/Ψ. In this region, either better data or a more sophisticated calculation is needed.

For heavy mesons, the cross sectionγA → V A is not well measured. There is little data for
theJ/ψ and none on theΥ. The ion-target cross sections depends on the square of the gluon density.
Thus vector meson photoproduction can provide a sensitive measurement of gluon shadowing. At LHC,
mid-rapidity production of theJ/ψ andΥ corresponds tox ≈ 5× 10−4 and1.7× 10−3 respectively. In
this region, shadowing will likely reduce the cross sections by 30-50% for Pb+Pb collisions at the LHC.

Neglecting shadowing, the cross section for vector meson photoproduction in a nucleus,γA →
V A, may be determined using data on photoproduction off a proton target as input to a Glauber calcu-
laton. However, because the cross section for acc or bb pair to interact in a nucleus is relatively small,
multiple interactions are unlikely and the calculation simplifies so that the forward scattering cross sec-
tion scales withA2 [137,148]

dσ(γA→ ΥA)

dt
= A2 dσ(γp → Υp)

dt

∣∣∣∣
t=0

|F (t)|2 . (7.61)

A Woods-Saxon distribution can be used for the nuclear form factorF (t). The total photonuclear cross
section is the integral of Eq. (7.61) over all momentum transfers, t > tmin = [M2

Υ/4kγ]
2. For protons,

dσ/dt|t=0 is determined from HERA data. For theΥ, an exponentialt-dependence is assumed with the
same slope, 4 GeV−2, as forJ/ψ production, leading to a forward scattering amplitude about 5% lower
than if the proton form factor had been used. With these ingredients, the ion-ion photoproduction cross
section may be calculated from Eq. (7.53).

ThisA2 scaling applies for coherent production withpT < ~/RA. At significantly largerpT , the
scattering is incoherent and the cross section should scaleasA. The coherence leads to a large peak in
the production at smallpT , providing a clean experimental signature which greatly simplifies the data
analysis.

For lighter mesons, the interaction cross section is largerand the Glauber calculation is required
to determine theA scaling. The STAR collaboration has studiedρ photoproduction in Au+Au collisions
[149] and has found that the cross sections agree with a calculation based on Eq. (7.53) and a Glauber
calculation.

ExclusiveJ/ψ photoproduction inpp interactions was also considered by Khozeet al.[150]. They
use a very different approach, based on the proton energy lost.

9.2 Experimental prospects

We considerpp andAA collisions at RHIC,pp at the Tevatron, andpp and Pb+Pb the LHC. The cross
sections and rates, as well as the assumed energies and luminosities, are shown in Table 7.3. Since the
LHC is primarily app collider, assume107 s of pp and106s ofAA running per year. Because RHIC is
primarily an ion collider, we reverse the two durations. We assume107 s of Tevatron operation per year.
Although it is interesting, we do not consider dA collisions at RHIC orpA or dA collisions at the LHC.
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Collider Species
√
sNN Luminosity J/ψ Υ

(GeV) (cm−2s−1) σ (µb) Rate σ (nb) Rate

RHIC pp 500 1031 0.007 7.0×104 0.012 120
RHIC Au+Au 200 2 × 1026 290 5.8 × 105 - -
Tevatron pp 1960 2 × 1032 0.023 4.6×107 0.12 2.4×105

LHC pp 14000 1034 0.120 1.2×1010 3.5 3.5×108

LHC Pb+Pb 5500 1027 32000 3.2×106 170000 1.7×105

Table 7.3: Cross sections and rates for production of theJ/ψ and theΥ. The rates are for107 s of running at the Tevatron,pp

at the LHC andAA at RHIC, and106 s of running withAA at the LHC andpp at RHIC.

Figure 7.32 shows the rapidity distribution for vector meson production inpp andpp collisions.
The solid histogram is with the dipole form factor discussedabove. For theΥ, the shaded bands show the
uncertainty in the production rates, based on the uncertainties in the HERA cross sections but neglecting
extrapolation uncertainties. The dashed line is an alternative calculation, withbmin = 1.0 fm replacing
the form factor. For theJ/ψ, the abrupt dropoff at large|y| is due to the discontinuity at threshold.
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Fig. 7.32: Rapidity distributions for photoproduction ofJ/ψ andΥ(1S) mesons inpp andpp interactions at RHIC, the Tevatron,

and the LHC [136]. The curves are explained in the text.

Figure 7.33 shows the rapidity distribution forΥ production in Si+Si collisions at RHIC (theΥ is
below the effective threshold in Au+Au), and Pb+Pb collisions at the LHC. The solid histogram is for
the dipole form factor, and the shaded bands show the uncertainty due to the uncertainties in the HERA
cross sections, but neglecting uncertainties due to the extrapolation.

CoherentΥ production at the LHC was also studied by Frankfurtet al. [151]. The result (solid
curve in Fig. 7.33) is about 10% higher than their result for the impulse approximation (no shadowing).
The difference may be due to the slightly different photon spectrum and slope ofdσ/dt in photon-proton
interactions.

At the LHC, the cross sections are very large for bothpp andAA collisions, and obtaining good
event samples should be relatively straightforward. For the Υ in pp collisions, production tends to be at
large|y|. The rapid rise in cross section,σ ∝ W 1.7 outweighs thedn/dk ∝ 1/k photon spectrum. For
theJ/ψ, theWγp dependence is smaller and nearly ’cancels’ the photon spectrum, leading to a rather
flat dσ/dy. In both cases, it should be easy to obtain good statistics, even with only a central detector.

At the Tevatron, the cross sections are smaller. However, the CDF collaboration has already
observed an apparent exclusiveJ/ψ signal which appears consistent with photoproduction [152]. With
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an appropriate trigger and more data, theΥ should be within reach.

Very roughly, the photoproduction cross section is about 1/1000 of the equivalent hadroproduction
cross sections [153] with moderate variation depending on species and beam energy. Despite the small
fraction, because of the very different event characteristics, clean separation of photoproduction seems
possible.

Hadronically produced vector mesons havepT ∼ MV . In contrast, almost all photoproduced
mesons havepT < 1 GeV (cf. Fig. 7.34). Such a cut eliminates about 94% of the hadroproducedΥ at
the Tevatron [154] while retaining almost all of the photoproduction.

As long as both protons remain intact, the vector meson will not be accompanied by any other
particles in the same event. In contrast, in hadronic events, additional particles are distributed over the
available phase space. A moderate requirement for two rapidity gaps around the vector meson should
remove most of the remaining hadronic background [153], even at RHIC energies. The Fermilab results
on exclusiveJ/ψ production appear to bear this out.

For heavy-ion collisions, the situation is even simpler since most of the coherent vector meson
production is atpT < 100 MeV/c. In addition, the ions can be required to remain intactand/or rapidity
gaps can be required. These techniques were effective in isolating theρ0 in STAR [149]. In 2004, the
RHIC experiments collected a large data sample of Au+Au collisions at

√
sNN = 200 GeV. Thus large

experiments should be able to observeJ/ψ photoproduction and measure gluon shadowing in the region
x ≈ 0.015.

9.3 Interference and thepT spectrum

Photoproduction inpp andpp collisions differs from production inep or eA collisions in that either pro-
jectile can act as photon source or target. For small mesonpT , the two possibilities are indistinguishable
so that the amplitudes add [155]. The vector meson production is well localized to in or near (within 1
fm of) the two sources, giving a cross section of

σ = |A1(y) ∓A2(y) exp i(~pT ·~b )|2 (7.62)

whereA1(y) andA2(y) are the amplitudes for photoproduction at the two sources and the propagator,
exp i(~pT ·~b ), accounts for the ion-ion separation. The relative sign of the two amplitudes depends
on the symmetry of the system. Forpp andAA collisions, transforming from nucleus 1 emitting a
photon which interacts with nucleus 2, to nucleus 2 emittinga photon which interacts with nucleus 1 is
a parity transformation. Vector mesons are negative parity, so the sign is negative. Forpp collisions, the
transformation isCP , positive for vector mesons, giving a positive sign.
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At mid-rapidity,A1 = A2 and

σ = σ0

(
1 ∓ cos (~pT ·~b )

)
(7.63)

whereσ0 is the cross section without interference. The interference depends on the unknown impact
parameter which must be integrated over.

Without interference, thepT spectrum is that for production off a single (anti)proton. This spec-
trum is the convolution of the photon transverse momentum spectrum with the spectrum of transverse
momentum transfers from the target [155]. ForpT > ~/〈b〉, cos(~p T ·~b ) oscillates rapidly asb varies,
giving a zero net contribution to the integral. For small transverse momenta, however,~p ·~b < ~ for all
relevant impact parameters and interference alters the spectrum. This alteration has been observed inρ0

production at RHIC [156].

Figure 7.34 comparesd2σ/dydt with and without interference at RHIC and the Tevatron. Fig-
ure 7.34 includes abmin = 1.0 fm cut which has a small effect on the spectrum. The interference is large
for t < 0.05 GeV2/c2. The different sign of the interference inpp andpp is clearly visible.

Photoproduction of other final states should also be accessible at existing and futurepp andpp
colliders. Open charm, bottom and even top quark productionshould be accessible [157] in ion-ion and
deuterium-ion collisions and could be used to measure the charge of the top quark as well as determine
the nuclear gluon distributions. These events would have only a single rapidity gap but the experimental
techniques should be similar. Because of the large rates, atleast for ion-ion collisions, the signal to noise
ratios should be high.

To summarize, we have calculated the heavy vector meson photoproduction cross sections inpp
andpp collisions. The cross sections are large enough for this reaction channel to be observed experimen-
tally. Thedσ/dt distribution is distinctly different inpp andpp collisions because of the interference
between the production sources. The cross section for producing Υ mesons in coherent photonuclear
Pb+Pb interactions at the LHC is large. Because of the distinctive experimental signature, these reac-
tions should be easy to detect.

10. Outlook11

Recent advances in lattice and analytical calculations described in this Chapter have significantly im-
proved the theoretical understanding of heavy quarkonium dynamics in hot QCD matter. In fact, since
many of the recent results came as a surprise, they still needto be analyzed, improved upon, and clarified.

The list of open issues which can be addressed by theory and experiment in the near future in-
cludes:

11Authors: D. Kharzeev, M. P. Lombardo, C. Lourenço, M. Rosati, H. Satz
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• Lattice QCD at finite temperature:
What is the critical temperature at which different quarkonium states dissociate? What is the
influence of temperature on the masses, dispersion relations, and widths of quarkonia? How big is
the influence of light quarks? What are the properties of strongly interacting matter in the vicinity
of the deconfining transition and how do they compare with phenomenological models?

• Lattice QCD at zero temperature:
What are the matrix elements of different gluon and quark operators of various dimension which
are related to quarkonium dissociation?

• Analytic theoretical calculations at zero temperature:
Analyze the expressions for quarkonium dissociation amplitudes, and relate them to the matrix
elements which can be computed on the lattice. Apply and testtheoretical approaches developed
for the studies of quarkonium dissociation to exclusive quarkonium decays and quarkonium pro-
duction; understand the range of validity of various approaches.

• Analytic theoretical calculations at finite temperature:
Understand the properties of Quark-Gluon Plasma in the vicinity of the deconfinement phase tran-
sition; identify the dynamical degrees of freedom and applythis knowledge to understanding the
lattice results at finiteT . Try to develop a quantitative theory of quarkonium interactions with hot
QCD matter.

• Experiment:
Collect data on the nuclear dependence of the production of different quarkonium states, including
theχ family, in pA collisions in a broad range ofxF (rapidity), and different energies. Refine the
data on quarkonium suppression in nucleus–nucleus collisions at SPS energy; improve statistics
on quarkonium suppression in Au+Au (and some other, lighter, AA system) collisions at RHIC;
prepare for the LHC. Measure photoproduction cross sections to determine the nuclear gluon den-
sity.

To summarize, impressive progress in the physics of quarkonium interactions with QCD media
has been made in recent years. It has already become clear that the physics of heavy quark bound states
in QCD media is a rich and promising field of theoretical and experimental studies. Nevertheless, even
a brief examination of the list above shows that a lot more hasto be done before one can claim an
understanding of quarkonium interactions in media.
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Chapter 8

BEYOND THE STANDARD MODEL

Convener:M. Sanchis-Lozano
Authors:J. P. Ma, M. Sanchis-Lozano

1. General overview

During the last years, a large amount of new data on charmonium and bottomonium production and
decays have been collected inB-factories, Tevatron, HERA and BEPC, greatly improving theaccuracy
of the measured widths and branching fractions. Such measurements, together with the soundness of
the theoretical background based on effective field theories, could show up possible deviations from
SM expectations, thereby pointing out the existence of NP. Lepton flavour and CP violation in heavy
quarkonia decays are good examples of such precision physics. Moreover, in the past radiative decays of
heavy quarkonium were employed in the search for axions and Higgs particles according to the Wilczek
mechanism [1]. Recently, the possibility of relatively light non-standard Higgs bosons (which might
have evaded LEP searches) has been pointed out in different scenarios beyond the SM [2–4]. Therefore,
discovery strategies should be conducted to detect possible signals of new physics from heavy quarkonia
decays.

2. Prospects to detect new physics

Heavy quarkonium offers an interesting place where probingNP which would manifest experimentally
in different ways: a) slight but observable modifications ofdecay rates and branching fractions; b) unex-
pected topologies in decays; c) CP and lepton flavour violation, etc. Along this chapter we will discuss
in some detail three proposals to search for new physics and the prospects to detect non-standard light
particles based on decays of heavy quarkonium:

• CP test withJ/ψ decays, probing the electric and chromo-dipole moments of charm quarks

• Lepton flavour violation inJ/ψ’s tow-body decays

• Non-standard Higgs-mediated leptonic decays of Upsilon resonances

Moreover, let us mention other possibilities (not developed further in this chapter) to seek NP:

• Inspired by string-like scenarios, field theories formulated in noncommutative spaces should be
explored. In particular, noncommutative QCD corrections to the gluonic decays of heavy quarko-
nia have been analyzed in [5]. Despite proving the consistency of perturbative calculations in
this model, the inclusion of such corrections does not change substantially the magnitudes of the
hadronic widths, thereby making difficult the experimentaltest.

• A relatively light bottom squark and gluino sector in supersymmetry was put forward some time
ago [6] to explain the longstanding discrepancy on the bottom hadroproduction cross section be-
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tween theory and experiment found at Tevatron [7, 8]. Under this hypothesis, interesting conse-
quences could show up in bottomonium phenomenology [9–11],e.g. the decay modes

Υ → b̃b̃∗ ; χb → b̃b̃∗, Υ → γ S̃ ; Υ → γ ηg̃

If the bottom squark was relatively“stable” it might yield aB̃− or aB̃0 “mesino” (the superpart-
ner of the B meson) by picking up āu or ad̄ quark, respectively. Such a meson has baryon number
zero but would act like a heavȳp (of mass∼ 3− 7 GeV). In fact at LHC experiments it could fake
a heavy muon in muon chambers but leaving some activity in thehadron calorimeter; ionization,
time-of-flight and Cherenkov measurements would be consistent with a particle whose mass is
heavier than a proton. However, recently a more accurate description of theb-quark fragmentation
function has substantially reduced the difference betweentheoretical expectations and experimen-
tal results in bottom hadroproduction [12,13]. Although the situation is not definitely settled, now
the claim for a new physics contribution in bottom production is not compelling at all. Besides, a
throughout analysis of thee+e−→hadrons cross section from PEP, PETRA, TRISTAN, SLC and
LEP allows the95% C.L. exclusion of sbottom with mass below7.5 GeV [14]. Also a light gluino
mass less than6.3 GeV has been excluded [15].

3. Precision tests usingJ/ψ decays

Huge amount of data (to be) collected ine+e− factories like BEPC (and the upgraded BEPCII) and
CLEO should allow to test some aspects of the SM to an unprecedented accurracy. In the following
sections we describe two research lines based onJ/ψ rare decays.

3.1 CP test withJ/ψ decays1

We open this review on searches for new physics by remarking that a nonzero electrical dipole moment
(EDM) of a quark or a lepton implies that CP symmetry is violated. Actually, EDM’s of quarks and
leptons are very small from the SM (see [16–18] and references therein). If the EDM of a quark is found
to be nonzero, it is likely an indication of new physics.

Since the operator for EDM does not converse helicities of quarks, its effect is suppressed in a high
energy process by a factormq/E, wheremq is the quark mass andE is a large energy scale. For light
quarks, useful information can be obtained through measurement of the EDM of the neutron [16]. So far
there is no experimental information about EDM’s of heavy quarks, like charm- and bottom quark.J/ψ
decays can provide information of EDM of charm quark and has the advantage that the effect of EDM
will be not suppressed, because the large energy scale is aroundmc. Since in radiative decays acc̄ pair
is annihilated into a photon and gluons, it also provides a way to detecting the chromodipole moment of
the charm quark. These moments are defined by the effective Lagrangian:

LCP = −idc
2
c̄γ5σµνF

µνc− i
d̃c
2
c̄γ5σµνG

µνc, (8.1)

wheredc is the electric dipole moment,̃dc is the chromodipole moment.

In general a CP symmetry test requires a large data sample because the effect of its possible
violation is expected to be very small. In the following we focus onJ/ψ decays [19] as large data
samples already exist or will be collected at BEPC and CLEO-C. Indeed, such huge data samples (with
107 ∼ 1010 J/ψ’s) are very suited for CP tests. However, not every decay mode of J/ψ can be used
for this purpose. For aJ/ψ decay into a particle and its antiparticle, a CP test is not possible if these
particles are spinless or their polarizations are not observed [18, 20]. It is only possible if polarizations
of decay products are measured. The decayJ/ψ→ΛΛ̄ is an example, where the polarizations can be
determined through subsequential decays ofΛ andΛ̄ [21].

1Author: Jian-Ping Ma
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On the other hand, a CP test can be carried out for three-body decays, even without knowing the
polarizations of the decay products. This is the case of theJ/ψ→γφφ decay mode, which can provide
useful information about the charm quark EDM. The reason forchoosing this channel is becauseφ is
a very narrow resonance, just aboveKK̄ threshold, and can be clearly identified by itsK+K− decay
mode in experiment. In principleJ/ψ→γρρ could also serve for the purpose, but experimentally the
broad width ofρ meson makes it impossible to get a clean sample from this channel. Therefore, let us
consider the decay in the rest-frame ofJ/ψ produced at ae+e− collider:

e+(k+) + e−(k−)→J/ψ(P )→γ(k) + φ(p1) + φ(p2), (8.2)

where momenta are given in brackets. Because the twoφ mesons are identical particles, we require
p0
1 > p0

2 to distinguish them in experiment. In our case two CP-odd observables can be constructed:

O1 = k̂+ · p̂1k̂+ · (p̂1 × p̂2), O2 = k̂+ · p̂2k̂+ · (p̂1 × p̂2), (8.3)

where momenta with a hat denote their directions. From theseoberservables, one can define the CP -
asymmetry as

Bi = 〈θ(Oi) − θ(−Oi)〉 (i = 1, 2), (8.4)

whereθ(x) = 1 if x > 0 and is zero ifx < 0. If these asymmetries are not zero, CP symmetry is
violated.

In calculating these asymmetries, we will use nonrelativistic wave-functions forJ/ψ and also forφ
mesons. It should be noted that reliable predictions for various distributions can not be obtained with this
approximation. Neverthesless, one may expect that for integrated asymmetries it could become a good
approximation, especially because the integrated asymmetries will not depend on the wave functions at
the origin.

The following CP asymmetries are obtained:

B1 = 4.2

[
dc

10−10e cm

]
− 1.2

[
d̃c

10−10e cm

]
,

B2 = −3.9

[
dc

10−10e cm

]
+ 1.3

[
d̃c

10−10e cm

]
. (8.5)

A statistic sensitivity todc andd̃c can be determined from these results by requiring that the asymmetry
generated by these dipole moments should be larger than the statistical error. With the5.8 × 107 J/ψ
data sample at BES, the sensitivities of such CP asymmetriesto these dipole moments are

dc ∼ 1.4 × 10−13e cm, d̃c ∼ 4.5 × 10−13e cm. (8.6)

With a1010 data sample which will be collected in the near future, the sensitivities are:

dc ∼ 1.2 × 10−14e cm, d̃c ∼ 3.6 × 10−14e cm. (8.7)

To conclude this section: With large date samples ofJ/ψ, which are collected at BES and will
be collected with BESIII and CLEO-C program, a CP test is possible with J/ψ decays. By using the
decay modeJ/ψ→γφφ, the electric- and chromo-dipole moment can be probed at order of10−13e cm ∼
10−14e cm.

3.2 Lepton flavour violation

In the SM, lepton flavour number is independently conserved provided that neutrinos are massless, al-
though (being a global symmetry) there is no fundamental dynamical principle requiring its conservation.
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Actually, lepton flavour is violated in many extensions of the SM, such as grand unified theories [22],
supersymmetric models [23], left-right symmetric models [24] and models where the electroweak sym-
metry is dynamically broken [25]. Recent results [26, 27] indicate that neutrinos indeed have nonzero
masses and can mix with each other; therefore, lepton flavouris a broken symmetry in nature. Here,
we focus on lepton flavour violation (LFV) via the two-bodyJ/ψ decay (which conserves total lepton
number):

J/ψ→ℓℓ′

with ℓ andℓ′ denoting charged leptons of different species. This process could occur at tree-level induced
by leptoquarks, sleptons (both in thet-channel) or mediated byZ ′ bosons (in thes-channel) [28, 29] in
correspondence with the aforementioned scenarios.

The large sample (5.8 × 107 events) collected in leptonic decays ofJ/ψ resonances at BEPC and
analized by BES up to now makes this search especially interesting; in fact, upper limits for different
lepton combinations have already been set at 90% C.L. [30,31]:

B(J/ψ→µτ) < 2.0 × 10−6

B(J/ψ→eτ) < 8.3 × 10−6

B(J/ψ→eµ) < 1.1 × 10−6

In the future, larger samples collected at BEPC(II) should allow to test LFV at a higher precision,
severely constraing new physics models. Similarly, estimates of the LFV Upsilon decayΥ→ℓℓ′ can be
found in [29].

4. Searches for light pseudoscalars inΥ decays

In many extensions of the SM, new scalar and pseudoscalar states appear in the physical spectrum. Ad-
mittedly, the masses of these particles are typically of thesame order as the weak scale and, in principle,
a fine-tunning is required to make them much lighter. Nevertheless, if the theory possesses a global sym-
metry, its spontaneous breakdown gives rise to a massless Goldstone boson, the“axion”. The original
axion [32] was introduced in the framework of a two-Higgs doublet model (2HDM) to solve the strong
CP problem. However, such an axial U(1) symmetry is anomalous and the pseudoscalar acquires a (quite
low) mass which has been ruled out experimentally. Thus, theorists have looked for other models (by
relaxing model parameter constraints) and axion-like particles, not running into conflict with present
terrestrial experiments and astrophysical limits (see [33] and references therein).

On the other hand, if the global symmetry is explicitly (but slightly) broken, one expects a pseudo-
Nambu-Goldstone boson in the theory which, for a range of model parameters, still can be significantly
lighter than the other scalars. A good example is the so-called next to minimal supersymmetric standard
model (NMSSM) where a new gauge-singlet superfield is added to the Higgs sector [34]. The mass of the
lightest CP-odd Higgs can be naturally small due to a global symmetry of the Higgs potential only softly
broken by trillinear terms [2]. Moreover, the smallness of the mass is protected from renormalization
group effects in the largetan β limit. Actually, there are other scenarios containing a light 2 pseudoscalar
Higgs boson which could have escaped detection in the searches at LEP-II, e.g. a MSSM Higgs sector
with explicit CP violation [4]. Another example is a minimalcomposite Higgs scenario [3] where the
lower bound on the CP-odd scalar mass is quite loose, as low as∼ 100 MeV (from astrophysical con-
staints).

Thus we conclude that the existence of a relatively light pseudoscalar Higgs (to be denoted as
A0 hereafter) is not in contradiction with current experimental data and could be accomodated within
well motivated extensions of the SM. Therefore, it is worth to revisit some of the“old” techniques to
search for non-standard particles in quarkonia decays, also exploring new possibilities like a possible
breakdown of lepton universality inΥ decays.

2By “light” we consider here a broad interval which might reach a≃ 10 GeV mass value
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4.1 Υ(J/ψ)→γ +X0

Heavy resonances have been helpful so far putting limits in the searches for extensions of the SM through
the radiative decay channel

Υ(J/ψ) → γ + X0

whereX0 stands for a weakly interacting (experimentally unseen) particle. This decay mode represents,
in essence, the Wilczek mechanism [1] for the real emission of either a Higgs boson or an axion from
quarkonium. The experimental signature would be very clean: the observation of a single photon with
a considerable missing energy in the event. Let us observe that this would be so if theX0 is suffi-
ciently stable, i.e. the probability to decay inside the detector (of typical sizer ∼ 10 m) is quite small,
ΓX0 << EX0/mX0r, whereEX0 andmX0 denote the (laboratory) energy and mass of the unseen par-
ticle, respectively. Notice, however, that the chances to leave unseen the detector decrease for values of
mX0 close toEX0 as the Lorentz dilation factor approaches unity. To date, noevidence has been found
and limits have been set as a function of the mass of theX0 particle [35]. Note that such limits inΥ de-
cays only exclude particles below5−7 GeV! [36] Thus, in view of the renewed interest in pseudoscalars
whose mass may lie around 10 GeV, an open mind should be kept inthose and related searches.

4.2 Non-standard Higgs-mediated leptonic decays ofΥ resonances

In the previous section we considered the possibility of emission by heavy quarkonium of a real, long-
lived but unseen particle. However, if the emitted particlewidth is large enough, the particle would
promptly decay and its products could make possible its observation by the detector. On the other
hand, virtual poduction of (off-shell) particles should bealso analized. In this section we examine the
possible existence of a CP-odd Higgs mediating the annihilation of thebb̄ pair (subsequent to a magnetic
dipole transition of the Upsilon resonance) into a final-state dilepton (see Fig. 8.1). This channel would
constitute a rare decay mode of theΥ resonance, observable however if the Higgs mass is not too far from
theΥ mass and the couplings are not small. In fact, rare decays have been traditionally employed for
seeking new physics, in particular looking for extensions of the Higgs sector of the SM. Let us mention,
as a significant example, the (flavor-changing neutral current) decays of B mesons into lepton pairs (e.g.
B0
s,d→µ+µ−), where a non-standard Higgs-mediated contribution couldmodify (enhancing) the SM

decay rates [37].
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Fig. 8.1: (a)[upper panel]: Electromagnetic annihilationof a Υ(1S) resonance into a charged lepton pair through a virtual

photon; (b)[lower panel]: Hypothetical annihilation of anintermediateη∗b state (subsequent to a M1 structural transition yielding

a final-state soft photon) into a charged lepton pair througha CP-odd Higgs-like particle denoted byA0.

As pointed out in a series of recent papers [38–40], bottomonium also offers the possibility of
testing extensions of the SM by looking at possible non-standard Higgs-mediated leptonic decay channels
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Fig. 8.2: Requiredtan β values (shaded area) as a function of∆m needed to account for a∼ 10% breakdown of lepton

universality inΥ decays according to a 2HDM(II). The vertical dotted line shows the range oftan β for ∆m = 250 MeV used

in [39] as a reference value.

of Upsilon resonances below theBB̄ threshold, in addition to the dominating electromagnetic mode

Υ(nS)→γ∗→ℓ+ℓ− (ℓ = e, µ, τ, n = 1, 2, 3)

We shall focus as a theoretical background on a general 2DHM of the type II [34] where down
fermions couple to the Higgs boson proportionally to the ratio (tan β) of the two Higgs vacuum expec-
tation values. Nevertheless, the main conclusions can be extended to different scenarios predicting other
Higgs-like particles with analogous phenomenological features.

Let us assume that a prior magnetic dipole (M1) direct transition from the initial-stateΥ can take
place yielding a pseudoscalarbb̄ intermediate state as shown in Fig. 8.1, subsequently annihilating into a
lepton pair via a non-standardCP -odd Higgs bosonA0:

Υ(nS) → γs η
∗
b (→ A0→ ℓ+ℓ−) (ℓ = e, µ, τ, n = 1, 2, 3)

whereγs stands for an undetected soft photon with energy in the range35-150 MeV, depending on
the still unknownΥ − ηb hyperfine splitting. As the photon is quite soft, the M1-transition probability
PΥ(η∗bγs) was roughly obtained in [39, 40] from a textbook expression relating on-shell states. A con-
sequence of the existence of this kind of NP would be the“apparent”3 breaking of lepton universality
based on the two following keypoints:

• In the experimental determinations of the leptonic BF of theUpsilon resonances, the Higgs con-
tribution would be unwittingly ascribed to the leptonic decay mode as the radiated photon would
remain undetected. This would be especially the case for theτ± channel4

• The leptonic (squared) mass dependence in the width from theHiggs contribution would introduce
a dependence on the leptonic species in the leptonic BF. The effect would only be noticeable in the
tauonic decay mode as the electron and muon masses are much smaller than the tau mass.

Current experimental data (see Table 8.1) may indeed hint that there is a difference of order10% in
the BFs between the tauonic channel on the one side, and the electronic and muonic modes on the other
side [39]. The range of thetan β needed to account for such an effect is shown in Fig. 8.2 as a function
of the mass difference (∆m) between the non-standard Higgs and theηb(1S) resonance, applying the

3In the sense that once the Higgs contribution were taken intoaccount, lepton universality would be restored
4The leptonic mass squared with a final-state photon is given by m2

ℓℓ = m2
Υ(1 − 2Eγ/mΥ). HenceEγ is much more

limited by invariant mass reconstruction of either final-state electrons or muons than for tau’s where such constraint is not
applicable.
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channel: e+e− µ+µ− τ+τ−

Υ(1S) 2.38 ± 0.11 2.48 ± 0.06 2.67 ± 0.16

Υ(2S) 1.34 ± 0.20 1.31 ± 0.21 1.7 ± 1.6

Table 8.1: Measured leptonic BF’s and error bars in% of Υ(1S) andΥ(2S) (from [36]).

factorization of the decay width used in [39]. The upper and lower curves correspond to the maximal and
mimimal estimates of the M1-transition probabilityPΥ(η∗bγs), respectively. For the large values of∆m,
only the lower values of the shaded region would be acceptable, corresponding to the higher estimates of
PΥ(η∗bγs).

In addition to the postulated breaking of lepton universality, other experimental signatures which
would eventually support the conjecture on a CP-odd Higgs boson showing up in bottomonium spec-
troscopy and decays are:

• A Υ− ηb hyperfine splitting larger than expected from quark potential models, caused byA0 − ηb
mixing. A mass splitting significantly larger than 100 MeV could be hardly accomodated within
the SM

• A rather large full width of theηb resonances due to the NP channel (especially for high valuesof
tan β)

• If, instead, theηb state is not too broad (as this would be the case for the lowestvalues oftan β in
Fig. 8.2), one could look for monoenergetic photons with energy of order 100 MeV (hence above
detection threshold) in those events mediated by the CP-oddHiggs boson (estimated to be about
10% of all Υ tauonic decays)

4.21 Spectroscopic consequences for bottomonium states

In view of our previous considerations, one can speculate about a quite broadηb resonance (e.g.Γηb >∼ 30
MeV) 5 which might partially explain why there was no observed signal from the hindered radiative
decays of higher Upsilon resonances in the search performedby CLEO [41, 42]. Indeed the signal peak
(which should appear in the photon energy spectrum) could beconsiderably smoothed - in addition to the
spreading by the experimental measurement - and thereby might not be significantly distinguished from
the background (arising primarly fromπ0’s decays). Of course, the matrix elements for the hindered
M1 transitions are expected to be small and difficult to predict as they are generated by relativistic and
finite size corrections. Nevertheless, most of the theoretical calculations are ruled out by CLEO results
(at least) at a90% CL (see a compilation in [43]), though substancially lower rates are obtained in [44]
where exchange currents play an essential role and currently cannot be excluded. Notice finally that a
large full width of theηb resonance would bring negative effects on the prospects forits detection at the
Tevatron through the double-J/ψ decay:ηb→J/ψ+J/ψ. Indeed, the expected BF would drop by about
one order of magnitude with respect to the range between7 × 10−5 and7 × 10−3 assumed in [45].

Furthermore, another interesting possibility is linked toaA0−ηb mixing [46] which could sizeably
lower the mass of the mixed (physical)ηb state, especially for hightan β values starting from similar
masses of the unmixed states [39]. Then the signal peak in thephoton energy plot could be (partially)
shifted off the search window used by CLEO [41, 42] towards higherγ energies (corresponding to a
smallerηb mass6 perhaps contributing additionally to the failure to find evidence about the existence of
theηb resonances to date.

The mass formula for the physicalA0 andηb states in terms of the unmixed states (denoted asA0
0

andηb0 respectively), and the off-diagonal mass matrix elementδm2 ≃ 0.146 × tan β GeV2, for quite
5One expectsΓηb(1S) ≃ 4 MeV using the asymptotic expressionΓηb

≃ mb/mc × [αs(mb)/αs(mc)]
5 × Γηc and setting

the measuredΓηc(1S) = 16 ± 3 MeV [36]
6This would be the case if the (unmixed) CP-odd Higgs boson hada mass greater than the (unmixed)ηb resonance [46]
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narrow resonances (i.e.Γηb0 , ΓA0
0
≪ mηb0 , mA0

0
) reads [39]:

m2
ηb,A0 ≃ 1

2
(m2

A0
0
+m2

ηb0
) ∓ 1

2

[
(m2

A0
0
−m2

ηb0
)2 + 4(δm2)2

]1/2

which yields in the case of the physicalηb andA0 particles for different mass intervals:

mηb,A0 ≃ mηb0 ∓ δm2

2mηb0

; 0 < m2
A0

0
−m2

ηb0
<< 2 δm2

mηb,A0 ≃ mηb0,A
0
0
∓ (δm2)2

2mηb0(m
2
A0

0
−m2

ηb0
)

; m2
A0

0
−m2

ηb0
>> 2 δm2

As a particular but significant example, assuming for the masses of the unmixed statesmηb0 ≃ mA0
0

=
9.4 GeV and the moderatetan β = 12 value, one gets for the physical statesmA0 ≃ 9.5 GeV andmηb ≃
9.3 GeV respectively, which corresponds to a mass differencemΥ(1S) − mηb(1S) ≃ 160 MeV. Higher
tan β values would, in principle, lead to larger mass shifts. However a caveat is in order: the hyperfine
splitting (enhanced by the mixing) cannot raise unlimitedly, since the dependence on the third power of
the photon energy inPΥ(η∗bγs) (corresponding to a magnetic dipole transition) would eventually push
up the new physics contribution for the tauonic BF beyond thepostulatedO(10%) effect.

To end this section, let us point out that CLEO has completed detailed scans of theΥ(nS)
(n = 1, 2, 3) resonances and we want to stress the relevance of these measurements (aside other ap-
plications) for testing more accurately the possible existence of NP by a more precise determination of
the electronic, muonic and tauonic BFs ofall three resonances below open bottom threshold. In case
no lepton universality breaking is definitely found, some windows in thetan β-mA0 plane for such a
non-standard CP-odd light Higgs boson would be closed.

5. Summary

Quarkonium phenomenology should play an important role to explore new physics as it did in the past
to develop the SM. Annihilation and radiative decays of resonances are well suited for testing symmetry
conservation laws, as well as searching for (relatively) light particles arising in diverse scenarios beyond
the SM, in addition to a much heavier sector.

The expected large statistics ofJ/ψ and Υ resonances, to be collected ate+e− and hadronic
colliders along the next few years, makes heavy quarkonium physics especially convenient to conduct
high precision studies and the quest for new particles and new phenomena. In this chapter, we have
particularly developed three issues concerning CP and lepton-flavour violation inJ/ψ decays, and a
possible lepton universality breaking inΥ decays indicating the existence of a non-standard light Higgs
boson. An open mind should be kept regarding those and other possible phenomena beyond the SM in
heavy quarkonium physics.
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Chapter 9

FUTURE EXPERIMENTAL FACILITIES

Conveners:S. Godfrey, M. A. Sanchis-Lozano

Authors:D. Bettoni, P. Crochet, S. Godfrey, F. Harris, A. Hoang, O. Iouchtchenko, A. Nairz, J. Napoli-
tano, S. Olsen, P. Petreczki, M. A. Sanchis-Lozano, O. Schneider, A. Zieminski

Opportunities for quarkonium physics abound from a broad range of complementary facilities;
CESR-c/CLEO-c, BECPII/BESIII, B-factories, CDF and D0 (and BTEV) at the Tevatron, RHIC, GSI,
and the LHC. In this chapter we revise those future facilities reviewing and suggesting experimental
measurements that can be used as a roadmap for future directions in quarkonium physics.

1. Tevatron

Tevatron is an existing facility offering an exciting program on future opportunities for heavy quarkonium
physics both in the short, middle and long terms (e.g. BTeV, with data taking foreseen in 2009). By the
time of the August 2004 shutdown, each experiment (CDF and D0) had collected approximately 500
pb−1 of data on tape. The numbers of reconstructed quarkonium states are quite impressive: 2.5M and
4M J/ψ candidates collected by D0 and CDF, respectively. D0 reported over 50kΥ(1S) events in the
data sample corresponding to 200 pb−1.

Run II at the Tevatron will provide a substantial increase inluminosity (about 1.4 fb−1 delivered
to CDF and D0 by the end of 2005 and 8.5 fb−1 by 2009) and will allow the collider experiments to
determine theJ/ψ, ψ(2S) andχc cross sections more precisely and at a largerpT range. An accurate
measurement of theJ/ψ andψ(2S) polarization at large transverse momentum will be the most crucial
test of NRQCD factorization. In addition, improved data on theJ/ψ andψ(2S) cross sections will help
to reduce some of the ambiguities in extracting the color-octet matrix elements.

With increased statistics it might be possible to access charmonium states such as theηc(nS) or
thehc(nP ). Heavy-quark spin symmetry provides approximate relations between the non-perturbative
matrix elements that describe spin-singlet and spin-triplet states. The matrix elements forηc(nS) are
related to those forψ(nS), while the leading matrix elements forhc(nP ) can be obtained from those for
χc(nP ). Within NRQCD, the rates forηc(nS) andhc(nP ) production can thus be predicted unambigu-
ously in terms of the non-perturbative matrix elements thatdescribe theJ/ψ, ψ(2S) andχc production
cross sections. A comparison of the various charmonium production rates would therefore provide a
stringent test of NRQCD factorization and the heavy-quark spin symmetry. The cross sections for pro-
ducing theηc and thehc at Run II of the Tevatron are large [1, 2], but the acceptancesand efficiencies
for observing the decay modes on which one can trigger are, ingeneral, small, and detailed experimental
studies are needed to quantify the prospects. Other charmonium processes that have been studied in the
literature include the production ofD-wave states [3],J/ψ production in association with photons [4,5],
and double gluon fragmentation toJ/ψ pairs [6].
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On the other hand, Run II of the Tevatron will also allow the collider experiments to improve the
measurement of the bottomonium cross sections. As yet undiscovered states, such as theηb(1S), could
be detected, for example, in the decayηb→J/ψ + J/ψ [7] or in the decayηb→D∗ +D(∗) [8], and the
associated production ofΥ and electroweak bosons might be accessible [9]. If sufficient statistics can be
accumulated, the onset of transverseΥ(nS) polarization may be visible atpT (Υ) > 15 GeV.

In sum, the future large statistics data will be used for:

Production Studies
• Detailed differential cross section measurements covering the transverse momentum range

up to at least 30 GeV and rapidity range up to probably 1.1 (CDF) and 2 (D0), respectively.

• Determination of fractions of quarkonium states produced through the radiativeχ decays.
The γ→ee conversions provide a mass resolution sufficient to separate contributions from
individual χ states (both for theχc andχb case). Both experiments have already demon-
strated their potential to do such studies.

• Cross sections for direct production of quarkonium states (J/ψ, ψ(2S),Υ(1S)) will be es-
tablished.

• Polarization ofJ/ψ, ψ(2S) andΥ states will be measured.

• Associated production of quarkonium states, e.g. doubleJ/ψ production.

• Associated production of quarkonium states and heavy quarks, e.g.J/ψ production in asso-
ciation withcc̄ pairs.

Quarkonium decays A large sample ofψ(2S)→J/ψπ+π− decays can be used for a better determina-
tion of the dependence of the decay matrix element on the invariant di-pion mass. The observed
event accumulation rate is over 5,000/fb−1 (D0) and 25,000/fb−1 (CDF). However, BES accumu-
lated statistics for this channel will be difficult to beat.

X(3872) state properties The two experiments collected approximately 500 (D0) and 750 (CDF)
X(3872)→J/ψππ decays per 230 pb−1 of data. Studies of theX(3872) properties will con-
tinue as the statistics increase. The quantities to measureinclude the fractions ofX(3872) states
produced viab-quark decays as a function of the production transverse momentum, the decay ma-
trix element dependence on the invariant mass of two final state pions,m(ππ), and the di-pion
resonance contribution to the decay process.

Searches for exotics decaying into final states involving quarkonia CDF searches for strange and char-
med pentaquarks have been widely publicized. CDF is also looking for the (u d u s b̄) pentaquarks
decaying into theJ/ψp final state.

Hadron decays into charmonia Exclusive B hadron decays into final states involving aJ/ψ have been
used for the world’s best determination of theBs andΛb masses and their lifetimes. TheB→VV
decays (where one of the vector decay products is aJ/ψ) are being used for time-dependent
polarization amplitude studies. These studies have led to the determination of lifetime differences
of the CP-odd and CP-evenBs mass eigenstates. They also provide tests of factorization, i.e.
representing the weak decay matrix element as a product of two independent hadronic currents.

Bc studies Both collaborations are advancing their analyses of theBc mass and lifetime with Run II data.
The yield of observed events in theBc→J/ψµ + X semileptonic decay channel is approximately
250 events/250 pb−1 (D0). These studies require large statistics and a good understanding of
the fake muon background in order to reduce systematic uncertainties. A search for exclusive
Bc→J/ψπ decays is also underway in both experiments.

2. CLEO-c

CLEO-c is an experiment that makes use of the upgraded CLEO-III detector, at the upgraded CESR
storage ring. The storage ring (dubbed CESR-c) will use 12 wiggler magnet systems to give increased
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luminosity at low energies. This section reviews the CLEO-cexperimental program, with particular
emphasis on charmonium physics. The full details of CLEO-c and CESR-c are available in Ref. [10].

2.1 Charmonium physics with theψ(2S)

CLEO-c has already begun taking data on theψ(2S). The inclusive photon spectrum from the first data
set is shown in Fig. 9.1.
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Fig. 9.1: The inclusive photon spectrum fromψ(2S) decay. The data were taken with the CLEO-III detector, priorto the

CLEO-c upgrade. The peaks from single photon transitions between charmonium states are evident. This already exceeds the

data volume acquired by the Crystal Ball at SLAC.

More running, with an upgraded CESR and higher instantaneous luminosity, is in the planning
stages for theψ(2S). (In fact, at the time of writing, more data has already been taken.) Depending
on running conditions and the will of the collaboration (seeSec. 2.4), a very largeψ(2S) data set may
eventually be accumulated. It is possible that this runningmay be traded for integrated luminosity on the
J/ψ. (See Sec. 2.3.)

Potential physics opportunities with theψ(2S) include the following:

• Inclusive photons. Absolute branching fractions forψ(2S)→γηc andψ(2S)→γηc(2S) will be
measured, although no signal for the former is evident (yet). Note that the mass of theηc(2S) is
now accurately known from B-meson decay at Belle [11] and from γγ fusion at CLEO [12].

• Detailed studies ofχc0, χc1, andχc2. High statistics single-photon tags of the intermediateχc
states will allow various measurements of their decay branching fractions.

• Hadronic decays ofψ(2S). A prime goal is to search for thehc in ψ(2S)→π0hc. The decay
ψ(2S)→ρπ will also be searched for, a branching ratio which is anomalously small.

• Exotica fromψ(2S) decay. Radiative decay of high mass vectors is expected to bea prime source
for glue-rich final states. (See the discussion in Sec. 2.3.)Although one expects the majority of
this data to come fromJ/ψ running,ψ(2S) decay would also allow flavor tagging through the
hadronic decays where a low mass vector meson (i.e.ρ, ω, φ) replaces the radiative photon. The
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possibility of studyingJ/ψ decay usingψ(2S) running and tagging theJ/ψ fromψ(2S)→ππJ/ψ
is also being investigated.

2.2 Physics at theψ(3770)

CLEO-c has already begun taking a large data sample (eventually 3 fb−1) at theψ(3770). The main goal
of this running is to acquire a large sample of taggedDD̄ events, but the opportunity presents itself for
charmonium studies as well.

Measurements include searches for (presumably) rare decays of theψ(3770). Examples are
ψ(3770)→π+π−J/ψ ; inclusive photons fromψ(3770)→γX, where one would expect to detect tran-
sitions toX = χcJ if the branching ratio is greater than about10−3; and the double cascade decay
ψ(3770)→γχc1,c2→γγJ/ψ→γγℓ+ℓ− in which one might detect some ten events or so if there is no
background and the branching ratio forψ(3770)→γχc1,c2 is more than≈ 3×10−4. These results would
provide information on1D1/2S1 mixing.

2.3 Decays of theJ/ψ

An important goal for CLEO-c and CESR-c is to acquire≈ 109 events at theJ/ψ peak. In addition to
various rare decay processes, a prime focus will be to study gluonic excitations through radiative decay,
i.e. J/ψ→γX. The basic idea is shown in Fig. 9.2. A vector resonance can decay to three (but not
two) vector particles. If one of these decay products is a photon, then there is a fair probability that the
remaining two are gluons. Hence, this process is expected togive rise to final state glueballsX [13].
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Fig. 9.2: Radiative decay of vector mesons, such asJ/ψ, to a photon and two gluons. This process is expected to be a copious

source of glueballsX via J/ψ→γX.

2.4 Summary: the CLEO-c schedule

CLEO-c began taking data in October, 2003, and has been running smoothly. An upgrade of CESR-c,
adding more wigglers for higher luminosity, is on track for spring and summer 2004. The facility will
run for approximately three years.

The values of the actual beam energies are decided upon dynamically by the collaboration, and
will depend on technical issues as well as emerging physics cases. The original plan [10] is as follows:

• Act I: Obtain 3 fb−1 at theψ(3770), yielding∼ 1.5 × 106 DD̄ events.

• Act II: Obtain 3 fb−1 at
√
s ≈ 4.1 GeV, yielding∼ 3 × 105 taggedDs decays.

• Act III: Obtain 109 J/ψ.

CLEO-c was encouraged by the QWG to consider running at theψ(2S) for a long period of time, making
use ofψ(2S)→ππJ/ψ to tagJ/ψ. This prospect is being studied, including determination of the final
state polarization of theJ/ψ and detector acceptance issues, as they relate to the ability to carry out a
partial wave analysis.
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3. The BEPCII/BESIII project

The Beijing Electron Positron Collider (BEPC) is going to have a major upgrade, called the BEPCII
project. The BEPCII feasibility report has been officially approved by the Chinese government.

The main physics goals of BEPCII are precision measurementsand searches for new particles and
new phenomena, mainly in the energy region from theJ/ψ to theψ(3770). For example, precision
measurements ofD andDs meson decays will be essential to allow the CKM matrix parameters,Vcs
andVcd, to be determined with a precision of a few percent. Studies of light hadron spectroscopy and
glueball candidates with very high statistics will be necessary to test QCD, in particular lattice QCD
calculations, which should reach precisions of a few percent in the coming years. Searches forD0D̄0

mixing are important to look for physics beyond the standardmodel. The number of important physics
topics in theτ -charm energy region is very large.

Our physics goals require major upgrades of the BEPC to increase its luminosity by two orders of
magnitude and the BES detector to reduce its systematic errors, as well as to adapt to the small bunch
spacing and high event rates. The large scale upgrade will enable BEPC to approach the specifications of
a factory-type machine, whose main parameters are listed inTable 9.1, along with a comparison to those
of the current BEPC.

Parameters Unit BEPCII BEPC

Operation energy (E) GeV 1.0-2.1 1.0-2.5
Injection energy (Einj ) GeV Up to 1.89 1.3
Circumference (C) m 237.5 240.4
Revolution frequency (fr) MHz 1.262 1.247
Lattice type FODO + micro-β FODO + low-β
β∗-function at IP (β∗

x/β
∗

y ) cm 100/1.5 120/5
Natural energy spread (σe) 2. 73E×10−4 2.64E×10−4

Damping time (τx/τy/τe) 25/25/12.5@1.89 GeV 28/28/14@1.89 GeV
RF frequency (frf ) MHz 499.8 199.533
Harmonic number (h) 396 160
RF voltage per ring (Vrf ) MV 1.5 0.6-1.6
Bunch number (Nb) 93 2×1
Bunch spacing m 2.4 240.4
Bunch current (Ib) mA 9.8 @ 1.89 GeV 35 @1.89 GeV
Beam current (colliding) mA 910 @1.89 GeV 2×35 @ 1.89 GeV
Bunch length (σl) cm ∼1.5 ∼5
Impedance (|Z/n|0) Ω ∼0.2 ∼4
Crossing angle mrad ±11 0
Vert. Beam-beam param. (ξy) 0.04 0.04
Beam lifetime hrs. ∼2.7 6-8
Luminosity@1.89 GeV 1031 cm−2s−1 100 1

Table 9.1: Main parameters of BEPCII in comparison with BEPC.

BEPCII will be a double-ring collider with superconductingmicro-β magnets, a 500 MHz RF
system with superconducting cavities, and a low impedance antechamber beam pipe. The second ring
can be accommodated in the existing BEPC tunnel. BEPCII willhave a large horizontal crossing angle
of 11 mrad at the southern interaction region. There will be 93 bunches per ring with a total current of
910 mA in each ring. The peak luminosity of BEPCII will be 1033cm−2 s−1 at the beam energy of 1.89
GeV, which is about 100 times higher than that of the BEPC. Thepeak luminosity at theJ/ψ and at 4.1
GeV c.m. energy will be about0.6× 1033cm−2 s−1. The upgrade of the LINAC will provide full energy
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injection up to 1.89 GeV for “topping off” the beam. The positron injection rate will reach 50 mA/min
compared to the present rate of about 5 mA/min. The numbers ofevents expected for one year of running
for various physics topics are given in Table 9.2.

Physics CM Peak Physics Number of
channel Energy Luminosity cross section Events per Year

(GeV) (1033cm−2s−1) (nb)

J/ψ 3.097 0.6 ∼3400 10 × 109

τ 3.67 1.0 ∼2.4 12 × 106

ψ(2S) 3.686 1.0 ∼640 3.0 × 109

D 3.770 1.0 ∼5 25 × 106

Ds 4.030 0.6 ∼0.32 1.0 × 106

Ds 4.140 0.6 ∼0.67 2.0 × 106

Table 9.2: Number of events expected in one year of running.

Most of the existing utility facilities of the BEPC, after some upgrading, will be used for BEPCII.
A cryogenics system of 1000 W at 4.2 K will be installed for thethree different superconducting devices.
The design of BEPCII will keep the electron beam in the outer ring during the dedicated synchrotron radi-
ation running, and all synchrotron radiation beam lines andthe experimental stations will be unchanged,
but the beam current will be increased from 140 mA at 2.2 GeV to250 mA at 2.5 GeV.

BEPCII is a high luminosity, multi-bunch collider, which requires a comparable high quality de-
tector with modern technology. The main features of the detector are as follows:

• Main draft chamber (MDC): the design features small cell structure, aluminium filled wires, and
He-based gas, with expected performances ofσxy = 130µm, ∆p/p = 0.5% @1 GeV, anddE/dx
= 6-7%. The stepped end plates provide space for the superconducting micro-β magnets;

• Electromagnetic calorimeter (EMCAL): CsI crystals of 15 radiation length (28cm), with expected
performances of∆E/E = 2.5 % @1 GeV andσpos = 0.5 cm/

√
E;

• TOF: plastic scintillators with∆T = 90 ps for the barrel part and∆T = 100 ps for the end caps;

• 1 Tesla superconducting solenoidal magnet;

• Resistive Plate Chambers (RPC) for muon identification: 9 layers interleaved with the iron plates
of the return yoke;

• Trigger: Largely based on FPGA technology and using information of the MDC tracks and EM-
CAL showers, pipelined with a time latency of 6.4µs.

The total estimated budget for the BEPCII will be around 640 million Chinese Yuan (about $77
million US). The Chinese government will provide funding tocover the costs of the machine and the
major part of the detector. Part of the detector cost is expected from international contributions. Interna-
tional cooperation is already helping IHEP on the design andR&D of BEPCII, as well as the production
of some key devices, e.g. Brookhaven National laboratory ishelping on the superconducting micro-β
magnets; KEK is helping on the superconducting RF cavities and the superconducting solenoid magnet.

The preliminary design of BEPCII has been finished. The engineering design is under way and
most parts are finalized. Contracts are already signed for many important items. The project is expected
to be completed by the end of 2006, and physics running is scheduled in 2007.

The great physics potential of BEPCII/BESIII will attract the interest of many physicists who
are warmly welcomed to join the BEPC/BES upgrade and its physics program. The completion of the
BEPC II will add a new machine of “factory class” to the fabricof high energy physics, thus adding new
momentum to the research efforts inτ -charm physics.
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Fig. 9.3: Schematic view of the BESIII detector.

4. B-factories

One of the goals of a Super B-factory is the search for new physics in B-meson decays. Besides, a very
interesting program on quarkonium physics can be undertaken sinceb decays are good sources ofcc̄
states. In this section we will focus on the KEKB facility, although similar expectations and physical
potential applies equally to the SLAC PEPIII project. In particular, there is a proposal to upgrade KEKB
to a Super KEKB with a design luminosity of5 × 1035 cm−2s−1 which is 50 times the peak luminosity
achieved by KEKB. The target annual integrated luminosity is 5 ab−1.

Along with the luminosity upgrade the Belle detector would be upgraded. The largest challenge
will be the very harsh background environment due to the highbeam current. A large challenge is the
background level in the end-cap and an upgrade to another advanced technology is necessary. Among the
candidates, pure CsI crystals with photo tetrode readout isthe most promising for the endcap electromag-
netic calorimeter (EECL) and tiles of plastic scintillatorwith silicon photo multipliers (SiPM) is a good
candidate for the endcapK0

L muon system (EKLM). The trigger and data acquisition systems should be
upgraded to handle the 20 times higher occupancy level due tothe higher beam current. Computing is
another technological challenge with online data having tobe recorded at a speed of 250 MB/sec after
online reconstruction and reduction amounting to the data size of 5 PB/year. Including Monte Carlo
simulations a storage system holding 10∼20 PB is needed at the beginning which should be expandable
to several tens of PB.

In B-meson decays theb→cc̄s subprocess is CKM-favoured so that final states containing charmo-
nium particles are common. A super-B factory would provide superb opportunities for high sensitivity
measurements of the charmonium system and the discovery of missing charmonium states such as the
hc, or theD-wave states:

• in the continuum:e+e−→χc1 (cc̄) ; ηc (cc̄); search forC = −1 states (hc, etc.) in theχc1, ηc
recoil spectra;

• in B decays, either with exclusive channels likeB→K 13D2 (how big is the suppression factor?)
or with inclusive channels likeB→13D2→π+π−J/ψ at theΥ(4S).

Another exciting possibility is the discovery of one or morecharmonium hybrid states. Also B-
factories can shed light on the possibility ofDD̄ molecules. The discovery of theX(3872) by the Belle
collaboration which lies just aboveD0D̄∗0 threshold has led to speculation that theX(3872) is aDD̄∗

molecule or some other 4-quark object. The high statistics available at a super B-factory would allow
detailed studies of theX(3872) and other new states, includingDD̄ molecules if they exist.
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5. GSI

5.1 Introduction

The charmonium spectroscopy physics program of the PANDA (P ANnihilations at DArmstadt) experi-
ment usingpp annihilations at GSI [14] is an extension of successful experiments performed recently at
the Fermilab antiproton accumulator. Advancedp cooling techniques and a more versatile detector setup
will be employed, allowing for the first time the measurementof both electromagnetic and hadronic de-
cays. The goal is to make comprehensive measurements of the spectroscopy of the charmonium system
and hence provide a detailed experimental study of the QCD confining forces in the charm region to
complement theoretical investigation.

Unlike e+e−, where only states with the quantum numbers of the photon (JPC = 1−−) can be
formed directly, all quantum numbers are directly accessible in pp annihilation. Charmonium states are
studied by accelerating thep beam to the energy of the resonance, which is then scanned by changing
the beam momentum in small steps.

The experimental program of PANDA includes also the study ofgluonic excitations (glueballs and
hybrids) in the charmonium sector, as well as the study of charmonium in nuclei.

5.2 Experimental apparatus

The PANDA experiment will be installed at the High Energy Storage Ring (HESR), a major component
of the recently approved new accelerator facility at GSI in Darmstadt, Germany [14]. The antiproton
beam will be produced by a primary proton beam from the planned fast cycling, superconducting 100
T·m synchrotron ring. The antiprotons will be produced with a rate of approximately2×107/s and then
stochastically cooled; after5×1010p have been stored, they will be transferred to the HESR where inter-
nal experiments in the momentum range from 1 to 15 GeV can be performed. Two modes of operation
are foreseen: a high-luminosity mode, where peak luminosities of 2 × 1032 cm−2s−1 will be reached
with a beam momentum spreadδp/p ≈ 10−4, achieved by means of stochastic cooling in the HESR
ring, and a high-resolution mode, where for beam momenta below 8 GeV electron cooling will yield a
smaller beam momentum spreadδp/p ≈ 10−5 at a reduced luminosity of1031cm−2s−1.

Fig. 9.4: Schematic view of the PANDA detector (side view)

The proposed PANDA detector is being designed to study the structure of hadrons in the charmo-
nium mass range as well as the spectroscopy of double hypernuclei. The detector must provide (nearly)
full solid angle coverage, it must be able to handle high rates (2× 107 annihilations/s) with good particle
identification and momentum resolution forγ, e,µ, π, K and p. Additional requirements include vertex
reconstruction capability and, for charmonium, a pointlike interaction region, efficient lepton identifica-
tion and excellent calorimetry (both resolution and sensitivity to low-energy photons).
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A schematic view of the present detector concept is shown in Fig. 9.4. The antiprotons circulating
in the HESR hit an internal hydrogen pellet (or jet) target, while for the nuclear target part of the exper-
imental program wire or fiber targets will be used. The detector consists of a target spectrometer (TS)
and a forward spectrometer (FS).

The TS, for the measurement of particles emitted at laboratory polar angles larger than 5◦, is lo-
cated inside a solenoidal magnet, 2.5 m in length and 0.8 m in inner radius. Its main components are:
four diamond or silicon start detectors surrounding the interaction region followed by a 5-layer silicon
microvertex detector; 15 layers of crossed straw tubes, forthe measurement of charged particle trajec-
tories; a cylindrical DIRC and a forward aerogelČerenkov detector for particle identification; an elec-
tromagnetic calorimeter consisting of PbWO4 crystals with Avalanche Photo Diode (APD) readout. The
region between the calorimeter and the endcap will be instrumented with 2 sets of mini drift chambers;
scintillator strips used for muon identification will be located behind the return yoke of the magnet.

The FS will measure particles emitted at polar angles below 10◦ in the horizontal and 5◦ in the
vertical direction. It will consist of a dipole magnet with a1 m gap, with MDCs before and after for
charged particle tracking. Particle identification will beachieved by means of a TOF-stop and a dual-
radiator RICH detectors. Other components of the FS are an electromagnetic and a hadronic calorimeter
followed by a set of muon chambers.

Detailed simulations of the detector concept presented here show its ability to measure electrons,
muons, pions, kaons and photons over a large phase space region. Combining a momentum resolution of
1-2 % with a high discriminating power for particle identification and a nearly 4π solid angle coverage
allows the application of strong kinematical constraints,which will serve to achieve an excellent level of
final state identification and background suppression.

The PANDA project is part of the recently approved new accelerator facility at GSI. An inter-
national collaboration is currently forming, to develop a detailed technical proposal for the design and
construction of the detector system.

5.3 Physics program

The ground state of charmonium,ηc(11S0) Despite the abundance of experimental measurements,
it is disappointing how little is known about the ground state of charmonium,ηc(11S0). Five new mea-
surements of its mass have been reported in 2002 and 2003, disagreeing by more than 5 MeV [15]. The
fit to all existing measurements of theηc mass yields an error of 1 MeV (adequate to the accuracy of
present theoretical model calculations), but the consistency between the various measurements is fairly
poor (Confidence Level = 0.5 %). In addition to that, as the accuracy of theoretical calculation increases
it will be mandatory to measure its mass with a precision better than 1 MeV. The width of theηc is even
more uncertain. Four new measurements have been reported in2002 and 2003, and the fit to all data
yields a width value of (25.0 ± 3.3) MeV, with a CL of 0.05 %. It is important to know the width of the
ηc, because a width value as large as 25 MeV is difficult to reconcile with simple quark models, and it
has been suggested that instanton effects may be responsible [16].

It must be stressed that unlike the E760/E835 experiments [17,18], which were obliged to identify
ηc formation in the extremely weak two-photon decay channel (BR(ηc → γγ) ≃ 3 × 10−4), at the new
facility at GSI the PANDA detector is being designed to detect both electromagnetic and hadronic final
states. This will make it possible to study theηc in several decay channels, which have hundred times
larger branching ratios:ηc → 2(K+K−),KKπ, 2(π+π−), ηππ, etc.

The radial excitation of charmonium, ηc(2S) Theηc(2S) was discovered by the Belle experiment
in the hadronic decays of the B meson [19], with a mass of (3654 ± 6 ± 8) MeV, incompatible with
the Crystall Ball observation [20]. Theηc(2S) has then been seen also by BaBar [21] and Cleo [22] in
γγ collisions. The mass measurements of the three experimentsare consistent [15] and yield a value of
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(3637.7 ± 4.4) MeV (CL=14%); this value is only marginally consistent with most model calculations
and it has been suggested that coupled channels effects may shift the ηc(2S) mass [23]. The present
accuracy on theηc(2S) width is only 50 %, the measured value being (19 ± 10) MeV. More precise
measurements of the mass and width are clearly needed.

A search for theηc(2S) was performed by the experiments E760 and E835 at Fermilab inthe
processpp → ηc(2S) → γγ [17, 24]. No signal was observed by either experiment. The technique
employed by E760/E835 suffered from the severe limitationsdue to the relatively high background from
π0π0 andπ0γ compared to the smallγγ signal [25]. Further measurements using this channel will
require increased statistics and a substantial reduction of the background. The real significant improve-
ment of PANDA with respect to the Fermilab experiments will be the ability to detect the hadronic decay
modes, such asηc(2S) → K∗K

∗
or ηc(2S) → φφ, which will allow a clean identification of this state.

The hc(1P1) resonance of charmonium The singlet P resonance of charmoniumhc(1P1) is of ex-
treme importance in determining the spin dependent component of theqq confinement potential.

If the recent observation ofhc, described in Chapter 3, will be confirmed during this decade,
the precise measurement of its width will have to wait for thehigh statistics to be accumulated by the
PANDA experiment. By comparing the total width with the probably dominant radiative width toηcγ, it
will be possible to measure its partial width to light hadrons, relevant for NRQCD calculations. It must
be pointed out that due to its very narrow width (≤ 1 MeV) and expected low yields, only app formation
experiment like PANDA will be able to perform this measurement and to carry out a systematic study
of its decay modes. The study of thehc constitutes a central part of the PANDA charmonium physics
program.

Radiative transitions of the χJ(3P0,1,2) charmonium states The measurement of the angular dis-
tributions in the radiative decay of theχ1 andχ2 states formed inpp annihilations provides insight in
the dynamics of the formation process, the multipole structure of the radiative decay and the properties
of the cc bound state. A comparison of the E760 result at theχc2 [26] with the Crystal Ball result at
theχc1 [27] is not consistent with theory, and may suggest the existence of additional contributions to
the theoretical predictions for the M2 amplitudes. The simultaneous measurement of both angular dis-
tributions has been recently performed by E835 [28]. They too observed a discrepancy with respect to
theoretical predictions, which could indicate the presence of competing mechanisms, leading to the can-
cellation of the M2 amplitude at theχc1. The effect seen by E835 is at the 2.5σ level, therefore further
high-statistics measurements are clearly needed to increase the significance of this result.

Charmonium states above theDD threshold The energy region above theDD threshold at 3.73 GeV
will be object of many studies during this decade. This is theregion in which narrow1D2, 3D2 states
(which are narrow because they cannot decay toDD) and the first radial excitations of the singlet and
triplet P states are expected to exist, as shown in Chapter 3.The discovery of X(3872) has raised further
interest in this energy region: the nature of this new, narrow state is not yet clear, and speculation ranges
from aD0D0∗ molecule to a3D2 state. There are theoretical problems with all these interpretations, and
further, more accurate measurements of its width and particularly of its decay modes are needed to shed
light on this state [23]. This kind of study is ideally suitedfor a pp formation experiment. The study
of the energy region above theDD threshold is a central part of the charmonium physics program of
PANDA. It will require high-statistics, small-step scans of the entire energy region accessible at GSI.

Charmonium Hybrids Predictions for hybrids come mainly from calculations based on the bag model,
flux tube model, constituent gluon model and recently, with increasing precision, from lattice QCD
(LQCD) [31]. For these calculations the parameters are fixedaccording to the properties of the known
QQ states. All model predictions and LQCD calculations agree that the masses of the lowest-lying char-
monium hybrids are between 3.9 and 4.5 GeV and that the state with the lowest mass hasJPC = 1−+
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[32]. Some of the charmonium hybrids have spin exotic quantum numbers, so mixing effects with nearby
cc states are excluded for them, thus making their experimental identification easier. Predictions for the
widths of these states range from a few MeV from several tens of MeV. Cross sections for the formation
and production of charmonium hybrids are estimated to be similar to those of normal charmonium states.

In PANDA two kinds of experiments can be done: formation and production. Formation exper-
iments would generate non-exotic charmonium hybrids, while production experiments would yield a
charmonium hybrid together with another particle, such as aπ or anη. In pp annihilation, production
experiments are the only way to obtain exotic quantum numbers. This distinction is a very powerful
tool from the experimental point of view: the detection of a state in production and its non-detection in
formation is a clear, unique signature for exotic behaviour.

Charmonium in nuclei The proposed experimental program of PANDA will address open problems of
in-medium modifications of hadrons with charmed quarks in nuclei and the interaction of these hadrons
with nuclei. This is, on one hand, an extension of the presentchiral dynamics studies with partial
restoration of chiral symmetry in the hadronic environment, from the light quark to the open charm quark
sector. On the other hand, this program is focussed on the first experimental studies of the charmonium-
nucleon and charmonium-nucleus interaction, which is alsoof basic importance for ultra-relativistic
heavy ion collisions.

6. J-Lab 12 GeV upgrade

Jefferson Lab has plans to upgrade the Continuous Electron Beam Accelerator Facility (CEBAF) to 12
GeV [33]. The 12 GeV electron beam will be used to produce 9 GeVphotons in the new Hall D. Photon
fluxes of up to108 photons/sec with 50% linear polarization are achievable. In Hall D, a tagged coherent
bremsstrahlung beam and solenoidal detector will be constructed in support of a program of gluonic
spectroscopy. The detector has been optimized to provide nearly hermetic acceptance for both charged
particles and photons. In addition, a combination of particle identification systems will allow very good
K − π separation. Optimization will allow the detector to fully reconstruct exclusive many body final
states. In conjunction with high statistics, this will allow excellent partial wave analyses of many final
states. The4π acceptance of the Hall D detector and the energy resolution of its tagged beam could help
to reduce the background considerably.

The threshold production of charmonium and open charm production open up a new window into
QCD dynamics; in particular, these reactions are sensitiveto multiquark, gluonic, and so called “hidden
color” correlations in nucleons and nuclei. In contrast to diffractive charm production at high energy,
which tests the behavior of the gluon structure functions atsmallx, charm production near threshold
tests the structure of the target nearx = 1 and its short-range behavior. This difference results from
the kinematics of the reaction products. ForJ/ψ production off the nucleon, the threshold energy is
Eγ = 8.2 GeV and because of the large mass of the charmed quark thecc̄ fluctuation of the photon
travels over a short coherence length. Charm production near threshold implies a small impact parameter
so that all five valence quarks must be in the same small interaction volume and all the quarks must
be involved in the reaction mechanism. For nucleon targets this implies that three gluon exchange may
dominate two-gluon and one-gluon exchange.

Even though thecc̄ pair is created with rather high momentum at threshold, it may be possible to
observe reactions where the pair is captured by the target nucleus forming “nuclear-bound quarkonium”.
The discovery of such qualitatively new states of matter would be significant.

7. LHC (ATLAS/CMS)

The Large Hadron Collider (LHC) is a proton-proton collidercurrently being built at CERN and sched-
uled to start in the second half of 2007. It will provide many opportunities for studying heavy quarkonia,
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which will be produced at unprecedented rates and energies.Significant contributions may be expected in
the fields of heavy quarkonia production and decays, whereashigh background rates will make dedicated
studies on heavy quarkonia spectroscopy difficult (like at other hadron machines).

This section concentrates on future opportunities at the two multi-purpose LHC experiments AT-
LAS and CMS. Aspects related with the dedicated B-physics experiment LHCb and with studies “in
media” are covered in separate sections.

Section 7.1 deals with heavy quarkonia production issues atthe LHC in general, and therefore
applies to both ATLAS and CMS. Section 7.2 presents selectedtopics from current, heavy-quarkonia
related ATLAS studies. Results from CMS were not available at the time of writing. The selected topics
are by no means comprehensive and are intended to serve as illustrative examples only.

7.1 Heavy quarkonia production at the LHC

Thanks to its high collision energy (design centre-of-massenergy 14 TeV) and high luminosity (design
luminosityL = 1034 cm−2s−1), the LHC will be able to explore a new high-energy frontier at the TeV
scale. It is expected, however, that the LHC will not operateat its design luminosity from the beginning,
but rather at an initial luminosity ofL = 2 × 1033 cm−2s−1. This initial period will be best suited for
dedicated studies on heavy quarkonia at the LHC, both in viewof affordable trigger rates, modest pile-up
(i.e. minimum-bias events superimposed on interesting signal), event reconstruction, etc.

The production rates for heavy quark flavors at the LHC will behuge. The total cross section at
the LHC is about 100 mb; the expected total cross section for charm production is 7.8 mb, for bottom
production 0.5 mb, and for top production 0.8 nb, respectively [34]. Thus, for an integrated luminosity
of only 1 fb−1(i.e. about one week of running at initial luminosity), as many as7.8× 1012 charm events,
0.5 × 1012 bottom events, and0.8 × 106 top events will be produced.

Fig. 9.5: Differential cross section for heavy quark pair productionas a function of the transverse momentumpQT
of the heavy quark. The smaller figure shows the regionpQT < 50 GeV for charm and bottom production [34].

Figure 9.5 shows the differential cross section for heavy-quark pair production at the LHC as
a function of the transverse momentum of the heavy quark [34]. Up to next-to-leading-order (NLO)
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Fig. 9.6:Left: Color-singlet and color-octet contributions to directJ/ψ production inpp̄→J/ψ+X at the Tevatron,
together with experimental data from CDF [38]. Right: Crosssections forJ/ψ production inpp→J/ψ + X

at the LHC, as obtained with the Monte-Carlo generator PYTHIA supplemented by leading order color-octet
processes [39,40]. Plots are taken from [36,37].

perturbative QCD, thec andb cross sections are identical for highpT; differences due to mass effects
show up only for very smallpT values (pT < 20 GeV). For orders higher than NLO, the spectrum forc
quarks is expected to become softer, and differences might become visible even for highpT.

In order to predict the production rates for heavy quarkoniaat the LHC, the available models
(including Monte-Carlo generators) are tuned with Tevatron data and extrapolated to LHC energies;
see [37] for a detailed description. Figure 9.6 illustratesthe results of this procedure applied to the
prediction of theJ/ψ production cross section. An eventual measurement of heavyquarkonia production
rates at the LHC will help in understanding, for high energies andpT, the roles and importance of
individual production mechanisms (e.g. color-singlet vs.color-octet) and the applicability of concepts
used so far in the calculations (e.g. factorisation in NRQCD). It might also be possible to probe the gluon
density in the proton [35].

The fact that the LHC will produce heavy quarkonia with high transverse momentum in large num-
bers will also allow for a better discrimination between different models of heavy quarkonia polarisation,
like NRQCD and the color-evaporation model; see [37]. For example, NRQCD predicts transversely
polarisedJ/ψ andψ(2S) (see Figure 9.7) at highpT. This seems not to be supported by CDF data [42],
although the statistics is too low to draw definitive conclusions. Measurements at the LHC will help in
resolving the issue of quarkonium polarisation.

7.2 Heavy quarkonia studies with ATLAS: selected topics

The ATLAS experiment has been designed both to maximise the discovery potential for new physics and
to enable high-accuracy measurements. ATLAS accommodates, however, also features which make it
possible to incorporate an ambitious B-physics programme,in particular in the first years of running at
low luminosity. Most of the foreseen studies on heavy quarkonia will be performed in the context of the
B-physics programme. For a full review of the ATLAS detectorand physics performance, see Ref. [34].

ATLAS B-Physics Trigger Issues ATLAS will have a flexible and efficient multi-level trigger system.
The ATLAS trigger will consist of three levels, reducing thetrigger rates from 40 MHz toO(20) kHz at
level-1, toO(1–5) kHz at level-2, and toO(200) Hz at level-3 (“Event Filter”, EF).
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at the LHC as a function ofpT [36].

The classical B-physics trigger scenario [43] foresees to trigger for a muon withpT > 6 GeV and
pseudo-rapidity|η| < 2.4 at level-1; to confirm this muon with better resolution and efficiency at level-2,
together with performing a full scan of the Inner Detector (ID) to search for interesting signatures; and
to refine the search at EF level, where offline algorithms willbe used and calibration and alignment data
will be available.

In view of tight funding constraints, changes in detector geometry, the possible usage of a reduced
detector at start-up, and a changed luminosity target at start-up (1→2 × 1033 cm−2s−1), the classical
scenario had to be revised; see [44] for details. In additionto more flexibility with respect to varying
luminosity conditions, the revised scenario foresees additional trigger objects at level-1 (e.g. muon,
“Regions-of-Interest”/RoI’s from calorimeter jet or electromagnetic triggers), and the RoI-guided search
for tracks in the ID, in order to avoid the resource intensiveID full scan. Studies are still on-going, but
first results look promising.

In the context of heavy quarkonia studies, the di-muon trigger will be the most important one.
Fig. 9.8 shows the expected rates at a luminosity ofL = 1033 cm−2s−1 [44]. The di-muon trigger
will allow for an effective selection of channels withJ/ψ(µ+µ−), rare decays likeB→µ+µ−(X), etc.
Minimum possible thresholds in the level-1 muon trigger arepT > 5 GeV (barrel) andpT > 3 GeV
(end-cap), but the actual thresholds will be determined by the (yet incompletely known) level-1 muon
rate. At higher trigger levels (level-2, EF), the muons fromlevel-1 will be confirmed using the ID and
Muon Detector precision chambers. Preliminary studies yield modest di-muon trigger rates of∼200 Hz
after level-2, and of∼10 Hz after the EF, for the initial luminosity scenario ofL = 2 × 1033 cm−2s−1.

Recent ATLAS Studies onJ/ψ The main emphasis in on-going ATLAS physics-related studies lies
on technical issues like validation and optimisation of thearchitecture of trigger and offline software,
performance, etc., not on doing full-fledged, detailed physics analyses. The results presented here are
taken from a study on measuring the directJ/ψ production cross section, carried out in a wider context
of studies on the performance of a staged (i.e. incomplete) detector in an initial commissioning period
of 1 fb−1 (corresponding to one year at 5% of the planned start-up luminosity).

The determination of the directJ/ψ production cross section will be one of the first B-physics
measurements in ATLAS. There will be a largeJ/ψ rate after the level-1 trigger, whose directJ/ψ
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contribution will not be known. The measurement of the direct J/ψ production cross section is, among
other things, important to find the best strategy to selectb-events, e.g. to optimise the interplay between
pT and vertexing cuts.

Events of the typepp→J/ψ(µ+µ−)+X were generated with a version of PYTHIA which includes
color-octet processes [39–41]. One of the muons coming fromJ/ψ was required to havepT > 6 GeV,
the second to havepT > 3 GeV. For this purpose, functionality to enable filtering at generation time [45]
was implemented into PYTHIA. Taking muons withpT as low as 3 GeV is only possible when infor-
mation from the hadronic calorimeter (Tile Calorimeter) isadditionally taken into account, to allow for
muon/hadron separation [34].

As a result, one obtains a cross section for directJ/ψ production of about 5 nb [45]. Typical
values for relevant resolutions are: primary vertex resolution σPV < 15 µm (given by the LHC beam
cross section); secondary vertex resolutionσxy(core) ≃ 70 µm andσxy(tail) ≃ 150 µm; mass resolu-
tion σJ/ψ ≃ 40 MeV. Preliminary studies suggest that based on those performance parameters, a good
separation of directJ/ψ’s andJ/ψ’s from B-decays will be feasible. For a qualitative illustration, see
Fig. 9.9.

Recent ATLAS Studies onBc The expected large production rates at the LHC will also allow for
precision measurements ofBc properties. Assuming a branching ratiof(b→Bc) ≃ 10−3, an integrated
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luminosity of 20fb−1 (i.e. one year at initial luminosity), and requiring a level-1 muon withpT > 6 GeV
and |η| < 2.4, recent estimates yield that ATLAS will be able to record about 5600 events of the type
Bc→J/ψ π, and still about 100 events of the typeBc→Bs π.

The channels studied so far in ATLAS areBc→J/ψ π for Bc mass measurement, andBc→J/ψ µν,
since it provides a clean signature and can be used as an ingredient for determination of the CKM matrix
element|Vcb| [34]. Examples of older studies can be found in Ref. [46].

Since the production ofBc is suppressed by the hard production of an additionalcc̄ pair, also
Monte-Carlo generation ofBc events using standard tools (e.g. PYTHIA) is CPU intensive.As an
example, out of 100000 PYTHIApp events, one obtains about oneBc event, which in turn does not
necessarily survive the ATLAS level-1 trigger selection. Recent developments in ATLAS have there-
fore concentrated on implementing dedicatedBc generators into PYTHIA. One approach is via the so-
called “Fragmentation Approximation Model”, the other theso-called “Full Matrix Element” (FME)
approach [47].

The FME approach is based on the concept of extended helicity, i.e. the grouping of Feynman
diagrams into gauge-invariant sub-groups to simplify the calculations, an approach never followed in
gg→QQ processes before. It takes into account matrix elements from PQCD up toO(α4

s) (36 diagrams).
Results obtained with the FME generator (subroutine BCVEGPY) in PYTHIA are shown in Figs. 9.10
(total cross sections ofBc andB ∗

c productions) and 9.11 (Bc pseudo-rapidity distribution). In terms of
CPU performance, BCVEGPY is six times faster than other Monte-Carlo generators available.

Studies onBc physics performance in ATLAS are on-going, where events generated by BCVEGPY
/PYTHIA are passed through a full GEANT3 detector simulation and are subsequently reconstructed. As
a preliminary result, a mass resolution ofσBc = 74 MeV was obtained in the channelBc→J/ψ π for a
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staged-detector scenario.

7.3 Conclusions and outlook

The LHC will be a heavy quarkonia factory, producing them in high statistics up to large transverse
momenta. Measurements of heavy quarkonia production ratesat the LHC will be valuable for a deepened
understanding of the involved production mechanisms and the applicability of the present theoretical
approaches.

The multi-purpose experiments ATLAS (and CMS) at the LHC have the potential to play important
roles in exploring the properties of heavy quarkonia. A deeper knowledge of heavy quarkonia properties
is not only interesting as such, but also of vital interest for other physics fields, e.g. to understand the
backgrounds occurring there.

ATLAS is planning to continue the studies on heavy quarkoniain the future, including topics not
covered until now like cross section measurements forψ(2S) or for the processχc→J/ψ γ, polarisation
measurements, and studies onΥ states.

8. LHCb

8.1 The LHCb detector

The LHCb detector is designed to exploit the large number of b-hadrons produced at the LHC in order
to make precision studies of CP asymmetries and of rare decays in the B-meson systems. It has a high-
performance trigger which is robust and optimized to collect B mesons efficiently, based on particles
with large transverse momentum and displaced decay vertices.

The detector can reconstruct a B-decay vertex with very goodresolution and provide excellent
particle identification for charged particles. Excellent vertex resolution is essential for studying the
rapidly oscillatingBs mesons and in particular their CP asymmetries. It also helpsto reduce combinatoric
background when reconstructing rare decays.

The LHCb experiment plans to operate with an average luminosity of 2 × 1032 cm−2 s−1, which
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should be obtained from the beginning of the LHC operation. Running at this luminosity has further
advantages. The detector occupancy remains low, and radiation damage is reduced. Events are dominated
by single pp interactions that are easy to analyse. The luminosity at the LHCb interaction point can be
kept at its nominal value while the luminosities at the otherinteraction points are being progressively
increased to their design values. This will allow the experiment to collect data for many years under
constant conditions. About1012 bb pairs are expected to be produced in one year of data taking.

In addition to investigating CP violation in B-meson decays, the physics programme of the LHCb
experiment will include studies of rare B andτ decays,D-D oscillations andBc-meson decays.
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Fig. 9.12: LHCb detector layout

Figure 9.12 shows the layout of the LHCb detector. It consists of the beam pipe, VELO (VErtex
LOcator), dipole magnet, tracking system, two Ring ImagingCherenkov detectors with three radiators
(RICH1 and RICH2), calorimeter system and muon system.

The trigger system is designed to suppress the initial rate of about 40 MHz to approximately
200 Hz by selecting the events with highpT hadrons, leptons and photons, requiring secondary vertices,
and performing partial event on-line reconstruction to select the desired b-hadron decays. The trigger
system is designed to be flexible, robust and efficient. Events are selected by various criteria that can
be easily adjusted according to the experimental conditions. For a full review of the LHCb detector and
physics performance, see Refs. [48,49].

8.2 Recent LHCb studies onBc

TheBc meson is the ground state of theb̄c system which in many respects is an intermediate between
charmonium and bottomonium systems. However, since theBc mesons carry flavor, they provide a
window for studying heavy-quark dynamics very different from that of bycc̄- andbb̄-quarkonia.

Theb̄c system exhibits a rich spectroscopy of orbital and angular-momentum excitations, radiative
and weak decays. In addition, theBc also provides a good place for extracting the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elementsVcb andVub. Two-body hadronic decays ofBc mesons can play an
important role for the exploration of CP violation. For a recent review of theBc physics issues, see [50].

The production ofBc states at highpT is well described by b-quark fragmentation, while the
completeO(α4

s) calculations show the dominance of the recombination mechanism in the low-pT region
(see Figure 9.13 where thepT dependence ofBc andB∗

c production is shown).

The low-pT region is dominated by high-momentumBc (see Figure 9.14) that gives additional
advantages for the LHCb detector whereBc meson decays will produce secondary vertices well separated
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system at LHC energies.

from the primary one. This fact ensures thatBc decays will satisfy the LHCb trigger conditions and
provides the possibility of strong background suppression.

The exclusive decay channelB±
c →J/ψπ±, J/ψ→µ+µ− has been studied in Ref. [51].Bc

mesons withm = 6.4 GeV andτ = 0.47 ps were used for the signal Monte-Carlo. The main background
comes from the promptJ/ψ production (∼ 0.8 mb) andB→J/ψX decays. The complete GEANT sim-
ulation of the signal and background events (including minimum-bias background) has been performed
with the detailed description of the detector response. Trigger algorithms have been applied,Bc→J/ψπ
candidates have been reconstructed using full pattern recognition, and specific offline cuts have been
applied to reject background.

The mass resolution is shown in Figure 9.15 with the shaded area representing the surviving back-
ground. A clean and narrow signal is observable, with an expectation of about 14kBc→J/ψπ decays
reconstructed per year with aB/S ratio estimated to be< 0.8.

The reconstructed events were used to determine theBc lifetime as well. The difference between
true and reconstructed lifetime is shown in Figure 9.16. Theproper time resolution is about 0.04 ps and
can be improved using high-momentumBc mesons.

LHCb is planning to studyBc mesons production including radiativeB∗
c decays as well as other

ground state decay channels.

9. Charmonia production in proton-nucleus collisions at 158 GeV

The NA60 experiment was proposed to clarify several physicsquestions resulting from specific exper-
imental measurements made by previous SPS experiments, among which was the observation that the
J/ψ production is suppressed in heavy-ion collisions with respect to the yields extrapolated from proton-
nucleus data. To understand what is the physics variable driving theJ/ψ suppression (L, Npart, energy
density, etc), the evolution with centrality of theJ/ψ production yield measured in Indium collisions
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will be compared with the corresponding pattern previouslydetermined by NA50 with Lead collisions,
at the same collision energy. To interpret theJ/ψ production patterns observed in nuclear collisions, as
a function of the collision centrality, it is crucial to havea proper “reference baseline”, with respect to
which one can extract any anomalous behaviour specific of heavy ions collisions. Only if one has such
a normal nuclear absorption curve one can look for signatures of quark-gluon plasma formation in the
heavy-ion data. However, such a reference has been based, sofar, on proton-nucleus data collected at
a rather different beam energy, 450 GeV (or 400 GeV, for a verysmall data sample). Figure 7.25 of
Chapter 7 summarizes those results.

The NA50 collaboration has also made use of a data set collected at 200 GeV, by NA38, but with
S-U collisions. While it is certainly true that the rescaling from 200 to 158 GeV is much more robust
than from 450 GeV, this data set has been used making the extraassumption that there is nothing new
happening between the proton-nucleus reference and the S-Ucollision system. One knows, however, that
theψ(2S) resonance is considerably suppressed in S-U collisions with respect to its normal nuclear ab-
sorption pattern, established by studying exclusively proton-nucleus interactions. Therefore, even though
this assumption is based on the compatibility of the resultsobtained from p, O and S induced reactions, it
remains nevertheless a questionable assumption which mustbe verified by a precise measurement. This
problem does not prevent one from directly comparing the Indium with the Lead data, since both data
sets were taken at exactly the same energy, 158 GeV. However,the interpretation of the measured pattern
in terms of new physics requires the comparison to an expected pattern, based on a purely conventional
normal nuclear absorption. Presently, this comparison is mostly limited by the accuracy with which the
measured proton-nucleus points can be rescaled to the energy and kinematical domain of the heavy-ion
measurements.

In the year 2004 the NA60 experiment will collect data, during three days, to studyJ/ψ production
in proton-nucleus collisions with a high intensity 158 GeV primary proton beam. This data sample will
allow us to directly establish a normal nuclear absorption reference based on proton induced interactions,
minimizing systematic uncertainties and model-dependentassumptions.

The normal nuclear absorption pattern can be determined by comparing the measuredJ/ψ produc-
tion cross sections (or production yield with respect to high mass Drell–Yan dimuons) in proton-nucleus
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collisions, for several target nuclei, with a calculation based on the Glauber scattering formalism. It can
be approximately expressed as an exponential function of the average length of nuclear matter the pro-
duced charmonium state needs to traverse to get out of the nucleus,σψ(L) = σψ0 × exp(−ρLσabs). This
calculation uses the density profiles of the protons and neutrons in the target nuclei, in terms of standard
parametrizations with tabulated coefficients. One can describe the measured data points by adjusting a
normalization coefficient and the absorption cross section, σabs, which gives the absorption rate.

A priori, it may very well happen that the absorption cross-section depends on the energy of the
interactions. In fact, it is well known that the NA50 experiment measured a strongerJ/ψ absorption than
E866, for the samexF range (close to 0), the main difference being the proton beamenergy: 800 GeV
in E866 and 450 GeV in NA50. Expressed in terms of the simpleAα parametrization, E866 gives values
of α around 0.95 while NA50 gives values closer to 0.92. If the difference is due to the change in
energy, one can easily imagine that at 158 GeV, the energy of the In and Pb beams, the value ofα would
be even smaller, equivalent to having a higher normal nuclear absorption cross-section. Unfortunately,
many other things are different between NA50 and E866, besides the energy, and the change ofα is not
understood well enough such that an estimate could be done for the lower energy case. For instance, it
could be that theJ/ψ mesons produced at 800 GeV have, on average, higher values ofpT , and the value
of α increases withpT (Cronin effect).

Figure 7.26 of Chapter 7 shows the ratio between theJ/ψ and Drell–Yan (taking the mass range
2.9–4.5 GeV) production cross-sections, versusL, for the proton-nucleus and S-U data, collected either
at 450 or 200 GeV. The fit of the 400 and 450 GeV data points leadsto σabs = 4.3 ± 0.5 mb. On the
left panel, one sees what happens if one imposes thisσabs value when fitting the 200 GeV data points,
just leaving free the normalization of the curve. On the right panel the points collected at 200 GeV were
independently fitted, resulting inσabs = 6.8 ± 1.8 mb. The dotted lines indicate the uncertainty band,
including both the errors onσabs and on the normalization. These values indicate that the absorption
cross-section seems to increase when the collision energy decreases, a tendency that would match the
800 GeV data collected by E866.

Besides the possible change ofσabs from 450 to 158 GeV, another very important unknown is the
normalization of the absorption curve at 158 GeV, needed to compare with the In and Pb data points.
In principle, the energy dependence of theJ/ψ production cross-section should be calculable, and one
could estimate the normalization at 158 GeV from the data measured at 450 GeV. In practice, however,
such calculations are not unique and are severely limited bynon-perturbative contributions. The accuracy
needed can only be given by a measurement made in the same experiment that measured the nuclear data,
and at the same energy.

Even if one assumes thatσabs is not energy dependent, and uses the value determined at 400and
450 GeV,σabs = 4.3 ± 0.5 mb, to build the nuclear absorption curve at 158 GeV, one still needs to
determine its normalization. The NA50 collaboration has taken the normalization value determined at
200 GeV, assuming that the S-U and p-A data share the sameσabs value, and gets the normalization
at 158 GeV using the so-called “Schuler parametrization”. This procedure has the big advantage that
the energy difference is very small, thereby reducing the importance of the uncertainties on the energy
dependence. However, it has the disadvantage of imposing anextra assumption, by requiring theσabs

value to be the same in proton-nucleus and in S-U collisions (besides ignoring any energy dependence
of σabs). If one accepts that the S-U data does not need to be described by theσabs value derived by
the proton data, one must start from the 450 GeV normalization and scale it down to 158 GeV, which
requires knowing the energy dependence of theJ/ψ production cross-section very accurately.

Since data expressed as the ratio betweenJ/ψ and Drell–Yan cross-sections are being compared,
the energy dependence of the Drell–Yan process, in our phasespace window, also needs to be accurately
known, to evaluate the scaling factor needed to convert the 450 GeV normalization to the value required
in the comparison with the 158 GeV data. Also here different PDF sets will presumably lead to somewhat
different energy dependences but at least the calculationsare more robust. Unfortunately, the statistics

505



collected in a few days will not allow NA60 to verify the energy dependence of the Drell–Yan production
cross-section.

It should be clear by now that it is crucial to measure theJ/ψ absolute production cross-section in
proton-nucleus collisions at 158 GeV, if one wants to fully understand theJ/ψ suppression results. Such
measurements will start in 2004 but should be repeated in thenear future, with much more statistics, to
ensure a proper baseline forψ(2S) and Drell–Yan production in heavy-ion collisions. Let us conclude
by summarizing the issues:

• The 450 GeV data points, alone, are not enough to determine the normal nuclear absorption at
158 GeV, since the energy rescaling factors are too uncertain.

• The existing 200 GeV data points, alone, are also not enough,because of their poor precision.
• The 450 and 200 GeV data sets, used together, would solve the problem, if the absorption cross

section is the same for the two sets, an assumption presentlynot firmed on solid experimental
evidence.
Therefore, proton data at 158 GeV must be collected, in orderto establish a robust reference

baseline with respect to which the Indium and LeadJ/ψ suppression patterns can be directly compared,
to place on more solid grounds the existence of anomalous effects in the heavy-ion data. The presently
existing systematic errors due to the energy (and phase space) corrections and to the absence of solid
evidence that the absorption cross-section remains the same from 450 to 158 GeV, are the main sources
of uncertainty in the interpretation of the data collected in nuclear collisions.

10. ALICE

ALICE is the dedicated heavy-ion experiment at the LHC. The apparatus will investigate the properties of
strongly interacting matter at extreme energy density where the formation of quark gluon plasma (QGP)
is expected [52]. For this purpose, heavy quarkonium statesare especially relevant since they provide, via
their leptonic decays, an essential probe of the medium produced in the collision. A lot of effort has been
devoted to the subject (for reviews see [53, 54]) since the early predictions of charmonium suppression
by Debye screening in a deconfined medium [55]. The LHC energyis unique for such studies since it
allows, for the first time, the spectroscopy of charmonium and bottomonium resonances in heavy ion
collisions. In particular, because theΥ(1S) is expected to dissolve only significantly above the critical
temperature [56,57], the spectroscopy of theΥ family at LHC energies should reveal unique information
on the characteristics of the QGP [58]. On the other hand, thestudy of heavy quark resonances in
heavy ion collisions at the LHC is subject to significant differences with respect to lower energies. First,
in addition to prompt charmonia produced directly via hard scattering, secondary charmonia can be
produced from bottom decay [59],DD̄ annihilation [60] and by coalescence mechanisms which could
result in enhancement rather than suppression [61]. Then, in the environment of an heavy ion reaction,
in-medium effects such as shadowing and heavy quark energy loss may substantially modify the final
yields and spectra [61]. Open charm and open beauty production is another important issue addressed
by ALICE since they provide the most natural normalisation to quarkonia suppression/enhancement.
On the other hand, in a QGP, an additional source of charm quarks may arise from secondary parton
scattering [62,63] and information on the properties of thedeconfined medium could be revealed by the
kinematical properties of heavy mesons.

ALICE will allow measurements of heavy flavors in both the muon and the electron channels as
well as full reconstruction ofD mesons in the hadronic channel. Although the apparatus is dedicated
to heavy ion collisions, proton-proton and proton-nucleuscollisions are also an important part of the
ALICE physics program in order to unravel initial and final-state medium effects.

10.1 ALICE detector

The ALICE detector [64] is designed to cope with large particle multiplicities which, in central Pb-Pb
collisions, are expected to be between 2000 and 8000 per unitrapidity at mid rapidity. It consists of a
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central part, a forward muon spectrometer and forward/backward small acceptance detectors. The central
part of ALICE consists of four layers of detectors placed in the solenoidal field (B < 0.5 T) provided
by the LEP L3 magnet. From the inner side to the outer side, these detectors are the Inner Tracker
System (ITS), the large Time Projection Chamber (TPC), the Transition Radiation Detector (TRD) and
the Time of Flight system (TOF). They provide charged particle reconstruction and identification in
the pseudorapidity range|η| < 0.9, with full azimuthal coverage and a broadpT acceptance. These
large area devices are complemented by smaller acceptance detectors: the High Momentum Particle
Identification (HMPID), the PHOton Spectrometer (PHOS) andthe Photon Multiplicity Detector (PMD).
In the forward/backward region, the charged multiplicity and the zero degree energy will be measured
by additional detectors (T0, V0, FMD, ZDC) which will allow fast characterisation and selection of the
events. Finally a forward muon spectrometer covering the pseudo rapidity range2.5 < η < 4 is placed
on the right side of the central part. It consists of a front absorber, a dipole magnet, ten high-granularity
tracking chambers, a muon filter and four large area trigger chambers.

10.2 Muons

The goal of the forward muon spectrometer [65] is to measure the full set of onium resonances from theφ
to theΥ, with high statistics, a low background and a high resolution. The spectrometer is equipped with
a dimuon trigger based on the selection of pairs of muons withlarge transverse momentum. An important
specification of the spectrometer is its mass resolution which has to be about100 MeV at 10 GeV to
allow the separation of theΥ substates. Detailed simulations have shown that this goal should be reached,
even in the worse scenario of background environment that could be foreseen. The acceptance forJ/ψ
andΥ is fairly uniform in pT and allow bothJ/ψ andΥ to be detected down topT = 0. The statistics
expected in a106 s run, roughly corresponding to one month of data taking, is of ∼ 500 × 103 J/ψ and
∼ 10000 Υ in minimum-bias Pb-Pb collisions. ForJ/ψ, the rate and signal-over-background (S/B) are
very good and permit a high precision measurement of the differential cross-section. Theψ(2S) can be
measured at best with an accuracy of the order of10% because of less favourable S/B. For theΥ family,
the S/B is larger than unity and the significance is 70, 31 and 22 for Υ(1S), Υ(2S) andΥ(3S). In
addition to quarkonia measurements, the spectrometer willallow measurements of the differential open
bottom cross-section. This will be achieved both in the single muon and the dimuon channels.

10.3 Electrons

The measurement of dielectrons in the central barrel of ALICE is complementary to the dimuon chan-
nel. It extends quarkonia measurements from the forward rapidity region to mid-rapidity and allows to
measure secondaryJ/ψ from bottom decay thanks to the vertex capabilities of the ITS. This will permit
distinction between primary and secondaryJ/ψ and also lead to a direct measurement of the B-meson
production cross-section. Furthermore, single highpT electrons with displaced vertex give access to
the inclusive open charm and open bottom cross-sections. The centrepiece for dielectron physics is the
TRD which provides an electron trigger and identification [66]. Its acceptance is identical to that of the
ITS/TPC (|η| < 0.9 with full azimuthal coverage). Its expected pion rejectionfactor in a high mul-
tiplicity environment has been investigated by means of detailed simulations. These simulations were
adjusted to test beam data for well isolated tracks and then performed for various track multiplicities.
Going from well isolated tracks to a full multiplicity event(8000 charged particles per unit of rapidity at
mid-rapidity), a worsening of the pion rejection by a factor6-7 is observed. For an electron efficiency
of 90% the pion rejection factor is still better than 50. On the other hand, the track reconstruction using
information from the ITS, TPC and TRD leads to aΥ mass resolution good enough for the separation of
theΥ substates.
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10.4 Hadrons

In the central part of ALICE, heavy mesons can be fully reconstructed from their charged particle decay
products in the ITS, TPC and TOF. Thus, not only their integrated yields, but also theirpT distributions
can be measured. The most promising decay channel for open charm detection is theD0 → K−π+ decay
(and its charge conjugate) which has a branching ratio of about 3.8% andcτ = 124 µm. The expected
rates (per unit of rapidity at mid rapidity) forD0 (andD̄0) mesons, decaying in aK∓π± pair, in central
(5 %) Pb-Pb at

√
s = 5.5 TeV and inpp collisions at

√
s = 14 TeV are5.3 × 10−1 and7.5 × 10−4 per

event, respectively. The selection of this decay channel allows the direct identification of theD0 particles
by computing the invariant mass of fully-reconstructed topologies originating from displaced secondary
vertices. The expected statistics are≃ 13000 reconstructedD0 in 107 central Pb-Pb events and≃ 20000
in 109 pp events. The significance is larger than 10 for up to aboutpT = 10 GeV both in Pb-Pb and in
pp. The cross section can be measured down topT ≃ 1 GeV in Pb-Pb collisions and down to almost
pT = 0 in pp collisions.
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Chapter 10

OUTLOOK

Conveners:S. Godfrey, M. A. Sanchis-Lozano

Authors:G. Bodwin, E. Braaten, N. Brambilla, A. Deandrea, E. Eichten, S. Godfrey, A. Hoang, M. Krä-
mer, R. Mussa, P. Petreczki, M. A. Sanchis-Lozano, A. Vairo

1. The renaissance of heavy quarkonium physics

Quarkonium physics has played a fundamental role in the development of quantum chromodynamics.
It may play an even more relevant role now for QCD, the Standard Model and physics beyond the
Standard Model. Heavy quarkonium, being a multiscale system, offers a precious window into the
transition region between high energy and low energy QCD andthus a way to study the behaviour of the
perturbative series and the nontrivial vacuum structure. The existence of energy levels below, close and
above threshold, as well as the several production mechanisms, allows one to test the population of the
QCD Fock space in different regimes and eventually to searchfor novel states with nontrivial glue content
(hybrids, glueballs). Precise determinations of StandardModel parameters from quarkonium systems
have become possible because of the level of precision reached by the experimental data and by the most
recent developments in effective field theories and latticeQCD. Moreover, the clean signature of heavy
quarkonium in heavy-ion collisions provides a perfect probe of in-media phenomena, and eventually
of quark-gluon plasma formation and the confinement-deconfinement transition in QCD. The expected
large statistics ofψ andΥ resonances to be collected in the next few years ate+e− and hadronic colliders,
makes heavy quarkonium physics also suited for searches of new particles and new phenomena. A
number of new physics scenarios can be constrained or discovered in the near future, ranging from
the contribution of supersymmetric particles or extended Higgs sectors in quarkonium decay, to lepton
flavour violation tests, CP tests and chromo-dipole momentsof quarks. All these studies will play a
major role in the test of extensions of the Standard Model, and will be complementary to direct searches
at colliders like the LHC or a future linear collider.

2. Opportunities in theory and experiment

The future relevance of quarkonium physics will be proportional to the number of observables that can
be rigorously described in terms of the Standard Model and its parameters and well measured by exper-
iments. The enormous progress made in this direction in recent years is the reason for the quarkonium
renaissancethat we are witnessing today and that has been documented in the report. It comes mainly
from QCD effective field theories in either their continuum or in their lattice versions, while phenomeno-
logical models have played (and will still play in the future) a crucial role in suggesting experimental
search strategies and interpreting new results. In order toachieve further progress it will be important to
complete the following general programme.
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(1) Adopt a common, model independent, EFT based, language to describe all aspects of heavy
quarkonium physics. This has not been achieved yet for all observables, and, noteworthy, not
for observables sensitive to threshold effects, where phenomenological models still provide the
only available theoretical tool.

(2) Improve the determination of the nonperturbative parameters that describe the low energy dy-
namics either by experimental data or by lattice calculations. In an EFT context the number of
these parameters is finite. Therefore, precise quarkonium data are important today more than ever.
They may check factorization, allow for precise extractions of the Standard Model parameters and
severely constrain theoretical determinations and predictions.

We note that the more progress there is in (1) the more importance that experimental data will acquire
for (2).

In the following we discuss progress expected or invoked forsome specific set of observables.

2.1 Quarkonium ground and lower states

Ground state observables and to a lesser extent low lying quarkonium state observables may be studied
in the framework of perturbative QCD. These studies are relevant because they may allow, in principle,
the precise extraction of some of the fundamental parameters of the Standard Model, like the heavy
quark masses and the strong coupling constant (see Chapter 6). Bc will be copiously produced at future
hadron colliders and will allow the determination of the electroweak parameters of the Standard Model,
like CKM matrix elements and CP violating parameters (see Chapter 4). However, the accuracy that the
fundamental parameters can be measured is at present limited by nonperturbative contributions whose
form is in many cases known, but whose size is not known with sufficient precision. Therefore the main
theoretical challenge is the precise determination of these nonperturbative contributions (see Chapter 3
and 4). On the other hand we could take the opposite approach and use the lower quarkonium states as a
theoretically clean environment to study the interplay of perturbative and nonperturbative effects in QCD
and extract nonperturbative contributions by comparison with data. A few examples are:

• Theηb has been intensely searched for at the Tevatron and CLEO. Theoretically several observ-
ables related to the production mechanism (Chapter 5), spectroscopy (Chapter 3), and decay
(Chapter 4) have been studied. Most likely, theηb discovery will come from the Tevatron ex-
periments CDF and D0. NRQCD predictions suggest (σηb+X ≈ 2.5µb at 1.96 TeV), so thatηb
should be found during Run II. However, as the decay rates areexpected to be very low, reliable
theory estimates for the decays intoJ/ψJ/ψ, DD̄π, KK̄π are important. Indications can also
come from the efforts made to detect its charmonium analogue, theηc, in hadronic collisions. An
eventual discovery will put severe constraints on the size of the nonperturbative corrections and
confirm or disprove our current understanding of the bottomonium ground state. In case this sys-
tem, as expected, turns out to be mainly perturbative, it will provide, combined with theΥ(1S) a
very precise measurement ofαs.

• The perturbativeΥ(1S) mass is used for a competitive determination ofmb. However, at present
accuracy, perturbation theory has difficulty reproducing the measured widthΥ(1S)→e+e−. Given
the importance of this quantity, the origin of these difficulties should be clarified. Furthermore, the
experimental determination of theΥ(1S) polarization at the Tevatron is roughly consistent with
the NRQCD prediction, and fixed-target experiments find an almost transverse polarization for the
Υ(2S) andΥ(3S) (although the experimental result disagrees with NRQCD fortheΥ(1S)). This
provides a strong motivation for measuring the polarization of all three resonances at the Tevatron.
However, due to the large bottom mass, the fragmentation mechanism does not dominate until
relatively high values ofpT are reached (pT > 10 GeV). LHC experiments will likely play a
decisive role to settle this issue because of the broaderpT range.

• TheBc mass determined by experiments is affected at present by about 400 MeV uncertainty,
while theoretical calculations based on perturbative QCD are affected by errors not larger than 30
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MeV (see Chapter 3). Again a precise determination of theBc mass will strongly constrain the
size of the nonperturbative contributions and confirm or disprove our understanding of this system
in terms of perturbative QCD. An analogous argument holds for the yet undiscoveredB∗

c .

• Baryons with two or three heavy quarks and in particular the yet undiscovered baryons with two
bottom quarks will offer a completely new system to the test our understanding of low-lying heavy
quarkonium resonances (see Chapter 3). The study of these systems from QCD is just beginning
with lattice simulations just starting to analyze these systems. Further progress is expected in the
future, in particular if driven by new experimental findings.

• As theηc(2S) andhc complete the low mass charmonium multiplets, the theoretical understanding
of fine and hyperfine splittings is far from the precision reached by experiments (see Chapter 3).
Further progress in unquenched lattice calculations is needed. The plans to produce very large
(> 109) samples ofJ/ψ’s andψ(2S)’s can open the era of 1-2% precision measurements on
many radiative transitions, allowing access to the suppressed (M1, M2 and E2) amplitudes, which
are mostly dependent on higher-order corrections and better test different theoretical approaches.
Runs at theψ(2S) energy will also provide a very large sample of taggedJ/ψ decays (as more
than half of these mesons decay toJ/ψ), but are also an excellent source ofχc’s, and, as recently
shown, ofhc’s.

• At last, B factories will allow us to reach accuracies betterthan 10% on theγγ widths of the
ηc(1, 2S) andχc0,2, by the proper combination of their data with measurements from pp̄ andτ -
charm factories. Electromagnetic and hadronic decay widths, whose experimental accuracy is
already sensitive to NLO corrections (see Chapter 4), may inperspective provide a competitive
measurement ofαs at charmonium energies.

• In the LHC era, very large samples (>1010 events) ofJ/ψ andψ(2S) mesons will allow the high
precision test of lepton flavour violation, severely constraining new physics models. Lepton flavour
violation can be tested via two-body decay,J/ψ→ℓℓ′ (which conserves total lepton number), with
ℓ andℓ′ denoting charged leptons of different species. This process (discussed in Chapter 8) could
occur at tree-level induced by leptoquarks, sleptons (bothin the t channel) or mediated byZ ′

bosons (in thes channel).

2.2 Higher quarkonium states

The rigorous study of higher quarkonium states, including exotic states like hybrids, will mostly rely
on lattice calculations. However, at the moment, phenomenological models still play a major role in
describing states above the open flavor threshold. In the framework of nonrelativistic EFTs on the lattice,
further progress will need:

• the calculation in lattice perturbation theory of the Wilson coefficient of the EFT at least at NLO
(see Chapter 1 and 3);

• the lattice implementation of lower-energy EFTs like pNRQCD. In this framework the lattice data
would provide the form of the potentials and the states wouldbe determined by solving the corre-
sponding Schrödinger-like equation.

The observation of theX(3872) is the start of challenging searches for non-vector states across
the open flavor threshold. This is probably the richest experimental field of research on heavy quarkonia
at present. As mentioned above, phenomenological models have played a particularly important role in
predicting which states are likely to be narrow enough to be observed and suggesting the most promising
channels for their observation.

• Studies on the nature of theX(3872), described in Chapters 3,4, and 5 can benefit from data
taking at B factories, Tevatron, and evenτ -charm factories: these should have high priority, as
emphasized throughout the report.
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• Given the excellent momentum resolution of the B factories and the unexpected double charm
process,J/ψ recoil techniques also have good discovery potential. Moreconventional methods,
like the study of the production of pairs of open charm mesonsnear threshold (in B decays and
hadronic collisions) are now reaching the statistics necessary to allow the discovery of new res-
onances in thecc̄ system with quantum numbers other than1−−. In particular, the remaining
1D states, some of the2P states and the31S0 are likely to be observable in this way. Observa-
tion of new states with different quantum numbers is also beneficial for the understanding of the
mechanism of charmonium production.

• The current CLEO-c run atψ(3770) energy, presently measuringfD from D̄D decays, can also
look for rare radiative and hadronic decays to lowercc̄ states. This study can give a unique in-
sight into theS-D mixing and coupling to decay channel effects. It may also give clues to the
understanding of theρ-π puzzle.

2.3 Production

If measurements of quarkonium production are to be exploited fully to test theoretical models, then
the precision of the theoretical predictions should be improved. Several theoretical tools that are, by
now, standard could be applied to increase the precision of theoretical predictions for charmonium and
bottomonium production rates. These tools include calculations at NLO inαs andv, resummation of
logarithms ofm2/p2

T orm2/(p∗)2, resummation of logarithms ofp2
T /m

2 or (p∗)2/m2, resummation of
logarithms ofs/m2, resummation of logarithms of1 − z, and lattice calculations of quarkonium matrix
elements.

• Calculations of cross sections at NLO inαs already exist for total cross sections and for some
quarkonium fragmentation functions. NLO calculations of quarkonium differential cross sections
in the color-singlet model also exist. However, full NLO calculations in the NRQCD factorization
approach are lacking, in general, for quarkonium differential cross sections and, in particular, for
the important cases of quarkonium cross sections that are differential inpT .

• Some calculations of corrections of higher order in the heavy-quark velocityv have already been
carried out and have yielded large corrections. It is important to investigate such higher-order cor-
rections for all quarkonium production processes and to develop a phenomenology of the higher-
order NRQCD matrix elements. It is also important to understand the origins of large corrections
of higher order inv, with an aim to controlling them to all orders in thev expansion.

• Logarithms ofm2/p2
T are important at smallpT . Their resummation involves the introduction of

non-perturbativekT -dependent parton distributions. The effects of these distributions are small for
bottomonium, but are important for charmonium. It may be possible to work out a phenomenology
of such distributions by exploiting their universality properties to extract them from processes other
than quarkonium production, such as Drell–Yan production of lepton pairs.

• Logarithms ofp2
T/m

2 are important at largepT . They may have a large effect on, for example,
extractions of the3S1 color-octet matrix elements that dominateJ/ψ andΥ production at large
pT .

• Logarithms ofs/m2 may play an important rôle in diffractive quarkonium production and quarko-
nium production in which sub-processes involve small momentum transfer. They are often re-
summed in existing calculations in thekT -factorization approach by making use of the BFKL
equation. Large corrections that occur at NLO in the BFKL equation cast some doubt on the
accuracy of such resummed calculations.

• The quantity1 − z generally measures the departure of a quarkonium production process from
a kinematic endpoint. Examples ofz are the quarkonium energy fraction and the quarkonium
longitudinal-momentum fraction. It follows that logarithms of1 − z are important near the kine-
matic limits of cross sections. Their resummation involvesnonperturbative shape functions. It
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would be useful to develop a phenomenology of these shape functions so that information from,
say, quarkonium production ine+e− collisions could be used to make predictions for other quarko-
nium production processes, such as photoproduction at HERA.

• Lattice techniques can be used to compute color-singlet NRQCD production matrix elements in the
vacuum-saturation approximation, and, hence, to supplement information on the values of these
matrix elements that can be obtained from the phenomenologyof quarkonium decay and produc-
tion. Unfortunately, it is not yet known, except within the vacuum-saturation approximation, how
to formulate the problem of the calculation of production matrix elements in lattice field theory. In
particular, no lattice method exists for the computation ofcolor-octet production matrix elements.
In addition to the logarithmic contributions that we have already mentioned, large non-logarithmic

contributions appear in some calculations of production cross sections at NLO inαs. Examples of large
corrections also exist in NLO calculations of quarkonium decay rates. It is important to understand the
origins of such large corrections and to bring them under control to all orders inαs.

A significant theoretical issue is the correctness of the NRQCD factorization formula for produc-
tion. An all-orders perturbative proof of the factorization formula would be an important step forward.
Such a proof might establish that there is a range of validityof the factorization formula. For example, the
formula might hold at largepT , but not at smallpT or for total cross sections. Most of the experimental
data are at smallpT . Experiments at smallpT are important to fix the values of certain NRQCD matrix
elements and, hence, to test matrix-element universality.However, theoretical confidence in NRQCD
factorization is highest at values ofpT that are significantly larger than the heavy-quark mass. There-
fore, it is also important for experiments to obtain data points with the highest possible statistics at the
largest accessible values ofpT . Such high-pT measurements are particularly important in testing the key
prediction that, owing to the color-octet mechanism, thereshould be a large transverse polarization in
spin-triplet quarkonium produced at largepT .

The results from the Belle Collaboration on inclusive and exclusive doublecc̄ production ine+e−

collisions are strongly at odds with current theoretical calculations. These calculations are carried out,
essentially, within the color-singlet model. However, color-octet corrections are absent at leading twist
in the exclusive case and are expected to be small in the inclusive case. An independent check of the
Belle-Collaboration results would be welcome. If these results are confirmed, then they would pose a
severe challenge to the current theoretical thinking aboutdoublecc̄ production ine+e− collisions. A
measurement of the doublecc̄ production cross section inpp̄ collisions at the Tevatron might give some
additional clues as to the nature of the production mechanisms.

Polarized beams are available at RHIC and may be available atthe LHC. Polarized-beam mea-
surements of quarkonium production rates might be useful indiscriminating between various models for
quarkonium production and between various production mechanisms within the NRQCD factorization
approach. Exploratory theoretical work on quarkonium production cross sections for polarized beams is
needed in order to understand the potential of such measurements.

2.4 In media

The study of quarkonia in media is relevant because one may use the media as a filter to study the
time and length scale associated with quarkonia productionand thus learn more about the production
mechanism. Moreover, one may use quarkonia as a test of the medium to find out its properties (e.g.
whether it is hadronic or deconfined). It has been suggested that production and suppression of quarkonia
in heavy-ion collisions could signal deconfinement and quark gluon plasma formation and eventually
estimate its temperature (see Chapter 7). To use quarkoniumto study the quark gluon plasma one needs
to understand its properties inside the plasma using lattice QCD and understand its formation in high
density environment. A list of future challenges related tothese issues may be the following.

• Several lattice QCD studies show that ground state charmonia survive in the plasma till temper-
atures as high as1.5Tc. At the same time all these studies show strong lattice artifacts in the
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charmonium spectral functions. Better lattice actions areneeded to reduce these artifacts (e.g.
lattice NRQCD, perfect actions).

• It would be important to understand what governs the quarkonium suppression in the plasma. In
this respect it would be extremely interesting to study the bottomonium system and see whether or
not the1P bottomonium states (χb), which are expected to have the same size as theJ/ψ, melt at
the same temperature.

• It is expected that the medium created in heavy ion collisions is not fully equilibrated. Thus it
would be very important to determine the thermal width of different quarkonium states on the
lattice to make contact with experiments.

• In heavy-ion collisions at very high energy the initial state is given by coherent gluon fields, the
so-called color glass condensate with typical momentum scale (saturation scale )Qs ≃ 1-2 GeV.
In the presence of color glass condensate heavy quark and quarkonium production may be quite
different from superposition of proton-proton productionat the same energy. A detailed proton-
nucleus study is needed together with nucleus-nucleus experiments to study this issue.

• Hydrodynamic models suggest a fast equilibrization in heavy ion collisions at RHIC which will
be even faster at LHC. The time scale of quark gluon plasma formationτ ≃ 0.6 fm is comparable
to the time scale the quarkonium formation. In order to disentangle between possible effects in
quarkonium yield due to in-medium production from true medium effects, e.g screening, a detailed
analysis of quarkonium yields versus rapidity, energy andpT is required.

2.5 Top-antitop production

Top-antitop quark pair production will provide an integralpart of the top quark physics program at the
International Linear Collider (ILC), which after the decision for cold, superconducting technology, is
now becoming an inter-regional endeavor. A precise measurement of the threshold cross section can
provide a top quark mass determination with uncertainties at the level of 100 MeV, a measurement of the
total top decay rateΓt, the coupling strength of top quarks to gluons,αs, and, if the Higgs boson is light,
the top Yukawa coupling. For more details see Chapter 6.

On the theoretical side there are a number of problems that need to be solved. Among them
are the still missing NNLL corrections to the top pair production current, which affect the theoretical
uncertainties of the cross section normalization. Also, a complete fixed order prediction at NNNLO
of the total cross section would be desirable as a cross checkof the importance of the summation of
logarithms and as a starting point to renormalization groupimproved calculations beyond the NNLL
level. An important conceptual issue to be solved is a consistent treatment of the interplay of electroweak
and QCD effects. Since the top quark decay is a leading order effect in the threshold region, this problem
includes the consistent treatment of interference effectsof top quark production and decay, of factorizable
and non-factorizable corrections and also of non-resonantfinal states. Closely related is also the problem
of rescattering corrections.

Top quark threshold dynamics may also play a role in other processes at high energy. For ex-
ample the processγγ→tt̄, accessible through the option of laser backscattering at the ILC, should be
explored with the same accuracy as the production ine+e− annihilation. Likewise, top threshold dy-
namics also governs associated top pair production processes in specific kinematic end point regions,
such ase+e−→tt̄H in the limit of large Higgs energy. The importance of the top threshold region might
also be systematically explored in the framework of hadron collisions. These threshold effects are not
important at the present level of accuracy, but they could become relevant at the LHC where top pairs
will be produced with very high statistics.

From the beginning of Linear Collider studies more than 10 years ago a number of experimental
studies analysing the principle feasibility of top threshold measurements have been carried out. But
only recently were machine specific and more subtle effects such as the influence of uncertainties in
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measurements of the luminosity spectrum considered and found to be very important. After the recent
technology decision for the ILC, such design-dependent studies need to be driven further to fully explore
the potential of threshold measurements and to derive the optimal scan strategy. The most important
missing tool, however, is a fully implemented top thresholdevent generator. This endeavor will be
enormous, since such a generator will have to describe production, propagation and the decay of quasi-
bound top quarks in one single consistent framework. A closecollaboration between experiment and
theory will be crucial.

3. The Superlab

In recent years, the field of experimental high-energy physics has experienced a substantial reduction in
the number of running experiments, together with the growthof large, expensive facilities used by an
increasing number of physicists. In this respect, quarkonium physics is only one of the many physics
studies competing for manpower and resources. In any of the experiments: CLEO-c, BESIII, PANDA,
Belle and BaBar at the B factories, and CDF and D0 at the Tevatron, the physics potential for quarkonia
is many times larger than the analysis that are likely to actually be made. Because of this many physics
opportunities are lost. Heavy quarkonium studies will probably be a high priority topic for BESIII and
possibly for PANDA. The currently running experiments, together with the BESIII and LHC experi-
ments, are likely to yield in the next five years an increase byone to two orders of magnitude the number
of reconstructed heavy quarkonia.

Initiatives involving transversally the different experiments are needed, to sort priorities between
the different analyses to be done on the datasets, and to provide, whenever needed, a guideline for the
best possible usage of available luminosity. By thinking offuture studies on heavy quarkonia as an ideal
“Quarkonium Superlab”, the QWG aims at merging theoreticaland experimental efforts in this subject
in a more effective and constructive way.

Recently, heavy quarkonium discoveries and confirmations in different production mechanisms
have been blossoming in a concerted way at all the accelerator facilities. The observation of theηc(2S)
and theX(3872) are cases in point. While theηc(2S) was first observed by Belle in B decay and double
charm production, it was subsequently confirmed by CLEO and BaBar in γγ collisions. Similarly,
theX(3872) was discovered by Belle in B decay and subsequently confirmedby both CDF and D0
in high energypp̄ collisions at the Tevatron. Discoveries of the same state with different production
mechanisms are very important in order to gain information on the nature of the state. The study of
quarkonia production in high-energy heavy ion collisions,as a signature of the production of a deconfined
state of QCD matter, started at CERN in 1986, and gave rise to one of the most exciting observations done
in the field of experimental QCD thermodynamics. Here again,the comparison of heavy quarkonium
production results inpp, pp̄, pA andAA collisions is crucial to have full control of the underlying
physics mechanisms.

Future expectations on heavy quarkonium experiments may begrouped as follows.

• In the short term (2004-2006), dedicated measurements on charmonium systems, mainly above
open charm threshold will be performed by CLEO-c, by runningat ψ(3770) between 4 and 4.4
GeV. At the same time, the two asymmetric B factories are poised to reach a total∼ 1000 fb−1 of
data at theΥ(4S) resonance, yielding record samples ofηc(1, 2S), X(3872) mesons with prob-
ably a few new surprises. The collider experiments CDF and D0will likely accumulate about
20 times the data samples taken during Run I, and will hopefully shed new light on the issue of
heavy quarkonium production and polarization. A precise determination of the mass of theBc
meson, done using exclusiveJ/ψ π decays, will be available soon (seeFermilab Today, Decem-
ber 3, 2004). Results from NA60 experiment at CERN and STAR and PHENIX experiments at
RHIC are expected to provide further evidence of QGP. With the expected significant increase in
statistics of the upgraded HERA collider, it might be possible to study inelastic photoproduction
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of bottomonium states for the first time, with the caveat thatproduction rates ofΥ resonances are
suppressed by more than two orders of magnitude compared with theJ/ψ.

• In the mid term (2007-2009), high precision results are expected from the CLEO-c run at theJ/ψ,
and hopefully at theψ(2S), as recommended by the QWG. In the meantime, the fully upgraded
BES-III detector will take over the precision studies of charmonium started by CLEO-c. BES-III
could run on higherψ resonances, high above theDD̄ threshold and with high enough statistics
to produce the higherP , D states via transitions from theψ’s. While the two running Tevatron
experiments will complete their period of data taking, reaching total final samples of about 16 fb−1,
CERN will return to the scene in 2008, when the first beams are expected to circulate in the LHC
accelerator. The first period of data taking, at low luminosity, will be very important to establish the
physics potential of the experiments ATLAS, CMS and LHCb on heavy quarkonium production
andBc studies. Later, three experiments will be able to study quarkonia production in heavy-
ion collisions at the LHC: ALICE, CMS and ATLAS. ALICE will measure the charmonia states
through their decay into electron and muon pairs. Before theLHC startup, the CERN experiment
COMPASS also has the possiblility of obtaining new information on the doubly charmed baryons
discovered by SELEX at FNAL. At CEBAF, high intensity 9 GeV photon beams will allow the
study of theJ/ψ photoproduction mechanism at low energy.
The future of the asymmetric B factories is unclear at present. If at least one of the two facilities
increases its luminosity to become a super B factory, a largenumber of charmonium measurements
will be within reach, and even the simple ISR production mechanism will yield record samples of
Υ(1, 2, 3S) decays. A promising opportunity, recommended by the QWG, isto turn one of the
two asymmetric B factories into anΥ(1, 2, 3S) factory during the last fraction of its running pe-
riod. There is considerablebb̄ physics that remains to be done. A few examples are:ηb(n

1S0)
searches using M1 radiative transitions from theΥ(n3S1) states,hb searches via hadronic transi-
tionsΥ(3S)→hb + π0→ηb + γ+ π0 or Υ(3S)→hb + ππ→ηb + γ+ ππ, and measuring radiative
and hadronic transitions in thebb̄ system.

• In the long term (2010 and beyond), PANDA at GSI offers the opportunity to study many charmo-
nium states with non1−− quantum numbers and can challenge BES-III on high statisticstudies
of the narrow charmonium states. Given the huge yields of heavy quarkonia expected from LHC
experiments when running at full luminosity , the main problem will be the choice of high priority
physics cases and the main challenge will come from the need to keep trigger rates under control.
At the same time the BTeV experiment at Tevatron will challenge LHCb onBc physics in the
forward region. Finally, the ILC, in the next decade, will test NRQCD attt̄ threshold, as well as a
number of still unpredicted future hot issues in heavy quarkonium physics.
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