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Scalar glueball mass reduction at finite temperature in SU„3… anisotropic lattice QCD
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We report the first study of the glueball properties at finite temperatures belowTc using SU~3! anisotropic
lattice QCD with b56.25, the renormalized anisotropyj[as /at54 and 2033Nt(Nt

535,36,37,38,40,43,45,50,72) at the quenched level. From the temporal correlation analysis with the smearing
method, about 20% mass reduction is observed for the lowest scalar glueball asmG(T)51250650 MeV for
0.8Tc,T,Tc in comparison withmG.1500–1700 MeV atT.0.
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Finite temperature QCD, including quark gluon plasm
~QGP! physics, is one of the most interesting subjects
quark hadron physics@1–3#. At high temperature, in accor
dance with the asymptotic freedom of QCD, the strong in
action among quarks and gluons is expected to be redu
and deconfinement and/or a chiral phase transition wo
occur @1#.

For the study of finite temperature QCD, lattice QC
Monte Carlo simulation provides a reliable method direc
based on QCD. For instance, SU~3! lattice QCD simulations
at the quenched level show a weak first-order deconfinem
phase transition at the critical temperatureTc.260 MeV
@4#, and full SU~3! QCD simulations show a chiral phas
transition atTc5173(8) MeV forNf52 and 154(8) MeV
for Nf53 in the chiral limit @5#. Above Tc , most of the
nonperturbative properties such as color confinement
spontaneous chiral-symmetry breaking disappear, and qu
and gluons are liberated.

Even belowTc , there are many model predictions on t
change of the hadron properties@2,6,7#, the mass and the
size, due to the change in the interquark potential@8,9# and
the partial chiral restoration. As a precritical phenomenon
the QCD phase transition, the possible hadron mass sh
the finite temperature or in the finite density is now one
the most interesting subjects in hadron and QGP physics.
instance, the CERES data with the ultrarelativistic heavy-
collision experiment may indicate ther-meson mass shif
@10#, and many theoretical studies@11# have been done to
explain this experiment.

Nevertheless, lattice QCD studies for thermal proper
of hadrons are still inadequate at present because of the
ficulty in measuring the hadronic two-point correlators
the lattice at finite temperature. For instance, on
screening-mass measurement@12#, this difficulty is due to
the mixture of the large Matsubara frequencies in addition
the absence of technical prescriptions as the smea
method. On the other hand, on the pole-mass measurem
while it is free from the mixture of the Matsubara freque
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cies, another difficulty arises from the shrink of the physic
temporal size 1/T at high temperature. In fact, the pole-ma
measurements have to be performed within the limited d
tance shorter than 1/(2T), and such a limitation correspond
to Nt54 – 8 nearTc in the ordinary isotropic lattice QCD
@4#.

To avoid this severe limitation on the temporal size, w
adopt an anisotropic lattice where the temporal lattice sp
ing at is smaller than the spatial oneas @8,13–15#. We can
thus efficiently use a large number of the temporal latt
points asNt;32 even nearTc , while the physical tempora
size is kept fixed 1/T5Ntat . In this way, the number of
available temporal data is largely increased, and accu
pole-mass measurements from the temporal correlation
come possible@14,15#.

In this paper we study the glueball at finite temperatu
from the temporal correlation analysis. We use SU~3! aniso-
tropic lattice QCD at the quenched level, as a necessary
step before attempting to include the effects of dynami
quarks in the future. Even without dynamical quark
quenched QCD can reproduce well various masses of h
rons, mesons, and baryons, and important nonperturba
quantities such as the confining force and the chiral cond
sate. In quenched QCD, unlike full QCD, the elementa
excitations are only glueballs in the confinement phase
low Tc.260 MeV. At zero temperature, the lightest phys
cal excitation is a scalar glueball withJPC5011 with the
massmG.1500–1700 MeV@15–18#, which is expected to
dominate the thermodynamical properties belowTc .

We consider the glueball correlator@15–20# in SU~3!

lattice QCD as G(t)[^Õ(t)Õ(0)&, Õ(t)[O(t)2^O&,
O(t)[(xWO(t,xW ). The summation overxW physically means
the zero-momentum projection. The glueball operatorO(t,xW )
is to be properly taken so as to reproduce its quant
numberJPC in the continuum limit. For instance, the simp
lest composition for the scalar glueball is give
as O(t,xW )[Re Tr$P12(t,xW )1P23(t,xW )1P31(t,xW )%, where
©2002 The American Physical Society07-1
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Pmn(t,xW )P SU~3! denotes the plaquette operator. With t
spectral representation,G(t) is expressed asG(t)/G(0)

5(cne2Ent, cn[u^nuÕu0&u2/G(0), G(0)5( z^nuÕu0& z2,
where En denotes the energy of thenth excited stateun&.
Here, u0& denotes the vacuum, andu1& denotes the ground
state glueball. Note thatcn is a non-negative number wit
(cn51. On a fine lattice with the spacinga, the simple

plaquette operatorPi j (t,xW ) has a small overlap with the glue
ball ground stateuG&[u1&, and the extracted mass look
heavier owing to the excited-state contamination. This sm

overlap problem originates from the fact thatO(t,xW ) has a
smaller ‘‘size’’ of O(a) than the physical peculiar size of th
glueball. This problem becomes severer asa→0. We thus
have to improveO(t,xW ) so as to have almost the same size
the physical size of the glueball.

One of the systematic ways to achieve this is the smea
method@20–22#. The smearing method is expressed as
iterative replacement of the original spatial link variabl
Ui(s) by the associated fat link variables,Ū i(s)PSU(3)c ,
which is defined so as to maximize

Re TrF Ū i
†~s!S aUi~s!1 (

j 5” i ,6
U6 j~s!Ui~s6 ĵ !U6 j

† ~s1 î ! D G ,
~1!

whereU2m(s)[Um
† (s2m̂), anda is a real parameter. Here

the summation is taken only over the spatial direction
avoid the nonlocal temporal extension. Note thatŪ i(s) holds
the same gauge transformation properties withUi(s). We
refer to the fat link defined in Eq.~1! as the first fat link
Ui

(1)(s). The nth fat link Ui
(n)(s) is defined iteratively as

Ui
(n)(s)[Ū i

(n21)(s) staring fromUi
(1)[Ū i(s) @22#. For the

physically extended glueball operator, we use thenth
smeared operator, the plaquette operator constructed
Ū i

(n)(s).
The smeared operator physically corresponds to an

tended composite operator with the original field variable
Um(s). We consider the size of thenth smeared operator in
terms of the original field variable. Using the linearization
the gluon field, we obtain the diffusion equation as@15,23#

]

]n
K~xW ,n!5DnK~xW ,n!, D[

as
2

a14
~2!

for the distributionK(xW ,n) of the gluon field in thenth
smeared plaquette, in the case of the small spatial la
spacingas . The nth smeared plaquette located at the orig
xW50W physically corresponds to the Gaussian extended op
tor with the distribution as@15,23#
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K~xW ,n!5
1

~pr2!3/2
expF2

xW2

r2G , ~3!

where r represents the characteristic size of the Gauss
distribution, and is defined as

r[2ADn52asA n

a14
. ~4!

Thus, the smearing method, which is introduced to carry
the accurate mass measurement by maximizing the gro
state overlap, can be also used to give a rough estimate o
physical glueball size. In fact, once we obtain the maxim
overlap with somen anda, the glueball size is roughly es
timated with Eq.~4!.

We use the SU~3! anisotropic lattice plaquette action

SG5
b

Nc

1

gG
(

s,i , j <3
Re Tr@12Pi j ~s!#

1
b

Nc
gG (

s,i<3
Re Tr@12Pi4~s!# ~5!

with the plaquette operatorPmn(s)P SU~3! in the (m,n)
plane. The lattice parameter is fixed asb[2Nc /g256.25,
and the bare anisotropy parameter is taken asgG53.2552 so
as to reproduce the renormalized anisotropyj[as /at54
@13#. These parameters produce the spatial lattice spacin
as

2152.341(16) GeV (as.0.084 fm), and the tempora
one as at

2159.365(66) GeV (at.0.021 fm). Here, the
scale unit is determined by adjusting the string tension
As5440 MeV from the on-axis data of the static interqua
potential. The pseudo-heat-bath algorithm is used to upd
the gauge field configurations on the lattice of the sizes3

TABLE I. The lattice QCD result for the lowest scalar glueba
mass at finite temperature. The temporal lattice sizeNt , the corre-
sponding temperatureT, the lowest scalar glueball massmG(T), the
maximal ground-state overlapCmax, fully correlatedx2/NDF , the
smearing numberNsmr, the number of gauge configurationsNconf

and the rough estimate of the glueball sizer are listed. The most
suitable smearing numberNsmr is determined with the maximum
ground-state overlap condition.

Nt T(MeV) mG(MeV) Cmax x2/NDF Nsmr Nconf r (fm)

72 130 1450~40! 0.93~2! 1.43 39 5541 0.42
50 187 1410~46! 0.92~3! 0.34 41 5168 0.44
45 208 1456~34! 0.96~1! 0.72 40 5929 0.43
43 218 1323~39! 0.89~2! 0.90 43 8693 0.45
40 234 1260~45! 0.84~3! 0.75 42 7420 0.44
38 246 1221~35! 0.85~2! 0.12 40 8736 0.43
37 253 1273~32! 0.88~2! 1.61 38 8633 0.42
36 260 1208~35! 0.84~2! 1.34 39 8603 0.42
35 268 1188~34! 0.84~2! 1.80 40 8462 0.43
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3Nt , with Nt535,36,37,38,40,43,45,50,72 as listed in Ta
I. For each temperature, we pick up gauge field configu
tions every 100 sweeps for measurements, after skipp
more than 20,000 sweeps of the thermalization. The num
of gauge configurations used in our calculations are sum
rized in Table I.

For completeness, we give an estimate of the critical te
peratureTc . To this end, we analyze the scattering plot
the Polyakov loopP(xW )[Tr$U4(xW ,0)•••U4(xW ,Nt21)% at
each gauge field configuration. From this analysis, theZ3
symmetry holds atNt535, and the system is found to be
the confinement phase. On the other hand, theZ3 symmetry
is broken at Nt534, which indicates the deconfineme
phase. Hence, we estimateTc.270 MeV, which is consis-
tent with the previous studies@4,8#.

We present the numerical results in SU~3! anisotropic lat-
tice QCD at the quenched level. To enhance the ground-s
contribution, we adopt the smearing method with the sme
ing parametera52.1, which we find one of the most suitab
values from the numerical tests with variousa. The statisti-
cal errors are estimated with the jackknife analysis@19#.

In Fig. 1~a! we show a scalar glueball correlato
G(t)/G(0) at a low temperatureT5130 MeV for the
smearing numberNsmr540, where most of the lattice QCD
data are well fitted by a single hyperbolic cosine, denoted
the solid curve, as

G~ t !/G~0!5C~e2mGtat1e2mG(Nt2t)at!. ~6!

FIG. 1. ~a! The scalar glueball correlatorG(t)/G(0) for Nsmr

540 at a low temperatureT5130 MeV. ~b! The corresponding
effective mass plot. The statistical errors are estimated with
jackknife analysis. The solid line denotes the best single hyperb
cosine fit to the lattice data in the interval@ tmin ,tmax# indicated by
the two vertical dashed lines. The dashed and dotted curves ar
best hyperbolic cosine curves for the modified fit range withtmin

11 and tmin12, respectively. The closeness of the three cur
means small fit-range dependence.
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This indicates the achievement of the ground-state enha
ment owing to the smearing method, and then the excit
state contamination is almost removed.

In general,G(t)/G(0) is expressed as a weighted sum
hyperbolic cosines with non-negative weights, a
G(t)/G(0) decreases more rapidly than Eq.~6! near t50
due to excited-state contributions. Hence,C should satisfy
the inequalityC<(11e2mGatNt)21.1. In the ground-state
dominant case,G(t)/G(0) can be well approximated by
single hyperbolic cosine, andC.1 is realized. We refer toC
as the ground-state overlap.

From Fig. 1~a! we findC.1 andmG.1450 MeV for the
lowest scalar glueball mass at a low temperature. This se
consistent withmG.1500–1700 MeV atT.0 @16–18#.

In Fig. 2~a! we show a scalar glueball correlato
G(t)/G(0) at a high temperatureT5253 MeV for the
smearing numberNsmr540. Owing to a suitable smearing
most of the lattice QCD data are well fitted by a single h
perbolic cosine denoted by the solid curve.

Each best fit analysis is performed in the interv
@ tmin ,tmax#, which is determined from the flat regio
@ tmin ,tmax21# appeared in the corresponding ‘‘effectiv
mass’’ plot shown in Figs. 1~b! and 2~b!. The effective mass
meff(t) is a solution of

G~ t11!

G~ t !
5

cosh@meff~ t !at~ t112Nt/2!#

cosh@meff~ t !at~ t2Nt/2!#
, ~7!

e
ic

the

s

FIG. 2. ~a! The scalar glueball correlatorG(t)/G(0) for Nsmr

540 at a high temperatureT5253 MeV. ~b! The corresponding
effective mass plot. The statistical errors are estimated with
jackknife analysis. The solid line denotes the best single hyperb
cosine fit to the lattice data in the interval@ tmin ,tmax# indicated by
the two vertical dashed lines. The dashed and dotted curves ar
best hyperbolic cosine curves for the modified fit range withtmin

11 and tmin12, respectively. The closeness of the three cur
means small fit-range dependence.
7-3
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for a givenG(t11)/G(t) at each fixedt @19#. In Figs. 1 and
2, we show also the results of further two fits in the modifi
interval as@ tmin11,tmax# and @ tmin12,tmax# by dashed line
and dotted line, respectively. The closeness of the th
curves suggests small fit-range dependence.

In the most suitable smearingNsmr, the ground-state over
lap C is maximized and the massmG is minimized, which
indicates the achievement of the ground-state enhancem
~For extremely largeNsmr, the operator size exceeds th
physical glueball size, resulting in the decrease of the o
lap C.! In practical calculations, the maximum overlap a
the mass minimization are achieved at almost the sameNsmr,
and both of these two conditions would work as an indi
tion of the maximal ground-state enhancement. Here,
take the maximum ground-state overlap condition asC.1.
~The mass minimization condition leads to almost the sa
glueball mass@23#.!

From the analysis at various temperatures, we plot
lattice QCD result for the lowest scalar glueball massmG(T)
against temperatureT in Fig. 3. We observe, in Fig. 3, abou
20% mass reduction or a few hundred MeV mass reduc
of the lowest scalar glueball nearTc as mG(T)51250
650 MeV for 0.8Tc,T,Tc in comparison withmG(T
;0).1500–1700 MeV@16–18#.

We also give a rough estimate of the glueball size.
estimate the glueball size, we searchNsmr which realizes the
maximum ground-state overlapCmax. From Eq. ~4! with
this Nsmr, we roughly estimate the glueball size
r.0.4– 0.45 fm both at low temperature and at high te
perature nearTc . Thus, we see that the thermal effect on t
glueball size is rather small, which may provide importa
information in the bag model argument of the QCD pha
transition@15,23#.

In Table I we summarize the lowest scalar glueball m
mG(T), the ground-state overlapCmax, fully correlated
x2/NDF, the corresponding smearing numberNsmr, the num-
ber of gauge configurationsNconf, and the estimated glueba
sizer.

Thus, the present lattice QCD calculation indicates t
the lowest scalar glueball exhibits about 250 MeV mass
duction nearTc keeping its size. Here, we briefly discuss t
physical consequence of this result, considering the trigge
the QCD phase transition. In quenched QCD belowTc , the

FIG. 3. The lowest scalar glueball mass plotted against the t
peratureT. It is obtained with the best hyperbolic cosine fit in th
interval @ tmin ,tmax# determined from the flat region in the effectiv
mass plot. The vertical dotted line indicatesTc.270 MeV.
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lowest glueball is the lightest particle, and its thermal ex
tation is expected to have primary relevance at finite te
perature. However, lattice QCD indicatesmG.1 GeV even
nearTc , and therefore the thermodynamical contribution
the glueball seems strongly suppressed by the small sta
cal factor ase2mG /T nearTc.260 MeV @15,23#. This may
indicate that the thermal glueball excitation does not play
relevant role in the deconfinement phase transition, at lea
quenched QCD. Then, what is the driving force to bring t
phase transition? In this way, our result brings up such
interesting new puzzle on the QCD phase transition.

Several comments are in order. The first comment is
the closeness of our simulations to the continuum limit.
Ref. @24# the authors investigatedb dependence of glueba
masses at zero temperature, and estimated the discretiz
error on the scalar glueball mass to be less than 5% ab
56.4. According to them, the discretization error is es
mated about 6% atb56.25 in the present calculation. Th
second comment is on the finite volume artifact on the sc
glueball mass. In Ref.@16#, Monte Carlo simulations were
performed on the lattice of the physical size (1.76 fm)3 and
(1.32 fm)3 at zero temperature to investigate the finite v
ume errors in the various glueball masses by using an
proved action. The authors concluded that the systematic
ror in the lowest scalar glueball mass from the finite volum
is negligible at zero temperature. Note that the finite volu
artifact on the scalar glueball mass is essentially indepen
of the regularization method, i.e., a specific choice of
lattice action, as far as the discretization is enough fine
follows that, the finite volume artifact of our results are ne
ligible, since the physical size of our lattice is (1.68 fm)3.

To summarize, we have studied the glueball propertie
finite temperature using SU~3! anisotropic quenched lattic
QCD with 5000–9000 gauge configurations at each temp
ture. From the temporal correlation analysis with the sme
ing method, we have observed about 20% mass reductio
the lowest scalar glueball asmG(T)51250650 MeV for
0.8Tc,T,Tc , while no significant change is seen for m
son masses nearTc in lattice QCD@14#.

Finally, we comment on the brief outlook. It seems inte
esting to investigate other glueballs such as the 211 glueball
at finite temperature to clarify whether the thermal mass
duction is peculiar to the lowest scalar glueball or univer
feature in glueballs. It would be also interesting to analy
the spectral function of the glueball at finite temperatu
from its temporal correlation in terms of the mass and
thermal width, because the width broadening may prov
the similar effect to the temporal correlator@11# as the mass
reduction. Our result shows that the scalar glueball mass
duction is about 250 MeV, which is enough large, and the
fore the thermal mass shift of the scalar glueball may beco
observable in future experiments at the BNL Relativis
Heavy Ion Collider~RHIC!.

H.S. was supported by the Grant for Scientific Resea
~No. 12640274! from the Ministry of Education, Culture, Sci
ence and Technology, Japan. H.M. is supported by Ja
Society for the Promotion of Science for Young Scientis
The lattice calculations have been performed on NEC-SX
Osaka University.
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