$\mathbf{1}$

SIGNAL ENHANCEMENT USING MULTIVARIATE CLASSIFICATION TECHNIQUES AND PHYSICAL CONSTRAINTS

R. VILALTA and P. SARDA

Dept. of Computer Science, University of Houston, 4800 Calhoun Rd., Houston TX 77204, USA E -mail: {vilalta,ppsarda} @cs.uh.edu

G. MUTCHLER and B. P. PADLEY

Bonner Nu
lear Lab, Ri
e University, 6100 Main Street, Houston, TX 77005, USA E-mail: {mutchler,padley} @rice.edu

S. TAYLOR

Dept. of Physics and Astronomy, Ohio University, 251 Clippinger Labs, Athens, OH 45701, USA E -mail: staylor@jlab.org

We report on an empirical comparison of several multivariate classification techniques (e.g., random forests, Bayesian classification, support vector machines) for signal identification; our experiments use K^* mass as a test case. We show 1) the effect of using different cost matrices in generalization performance and 2) how information about physical constraints obtained from kinematic fitting procedures can be used to enrich the original feature representation. The latter step is done through a derivation of Λ particle parameters (e.g., momentum, energy, and mass) using kinematic \min g; the degree of itt using a χ -statistic is used as a new feature. Overall, our goal is to investigate how to incorporate physical constraints to improve classification performance.

1. Introduction

The purpose of this analysis is to gain insight on how to exploit multivariate techniques and physical constraints for signal classification and enhancement. Traditional techniques that exploit physical constraints use "kinematic fitting" to improve measured quantities and to provide a means to cut background. We propose an additional step where a multivariate classification technique is invoked on Monte Carlo data to generate a predictive model. The model is used to separate signal events from ba
kground events. Applying the model to real data results in a (predicted) signal distribution where eviden
e for the existen
e of a parti
le of interest is enhan
ed.

1.1. The Physi
al Experiment

We begin by describing the physical experiment. A broad band energetic photon beam (γ) hits a liquid hydrogen target, the proton (p). The photon interacts and produces a number of charged and unharged parti
les. We will look for the following rea
tion:

$$
\gamma \mathbf{p} \to \Lambda K^{*+} \tag{1}
$$

$$
\gamma \mathbf{p} \to \Lambda K^+ \pi^0 \tag{2}
$$

$$
\gamma p \to K^+ p \pi^- \pi^0 \tag{3}
$$

Our data set ontains information about the in cident photon (γ) , and three charged particles, $K_{-},$ p , and π), while the charged particles are detected, the un
harged ones are not seen, and must be in f ferred from the missing mass (e.g., π).

For ea
h dete
ted harged parti
le we measure the momentum p and the polar angle θ and azimuthal angle ϕ . From these quantities we can construct the three vector, $\mathbf{p} = i p_x + j p_y + k p_z$ where i, j and k are the unit ve
tors. We also measure the Time-of-Flight (TOF). From the TOF and momentum we can calculate the mass m of the particle. Finally, for each particle, we are able to construct a 4-vector, (E, \mathbf{p}) , $\sqrt{p^2+m^2}$.

In this particular paper we focus on identifying μ in presence of K after the photon-proton interaction (γp) . This is in practice not of real interest, but stands as a onvenient test ase to assess the value behind multivariate classification techniques. Invoking these te
hniques is justied by the inherent dif ficulty in separating signal events from background events (many ba
kground rea
tions produ
e similar measured parti
les).

2

1.2. Using Kinemati Fitting and Physi
al Constraints

At first we applied the technique of kinematic fitting -. I mis technique takes advantage of constraints such as energy and momentum onservation to improve measured quantities and to provide a means to cut ba
kground. We have hosen to use the Lagrange multiplier method. First, the unknown variables are divided into a set of measured variables (\vec{n}) and a set of unifieasured variables (C) such as the missing momentum or the 4-vector for a decay particle. For each constraint equation a new variable λ_i is introdu
ed. These variables are the Lagrange multipliers. To find the best fit we minimize

$$
\chi^{2}(\vec{\eta}, \vec{\xi}, \vec{\lambda}) = (\vec{\eta}_{0} - \vec{\eta})^{T} V^{-1} (\vec{\eta}_{0} - \vec{\eta}) + 2\vec{\lambda}^{T} \vec{f} \tag{4}
$$

by differentiating χ^2 with respect to all the variables, linearizing the onstraint equations and iterating. Here $\vec{\eta}_0$ is a vector containing the initial guesses for the measured quantities, V is the covariance matrix omprising the estimated errors on the measured q uantities, and f represents the constraints such as energy and momentum onservation.

1.3. Generating Confidence Levels

For our purposes, we are interested in using kinematic fitting to obtain a confidence level (goodness of fit to the data). As an example, let's look into the fitting procedure as applied to the proton (p) and pi- \min us (π) tracks with the Λ hypothesis. Explicitly, the onstraint equations are as follows:

$$
\vec{f} = \begin{bmatrix} E_p + E_{\pi} - E_{\Lambda} \\ \vec{p}_p + \vec{p}_{\pi} - \vec{p}_{\Lambda} \\ (y - y_{\pi})p_{\pi}^z - (z - z_{\pi})p_{\pi}^y \\ (x - x_{\pi})p_{\pi}^z - (z - z_{\pi})p_{\pi}^x \\ (y - y_p)p_p^z - (z - z_p)p_p^y \\ (x - x_p)p_p^z - (z - z_p)p_p^y \end{bmatrix} = \vec{0}.
$$
 (5)

The χ - distribution for this lit is the result of a fit to the histogram using the functional form of a χ^2 distribution with two degrees of freedom plus a flat background term. Explicitly,

$$
f(\chi^2) = \frac{P_1}{2}e^{-P_2\chi^2/2} + P_3.
$$
 (6)

 P_2 is a measure of how close the distribution in the $m_{\rm H}$ is to an ideal χ distribution, for which $P_2 = 1$. The Confidence Level (CL) is the primary measure of the goodness of fit to the data and is given by the equation

$$
CL = \int_{\chi^2}^{\infty} f(z; n) dz \tag{7}
$$

where $I(z:n)$ is the χ^- probability density function with n degrees of freedom (where we have assumed normally distributed errors).

2. Using Multivariate Classification **Techniques**

In addition to the traditional approach of kinematic fitting, we suggest using multivariate classification techniques for signal identification and enhancement. Our approach consists of using the confidence levels (goodness of fit to the data described above) as new features into a classification problem. The resulting model implicitly uses the kinematic fitting results to further enhan
e the signal of interest (e.g., to ennance **A** +).

2.1. The Classification Problem

We begin by giving a brief overview of the classincation problem ⁻' . A classifier receives as input a set of training examples $T = \{(\mathbf{x}, y)\}\,$, where $\mathbf{x} = (a_1, a_2, \dots, a_n)$ is a vector or point in the input space $(x \in \mathcal{X})$, and y is a point in the output space $(y \in Y)$. We assume T consists of independently and identi
ally distributed (i.i.d.) examples obtained according to a fixed but unknown joint probability distribution. The outcome of the classifier is a function h (or hypothesis) mapping the input space to the output space, $h : \mathcal{X} \to \mathcal{Y}$. Function h can then be used to predict the class of previously unseen attribute vectors.

2.2. Data for Analysis

In our study, the output variable for each event indiates if the photon-proton intera
tion resulted in the production of K_{+} (positive event) or not (negative event). Each feature vector x is made of 45 features. The first 4 features are confidence level numbers derived from the kinematic fits (Section 1.3). The next feature orresponds to the total energy. The last 40 features hara
terize 8 parti
les (3 of them dete
ted and 5 inferred). Each particle is represented by energy E, momentum p, polar angle θ , azimuthal angle φ , and mass squared m .

Table 1. Columns 2-3: Mean accuracy performance (Acc.) with different misclassification costs. Numbers enclosed in parentheses represent standard deviations. Columns 4-5: Mean false positive rates (FPR) with different misclassification costs.

Analysis Technique	Acc. Equal Costs	Acc. Unequal Costs		FPR Equal Costs FPR Unequal Costs
Naive Bayes	85.59 (0.86)	$86.79* (0.78)$	20.1	6.8
Support Vector Machines	87.69 (0.70)	88.29 (0.51)	18.7	1.6
Multilayer Perceptron	88.57 (0.85)	90.58(0.73)	14.3	3.0
ADTree	88.90 (1.14)	$90.81*$ (0.96)	11.5	3.7
Decision Tree	89.23 (0.93)	$91.97*$ (0.87)	12.7	4.7
Random Forest	90.02(1.12)	$92.34* (0.95)$	11.6	4.3

Our data set is derived using the CEBAF large angle spe
trometer (CLAS). We gathered 1000 Monte Carlo signal events and 6000 Monte Carlo ba
kground events. The real data omprised about 13,500 events.

2.3. Using Monte Carlo Data and Variable Misclassification Costs

Our first set of experiments were limited to Monte Carlo data for whi
h the value of the output variable of each event is known. Our study compared the performance of several classification algorithms in terms of predictive accuracy. We employed several algorithms including decision trees, support-vector machines, random forests, etc.

First we redu
ed the original size of the input space through a feature selection process, using information gain as the evaluation metric for each algorithm we varied the amount of misclassification costs. Table 1 shows our results. The first column describes the multivariate classification techniques used for our experiments. The second column shows accuracy estimations with equal misclassifications costs; the third column shows accuracy estimations where the ost of a false positive is 3 times more expensive than the cost of a false negative. Each result is the average of 5 trials of 10-fold ross validation ea
h ³ . An asterisk at the top right of a number implies the difference is significant at the $p = 0.01$ level (assuming a two-tailed t-student distribution). Overall there is a significant increase in performance by adding a penalty when mislabelling ba
kground events as target events. In addition, Table 1 shows how for this particular domain, varying misclassification costs can yield a significant reduction in the false positive rate (FPR %, columns 4-5).

Our results denote a preferen
e for the strategy

behind "random forests". We have observed similar results in other experiments ⁴ . Random forests have the ability to redu
e the varian
e and bias omponents of error by voting over multiple decision trees using on ea
h tree a random sele
tion of features ⁵ . They exhibit robust behavior against problems with multiple systemati errors as is ommon to problems in parti
le physi
s.

2.4. Signal Enhan
ement on Real Data

Our next set of experiments used real data for whi
h the value of the output variable of an event is unknown. In this ase the problem is not to maximize accuracy performance (i.e., minimize a risk functional su
h as zero-one loss) but instead to provide enough evidence to believe that the signal event ocurred multiple times during the photon-proton interaction. The goal is to find a technique able to enhan
e the signal distribution over the ba
kground distribution.

Our approach to deal with the signal enhancement problem is as follows. Applying a multivariate te
hnique ^M on Monte Carlo data yields a predi
tive model h_M . One can then apply h_M on the real data to generate a histogram for the predicted signal distribution. If model h_M exhibits good performance, we expect the histogram generated through h_M to provide evidence for the occurrence of the desired signal.

To illustrate our approa
h Figure 1 (left) shows a histogram generated with all real data; the x -axis corresponds to the squared mass (m^-) of the signal $\mathsf{particle}\ (\mathbf{A} \dashv)$. Figure 1 (middle) shows a histogram generated by taking only those events predi
ted as signal on the real data by a classification model. Kinematic fitting variables were part of the feature vectors. We employed random forests as the clas-

Fig. 1. Histograms using (left) real data (middle) predicted signals on real data by random forests, and (right) predicted signals on real data by random forests using cost-sensitive information. The x-axis corresponds to K^{+*} squared mass (units are in $\frac{\text{GeV}}{c^4}$).

sification technique; the derived information helps isolate and enhan
e the signal distribution. Figure 1 (right) shows the orresponding histogram using random forests with cost sensitive classification and kinematic fitting variables. The resulting histogram shows an even larger enhan
ement over the signal distribution.

To quantify the difference between Figure 1 (middle) and Figure 1 (right), we omputed the distan
e between ea
h of these empiri
al distributions. We used relative entropy ⁶ $K(f_1||f_2)$ to compute the distance between probability distributions f_1 and f_2 , where

$$
K(f_1||f_2) = \sum_i f_1^i \log \frac{f_1^i}{f_2^i}
$$
 (8)

and index ⁱ varies along the values of the random variable. In our case, let f_r be the distribution for the real data (Figure 1 left), f_{kc} be the distribution for kinematic fitting and classification (Figure 1 middle), and f_{kcs} be the distribution for kinematic fitting and cost sensitive classification (Figure 1 right). We found empiri
ally the following results: $K(f_r||f_{kc}) = 0.2798$; $K(f_r||f_{kcs}) = 0.4048$. This indicates the distribution obtained by combining kinematic fitting with cost-sensitive classification yields a new signal distribution that has a larger separation from the original real data (in terms of relative-entropy).

3. Con
lusions

Our study suggests generating a predictive model over Monte Carlo data to produ
e a distribution over real data where a signal of interest is enhan
ed. Our model integrates information about physical constraints using kinematic fitting.

Our current work adds confidence levels derived from kinematic fitting as new features for classifica-

tion. One unexplored area is to determine the degree to which multivariate classification techniques contribute to signal enhan
ement without any information derived from kinematic fitting. It is important to understand how current classification techniques can exploit information derived from physical constraints.

A
knowledgments

This material is based upon work supported by the National S
ien
e Foundation under Grants no. IIS-431130 and IIS-448542, and by the Department of Energy under Grant no. DE-FG03-93ER40772.

Referen
es

- 1. A. G. Frodesen (1979). "Probability and Statistics in Particle Physics", Oxford University Press.
- 2. R. O. Duda, P. E. Hart, and D. G. Stork (2001). "Pattern Classification", John Wiley Ed. 2nd Edition.
- 3. T. Hastie, R. Tibshirani, and J. Friedman (2001). "The Elements of Statistical Learning, Data Mining, Inferen
e, and Predi
tion", Springer-Verlag.
- \mathcal{A} . P. B. Bargassa, S. Herrin, S. Herrin, S. Padley, R. Padley, R. Viewer, R. View lalta (2005). "Appli
ation of Ma
hine Learning Tools to Particle Physics", Conference on Statistical Problems in Parti
le Physi
s, Astrophysi
s and Cosmology (PHYSTAT05).
- 5. L. Breiman (2001). "Random Forests", Ma
hine Learning $45(1)$ pp. $5-32$. Springer Science-Business
- 6. T. M. Cover and J. Thomas (1991) . "Elements of Information Theory", Wiley-Interscience.