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Abstract

We include instanton effects in QCD sum rules for coupled scalar glueballs and
mesons. We find a light glueball/sigma as in earlier studies without instantons, but in
a lattice-type pure instanton model the light glueball/sigma is not found. In the 1-2
Gev region we now find that lightest I=0 meson, in the region of the fo(1370), has no
direct glueball mixing, with the instanton loop replacing the glueball component. The
lightest scalar mainly glueball in the region of the fo(1500) is sensitive to the choice of
nonperturbative gluonic parameters.
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1 Introduction

Some of the earliest applications of the method of QCD sum rules was for the study
of gluonic hadrons[1], known as glueballs. Using the sum rules obtained in that work it
was observed that a light scalar glueball solution in the region of 400-500 MeV [2] might
be strongly coupled to a ππ resonance we call the sigma, which would give large branching
ratios for the decays into channels with sigmas of heavier glueballs and hybrids[3]. Moreover,
it was observed[2] that if the coupling of scalar mesons to glueballs is included, the original
scalar meson QCD sum rules[4] are modified so that the lightest 80% meson solution predicts
a mass about 400 MeV higher than the pure qq̄ solution, ı.e., near the fo(1370) rather than
the fo(980) as found in the earlier work[4]

It has been known for decades that instantons can represent a large part of nonperturba-
tive gluonic interactions. In the present work we include instanton effects in the sum rules
for the scalar glueballs and mixed scalar mesons and glueballs. In Sect. 2.1 we review the
QCD sum rules for scalar mesons, glueballs and mixed meson-glueballs without instantons.
In Sect. 2.2, we review work that has been done on scalar hadrons with instantons using the
sum rule methods and give the modification of the sum rules with instantons included. In
Sect. 3 we give the results for a possible light glueball/sigma of mass about 500 MeV and for
mixed meson-glueballs in the 1-2 GeV region. If we drop all gluonic condensates from the
sum rules, but retain the instantons as the source of nonperturbative effects to agree with
recent quenched lattice calculations, we no longer find the light glueball. Instead, we find
only scalar glueball solutions with masses greater than 1400 MeV. We discuss the results in
Sect. 4.

2 Sum Rules for Mixed Scalar Mesons and Glueballs

In this section we discuss the QCD sum rules for mixed scalar mesons and quarks. The
method[5] makes use of a correlator defined in terms of a composite field operator

Π(p) = i
∫

d4x eiq·x < 0 | T [J(x)J(0)] | 0 > , (1)

where J(x) is a field operator composed of quark and/or gluon fields for pure QCD. In the
present work the operators are

Jm(x) =
1

2
(ū(x)u(x) − d̄(x)d(x)) (2)

JG(x) = αsG
2,

for the I=0 scalar meson and glueball, respectively. The I=1 scalar meson is not treated
here. The QCD sum rules are obtained by equating a dispersion relation for the correlator to
a QCD evaluation using an operator product expansion (OPE). We discuss these sum rules
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Fig. 1  a)  perturbative loop  b)  gluon condensate  c)  four-quark condensate  
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in the following two subsections, first without explicit instantons and secondly with explicit
instanton contributions.

2.1 Mixed Scalar Mesons and Glueballs Without Instantons

In this subsection we review QCD sum rules for scalar mesons, for scalar glueballs, and for
the mixed meson-glueball sum rules. As was discussed in the first QCD sum rule research
on scalar glueballs[1], there is a strong argument for using a subtracted dispersion relations,
while the first work on scalar mesons[4] used an unsubtracted dispersion relation. This is
important consideration for the present work.

2.1.1 Scalar mesons

The QCD sum rules for scalar mesons were first treated in Ref. [4]. The most important
processes, obtained by an OPE, are illustrated in Fig. 1 for light-quark mesons, and in
Euclidean momentum space (Q2=-p2) give

Π(Q)QCD =
3

8π2
(1 +

11

3

αs

π
)Q2ln(Q2) (3)

+
αs

8πQ2
< G2 > +

παs

Q4
P 4q,

where < G2 > is the gluon condensate and P 4q is the four-quark condensate for the scalar
meson, illustrated in Fig. 1c. The perturbative gluon correction diagram is not shown. Note
that the quark condensate term, < q̄q >, is neglected as it is proportional to the current quark
mass. The factorized form For the four-quark condensate [5], P 4q ≃ −176 < q̄q >2 /27, is
probably accurate to about a factor of two. After the Borel transform the sum rule, with M
the Borel mass, is

g0e
−M2

m/M2

=
3

8π2
(1 +

11αs

3π
)M4E1(so/M

2) (4)

+
αs

8π
< G2 > −176αs

27M2
c4 < q̄q >2,
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(b)(a)

(c) (d)

c)  D=6  gluonic condensate, 
  Fig. 2  Glueball processes:  a) perturbative loop,  b) gluon condensate

(6)
       

(8),   d)  D=8  gluonic condensate,  ΓΓ

with c4 a constant representing the correction to the four-quark condensate, and g0 a D
= 4 constant which will not be used in the analysis. The functions En(s0/M

2) represent
the continuum contribution to the sum rules with a simple form for the continuum spectral
function. They are defined as En(x) = 1 − e−x ∑n

k=0
xk

k!
)

Taking the derivative of Eq.(4) with respect to 1/M2 and using the ratio of the resulting
equation and Eq.(4 one obtains an equation for the scalar meson mass:

M2
m =

3
8π2 (1 + 11αs

3π
)(2M6E1(s0/M

2) − s2
oM

2e−
so

M2 ) − παsP
4q

3
8π2 (1 + 11αs

3π
)M4E1(s0/M2) + αs

8π
< G2 > +παs

M2 P 4q
(5)

There is a stable solution for the scalar meson mass Mm of about 1 GeV, which is the
result of the original work of Ref.[4]. If this were the physical solution then we would
interpret this as the f0(980), however, it was found in previous work [2] that the coupling to
the scalar glueball increases the mass by 3-400 MeV. In the simple picture of Eq.(5) the I=1
is degenerate with the I=0 meson, giving the a0(980).

2.1.2 Scalar glueballs

The QCD sum rules for scalar glueballs were first treated in Ref. [1]. There have been many
calculations of scalar glueballs in recent years [6, 2]. With the preturbative corrections of
Ref.[7] and including nonperturbative terms up to dimension eight one finds for the correlator
corresponding to the processes illustrated in Fig. 2

Π(Q2)QCD = −2(
αs

π
)2(1 +

51

4

αs

π
− 11

4

αs

π
ln(Q2))Q4ln(Q2) + 4α2

s < G2 > (1 + (6)

49

12

αs

π
− 11

4

αs

π
ln(Q2)) +

8α2
sΓ

(6)

Q2
(1 − 29

4
αsln(Q2)) +

8πα3
sΓ

(8)

Q4
,
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where Γ(6) = 〈gsfabcG
a
µνG

b
νρG

c
ρµ〉 and Γ(8) = 〈14(fabcG

a
µνG

b
νρ)

2−(fabcG
a
µνG

b
ρλ)

2〉 are dimension
6 and dimension 8 gluonic condensates, illustrated in Figs 2c) and d), respectively. Note
that the largest nonperturbative contribution from the gluon condensate is independent of
momentum, since the dimension of < G2 > is the same as the correlator. For this reason
it does not contribute to the correlator after the Borel transform. For this reason it was
suggested [1] that one should use a subtracted dispersion relation. Using the subtracted
form, (Π(Q2) − Π(0))/Q2 and taking the Borel transform one obtains the sum rule

Π(0)e−M2
G

/M2

+ cont. = Π(0) + 2(
αs

π
)2(1 +

51

4

αs

π
− 11

2

αs

π
(1 − γE + ln(M2))M4 (7)

E1(so/M
2) − 4α2

s < G2 > (1 +
49

12

αs

π
+

11

4

αs

π
(γE − ln(M2))

−8α2
sΓ

(6)

M2
(1 − 29

4
αs(1 − γE + ln(M2))) − 8πα3

sΓ
(8)

2M4
.

Taking the ratio of the ∂/∂(1/M2) of Eq.(7) to Eq.(7) one has a sum rule for a pure scalar
glueball, with no explicit quark/antiquark components, although the qluonic condensates
contain important quark pair contributions,

M2
G = [2(

αs

π
)2(2(1 +

51

4

αs

π
− 11

2

αs

π
(1 − γE + ln(M2)))M6E2(so/M

2) (8)

−11

2
(
αs

π
)M6E1(so/M

2)) + 11(
α3

s

π
) < G2 > M2 + 8α2

sΓ
(6)

(1 +
29

4
αs(γE − ln(M2)) +

8πα3
s

M2
Γ(8)]

[Π(0) + 2(
αs

π
)2(1 +

51

4

αs

π
− 11

2

αs

π
(1 − γE + ln(M2)))M4E1(so/M

2)

−4α2
s < G2 > (1 +

49

12

αs

π
+

11

4

αs

π
(γE − ln(M2))

−8α2
s

M2
Γ(6)(1 − 29

4
αs(1 − γE + ln(M2))) − 4πα3

s

M4
Γ(8)]−1.

Using the range of Γ(6) and Γ(8) suggested in Refs.[6, 7] one finds stable solutions for a light
glueball with a mass in therange of 300 MeV-600 MeV. This is the glueball/sigma of Ref. [2],
which has been used for calculating the sigma branching ratio from hybrid decay[3] and
estimates of diffractive sigma production in high energy proton-proton processes mediated
by the Pomeron[8].

2.1.3 Mixed scalar glueballs and mesons

Physically it is expected that scalar glueballs and mesons should mix, and from the early
calculations using QCD sum rules for scalar hadrons[1, 9] this was discussed. This suggests
that one must use a scalar current of the form

J0++ = βMoJm + (1− | β |)JG, (9)
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where Mo is a constant that we take to be 1 GeV. The mechanism for mixing is given by a low
energy theorem discussed in Ref. [1]. One can show that the mixing term in the correlator
with the current of Eq.(9) is [2]

Πmixing ≃ β(1− | β |)64

9
< q̄q > . (10)

Since the Borel transforn of a constant vanishes, the mixing term does not contribute to
the unsubtracted sum rule, while it contributes the term shown in Eq.(10) to the subtracted
dispersion relation. One finds the solutions to the sum rules discussed in Ref. [2], where it
was reported that there are no stable solutions in the 1-2 GeV region without glueball-meson
mixing. The most stable solutions were found for a 80% meson and an 80% glueball. These
presumably correspond to the fo(1370) and fo(1500), respectively, although the uncertainty
of about 15% in the solutions cannot separate these two solutions. Note that there is no
solution near the fo(980), which shows the importance of the gluonic mixing (recall that
without the mixing the lowest mesonic solution is near the fo(980)[4]). The purely gluonic
solution in the 300-600 MeV range is a prediction of the method. In the next sections we
study the solutions to the sum rules with instanton effects included.

2.2 Mixed Scalar Mesons and Glueballs With Instantons

For many years it has been known that instantons can represent a major part of the non-
perturbative gluoic interactions. See Ref. [12] for an excellent review of the concepts of
instantons and applications to QCD. The starting point is the solution for the instanton
using the classical action [10], which gives for the instanton color field

Ainst
µ(x)a =

2ηaµνxν

x2 + ρ2
(11)

Ginst(x) · Ginst(x) =
192ρ4

(x2 + ρ2)4

where ρ is the instanton size. From this the quark zero modes were derived [11], which
is the main basis for subsequent research with quarks and instantons. Although in the
instanton gas picture, with ρ ≃ 1.0 fm[1], the inclusion of instantons in QCD sum rules
did not seem very promising for hadronic physics, in the instanton liquid model [13] with
ρ ≃ 1/3 fm instantons give large nonperturbative effects in the medium-range region, where
neither the perturbative glue nor the long range confining glue represented by the condensates
are effective. On the other hand the other hand the instantons cannot give confinement (see
Ref.[12] for a discussion and references). From this we conclude that one needs both instanton
and gluonic condensate processes in the QCD sum rules for scalar hadrons.

In a previous study of the role of instantons in hadronic physics the solution for a quark in
the instanton-antiinstanton medium [14] was tested using the Dyson-Schwinger (DS) equa-
tion [15] with a confining gluonic propagator that was fit to the condensates, and it was found
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that there is no consistency with the condensates. An important observation for the present
work is that although the instantons can produce most of the quark condensate (dimension
= 3) they do not give the correct higher dimensional mixed condensate (dimension = 5).
This can be explained by the higher dimensional condensates produced by gluonic effects
at a larger length scale than the 1/3 Fm of the instanton liquid model. Recently, the DS
equation was solved both on the light-cone [16] and in four-dimensional Euclidean space [17],
and consistent solutions are obtained if both instantons and a confining gluonic propagator
are included. Moreover, the instantons provide the largest nonperturbative effects.

In the present work we assume that there are three length scales: the perturbative region
with L≤ 0.2 fm, the midrange nonperturbative region with L≃ 0.33 fm given by instantons
and the confining region with L≥ 0.5 fm. Our model is as follows:

1) The color field can be written as A = Ainst + Ā, with the instanton being the classical
solution and Ā the residual color quantum field.

2) The instanton loop is included in the correlator for scalar glueballs, but no instanton
interactions are included. The latter are assumed to be accounted for by the various con-
densates. This is consistent with the instanton liquid model [12], in which the paramenters
are constrained by the gluon condensate.

3) In the meson correlator the loop of quark-antiquarks in the background instanton
medium is included, but no instanton interacton processes, for similar reasons.

Thereby, we add the instanton processes to the perturbative processes for the sum rules.
This adds two processes to the QCD side of the correlator. For the scalar meson correlator
the additional process is the loop with a quark and an antiquark in the instanton medium.
After a Borel transform the instanton contribution to an isospin = I scalar meson correlator
is [18, 19, 20]

Πqq̄,inst = (−1)I 3

8π2
ρ2M6e−x(Ko(x) + K1(x)), (12)

with x=ρ2M2/2. The instanton continuum contribution corresponding this is

Πqq̄,inst,cont = (−1)I 3

4π

∫
∞

so

dssJ1(ρ
√

s)Y1(ρ
√

s)e−s/M2

, (13)

with so the continuum parameter. The notation for the various Bessel functions is stan-
dard [21].

The new contribution of the instanton loop for the scalar glueball for the unsubtracted
correlator, such as that used in Eq.(7), is (after the Borel transform) [1, 13]

ΠGB,inst(M) = −27π2n
x2

ρ2
e−x(2x3Ko(x) + (x2 + 2x3)K1(x)), (14)

where n is the instanton density. The corresponding continuum contribution is

ΠGB,inst,cont(M) = 24π3nρ4
∫

∞

so

dss2J1(ρ
√

s)Y1(ρ
√

s)e−s/M2

. (15)
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For the subtracted dispersion relationship, which gave the solution for the light glueball/sigma
discussed above, the QCD and continuum contributions are

ΠGB,inst(M) = 26π2nx2e−x((1 + x)Ko(x) + (2 + x +
2

x
)K1(x)) − 27π2n (16)

for the instanton loop and

ΠGB,inst,cont(M) = 24π3nρ4
∫

∞

so

dssJ1(ρ
√

s)Y1(ρ
√

s)e−s/M2

. (17)

from the continuum.

3 Results

3.1 Light Scalar Glueball, Lattice Gauge Comparison

We now search for a solution to the subtracted correlator sum rules, which in the previous
work without instantons [2] yielded the light scalar glueball/sigma. The sum rule solution
is given by Eq.(8) with the addition of the instanton terms given by Eqs.(16,17), where
the suitable derivative of the instanton terms must be carried out for the numerator of
the equation. A crucial question is that with the inclusion of instantons how should one
modify the values of the dimennsion 4, 6, and 8 gluonic condensates, < G2 >, Γ(6), and Γ(8),
discussed above. An analysis of recent QCD lattice calculations [22] finds that these quenched
calculations give results similar to the instanton liquid model. However, this instanton model
does not give the correct string tension. The interpretation must be that the instantons can
give the quark condensate, where the length scale is about 1/3 fm, but cannot give the
infrared nonperturbative QCD (NPQCD) effects. We explore this in the following manner:
first we look for solutions with instantons and the gluonic condensates, studying the solutions
with suitable choices of the gluonic condensates. We then look for solutions with the only
NPQCD effects being those given by instantons, which should resemble the lattice gauge
calculations [22].

We do indeed find solutions to the subtracted dispersion relation using higher-dimension
gluonic condensates in the range previously found and with the standard parameters of the
instanton liquid model [12]. Specifically, the size of the instanton is 1.67 GeV−1 and the
instanton density is .0008 GeV4. A typical solution as a function of the Borel mass is shown
in Fig. 3. The greatest uncertainty in the method is the values of the gluonic condensates,
particularly the higher-dimensional condensates, Γ(6) and Γ(8). The most widely accepted
values of these higher dimensional gluonic condensates are Γ(6) = .0114 GeV6 and Γ(8) =
.0081 GeV8. The solution shown in Fig. 3 has values of these condensates reduced by 20%.
We also find stable solutions that meet the criteria of QCD sum rules in the range 400-600
MeV for values of the higher-dimensional condensates 40% to 100% of the accepted values
mentioned. Fortunately, the ordinary gluonic condensate does not play a major role in these
calculations once the instantons are included.
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Next we carry out studies of the subtracted dispersion dropping all the gluonic conden-
sates, which should give solutions similar to the quenched lattice calculations [22], if our
arguments are correct. No light glueball solution is found, as in the present lattice calcula-
tions. The solutions are indeed quite sensitive to the instanton parameters. A stable solution
for a glueball with a mass of about 1560 MeV is shown in Fig. 4, with parameters instanton
size = 1.28 GeV−1 and density = .00018 GeV4. If one uses instanton parameters closer to or
equal to the standard ones given above the glueball solutions are heavier, but we do not find
consistency in the sense of the mass range of the Borel plateau of the sum rules including
the mass of the solution. In other words with a pure gluonic instanton model we do not find
stable solutions for a scalar glueball. This is consistent with our observations that in the
1-2 GeV regions the stable glueballs must have a scalar meson component. Note that recent
lattice glueball solutions find the lightest scalar glueball mass at about 1700 MeV [23, 24].

We conclude that stable scalar glueball solutions in the range of 400-600 MeV are found
if one includes the higher-dimensional gluonic condensates, and to the extent that the sum
rule method is reliable there is a light glueball that could be part of the strongly coupled
glueball/sigma system. Moreover, we find a plausable explanation of the present lattice
calculations not finding a light glueball.
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3.2 Mixed Scalar Mesons

For the solutions to the unsubtracted sum rules our most striking new result in the 1-2 GeV
region is that there are now, with instantons, no stable solutions in which there is a dominant
scalar meson (qq̄) component with an even small admixture of a scalar glueball. This is in
contrast to our earlier result [2] in which the only solutions obtained after the inclusion of
the mixing given in Eq.(10) had a mixing of the order of 20 %. The process of the loop of
qq̄ in which the propagators are those of quarks in the background instanton-antiinstanton
medium seems to replace the physical input of the glueball. This seems to be physically
reasonable, but is not obvious. We obtain a second very stable solution with 80% glueball
and 20% meson, which is in the region of the fo(1500); however, in contrast to the purely
meson solution, the mainly glueball solution depends strongly on the choice of parameters.
In fact, for the standard instanton liquid model there are no consistent solutions.

4 Discussion

For the subtracted sum rules, which are given by Eq.(8) with the addition of the instanton
contributions to the glueball correlator, given by Eqs.(16,17), we find good solutions in the
400-600 MeV region as has been found in Refs.[6, 2, 7] without instantons. The instanton
terms play a major role, and our solutions are more stable than those found earlier[2] and
as expected less sensitive to the values of the higher-order gluonic condensates Γ(6) and
Γ(8). We also have shown that if one only includes instantons without higher-dimensional
gluon condensates there are no solutions for light glueballs. Moreover, we find no stable
self-consistent scalar glueballs with the parameters of the instanton liquid model without
scalar meson admixing. This suggests that when accurate unquenched lattice calculations
are carried out that successfully account for the higher-dimension gluonic condensates they
should also find a scalar glueball in the region of the sigma, about 500 MeV. Our results
for a glueball in the 500 MeV region anddifficulty in obtaining consistent solutions in the
1-2 GeV region are consistent with the work of Ref. [7]. Recently, a calculation [20] using a
double subtracted dispersion relation with both instantons and gluonic condensates find a
scalar glueball solution in the 1.5 GeV region.

If our sigma/glueball conjecture is correct it makes the experimental study of branching
ratios with channels containing sigmas for various glue-rich processes, such as hybrid decays
and reactions dominated by Pomeron exchange, as well as heavy meson decays[25] most
interesting.

This work was supported in part by the NSF grant PHY-00070888 and in part by the
DOE contract W-7405-ENG-36. LSK wishes to thank the TQHN group at the University
of Maryland for hospitality during the period when this work was completed and Colin
Morningstar for helpful discussions.
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