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s and Astronomy, Ohio University, 251 Clippinger Labs, Athens, OH 45701, USAE-mail: staylor�jlab.orgWe report on an empiri
al 
omparison of several multivariate 
lassi�
ation te
hniques (e.g., random forests, Bayesian
lassi�
ation, support ve
tor ma
hines) for signal identi�
ation; our experiments use K* mass as a test 
ase. We show1) the e�e
t of using di�erent 
ost matri
es in generalization performan
e and 2) how information about physi
al
onstraints obtained from kinemati
 �tting pro
edures 
an be used to enri
h the original feature representation. Thelatter step is done through a derivation of � parti
le parameters (e.g., momentum, energy, and mass) using kinemati
�tting; the degree of �t using a �2 statisti
 is used as a new feature. Overall, our goal is to investigate how toin
orporate physi
al 
onstraints to improve 
lassi�
ation performan
e.1. Introdu
tionThe purpose of this analysis is to gain insight onhow to exploit multivariate te
hniques and physi-
al 
onstraints for signal 
lassi�
ation and enhan
e-ment. Traditional te
hniques that exploit physi
al
onstraints use "kinemati
 �tting" to improve mea-sured quantities and to provide a means to 
ut ba
k-ground. We propose an additional step where a mul-tivariate 
lassi�
ation te
hnique is invoked on MonteCarlo data to generate a predi
tive model. Themodel is used to separate signal events from ba
k-ground events. Applying the model to real data re-sults in a (predi
ted) signal distribution where ev-iden
e for the existen
e of a parti
le of interest isenhan
ed.1.1. The Physi
al ExperimentWe begin by des
ribing the physi
al experiment. Abroad band energeti
 photon beam (
) hits a liq-uid hydrogen target, the proton (p). The photonintera
ts and produ
es a number of 
harged and un-
harged parti
les. We will look for the following re-a
tion: 
p ! �K�+ (1)


p ! �K+�0 (2)
p ! K+p���0 (3)Our data set 
ontains information about the in-
ident photon (
), and three 
harged parti
les, K+,p, and ��. While the 
harged parti
les are dete
ted,the un
harged ones are not seen, and must be in-ferred from the missing mass (e.g., �0).For ea
h dete
ted 
harged parti
le we measurethe momentum p and the polar angle � and azimuthalangle �. From these quantities we 
an 
onstru
t thethree ve
tor, p = ipx + jpy + kpz where i, j and kare the unit ve
tors. We also measure the Time-of-Flight (TOF). From the TOF and momentum we 
an
al
ulate the massm of the parti
le. Finally, for ea
hparti
le, we are able to 
onstru
t a 4-ve
tor, (E;p),where E =pp2 +m2.In this parti
ular paper we fo
us on identifyingthe presen
e of K�+ after the photon-proton intera
-tion (
p). This is in pra
ti
e not of real interest, butstands as a 
onvenient test 
ase to assess the valuebehind multivariate 
lassi�
ation te
hniques. Invok-ing these te
hniques is justi�ed by the inherent dif-�
ulty in separating signal events from ba
kgroundevents (many ba
kground rea
tions produ
e similarmeasured parti
les).
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21.2. Using Kinemati
 Fitting andPhysi
al ConstraintsAt �rst we applied the te
hnique of kinemati
 �tting1. This te
hnique takes advantage of 
onstraints su
has energy and momentum 
onservation to improvemeasured quantities and to provide a means to 
utba
kground. We have 
hosen to use the Lagrangemultiplier method. First, the unknown variables aredivided into a set of measured variables (~�) and aset of unmeasured variables (~�) su
h as the missingmomentum or the 4-ve
tor for a de
ay parti
le. Forea
h 
onstraint equation a new variable �i is intro-du
ed. These variables are the Lagrange multipliers.To �nd the best �t we minimize�2(~�; ~�; ~�) = (~�0 � ~�)TV �1(~�0 � ~�) + 2~�T ~f (4)by di�erentiating �2 with respe
t to all the vari-ables, linearizing the 
onstraint equations and iterat-ing. Here ~�0 is a ve
tor 
ontaining the initial guessesfor the measured quantities, V is the 
ovarian
e ma-trix 
omprising the estimated errors on the measuredquantities, and ~f represents the 
onstraints su
h asenergy and momentum 
onservation.1.3. Generating Con�den
e LevelsFor our purposes, we are interested in using kine-mati
 �tting to obtain a 
on�den
e level (goodnessof �t to the data). As an example, let's look into the�tting pro
edure as applied to the proton (p) and pi-minus (��) tra
ks with the � hypothesis. Expli
itly,the 
onstraint equations are as follows:~f = 266666664 Ep +E� �E�~pp + ~p� � ~p�(y � y�)pz� � (z � z�)py�(x� x�)pz� � (z � z�)px�(y � yp)pzp � (z � zp)pyp(x� xp)pzp � (z � zp)pxp

377777775 = ~0: (5)The �2 distribution for this �t is the result of a�t to the histogram using the fun
tional form of a �2distribution with two degrees of freedom plus a 
atba
kground term. Expli
itly,f(�2) = P12 e�P2�2=2 + P3: (6)P2 is a measure of how 
lose the distribution in thehistogram is to an ideal �2 distribution, for whi
hP2 = 1. The Con�den
e Level (CL) is the primary

measure of the goodness of �t to the data and is givenby the equationCL = Z 1�2 f(z;n)dz (7)where f(z:n) is the �2 probability density fun
tionwith n degrees of freedom (where we have assumednormally distributed errors).2. Using Multivariate Classi�
ationTe
hniquesIn addition to the traditional approa
h of kinemati
�tting, we suggest using multivariate 
lassi�
ationte
hniques for signal identi�
ation and enhan
ement.Our approa
h 
onsists of using the 
on�den
e levels(goodness of �t to the data des
ribed above) as newfeatures into a 
lassi�
ation problem. The resultingmodel impli
itly uses the kinemati
 �tting results tofurther enhan
e the signal of interest (e.g., to en-han
e K�+).2.1. The Classi�
ation ProblemWe begin by giving a brief overview of the 
las-si�
ation problem 2; 3. A 
lassi�er re
eives as in-put a set of training examples T = f(x; y)g, wherex = (a1; a2; � � � ; an) is a ve
tor or point in the inputspa
e (x 2 X ), and y is a point in the output spa
e(y 2 Y). We assume T 
onsists of independentlyand identi
ally distributed (i.i.d.) examples obtaineda

ording to a �xed but unknown joint probabilitydistribution. The out
ome of the 
lassi�er is a fun
-tion h (or hypothesis) mapping the input spa
e tothe output spa
e, h : X ! Y . Fun
tion h 
an thenbe used to predi
t the 
lass of previously unseen at-tribute ve
tors.2.2. Data for AnalysisIn our study, the output variable for ea
h event indi-
ates if the photon-proton intera
tion resulted in theprodu
tion of K�+ (positive event) or not (negativeevent). Ea
h feature ve
tor x is made of 45 features.The �rst 4 features are 
on�den
e level numbers de-rived from the kinemati
 �ts (Se
tion 1.3). The nextfeature 
orresponds to the total energy. The last 40features 
hara
terize 8 parti
les (3 of them dete
tedand 5 inferred). Ea
h parti
le is represented by en-ergy E, momentum p, polar angle �, azimuthal angle�, and mass squared m2.
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3Table 1. Columns 2-3: Mean a

ura
y performan
e (A

.) with di�erent mis
lassi�
ation 
osts. Numbers en-
losed in parentheses represent standard deviations. Columns 4-5: Mean false positive rates (FPR) with di�erentmis
lassi�
ation 
osts.Analysis Te
hnique A

. Equal Costs A

. Unequal Costs FPR Equal Costs FPR Unequal CostsNaive Bayes 85:59 (0:86) 86:79� (0:78) 20:1 6:8Support Ve
tor Ma
hines 87:69 (0:70) 88:29 (0:51) 18:7 1:6Multilayer Per
eptron 88:57 (0:85) 90:58 (0:73) 14:3 3:0ADTree 88:90 (1:14) 90:81� (0:96) 11:5 3:7De
ision Tree 89:23 (0:93) 91:97� (0:87) 12:7 4:7Random Forest 90:02 (1:12) 92:34� (0:95) 11:6 4:3Our data set is derived using the CEBAFlarge angle spe
trometer (CLAS). We gathered 1000Monte Carlo signal events and 6000 Monte Carloba
kground events. The real data 
omprised about13,500 events.2.3. Using Monte Carlo Data andVariable Mis
lassi�
ation CostsOur �rst set of experiments were limited to MonteCarlo data for whi
h the value of the output vari-able of ea
h event is known. Our study 
omparedthe performan
e of several 
lassi�
ation algorithmsin terms of predi
tive a

ura
y. We employed severalalgorithms in
luding de
ision trees, support-ve
torma
hines, random forests, et
.First we redu
ed the original size of the inputspa
e through a feature sele
tion pro
ess, using in-formation gain as the evaluation metri
 3. For ea
halgorithm we varied the amount of mis
lassi�
ation
osts. Table 1 shows our results. The �rst 
olumn de-s
ribes the multivariate 
lassi�
ation te
hniques usedfor our experiments. The se
ond 
olumn shows a

u-ra
y estimations with equal mis
lassi�
ations 
osts;the third 
olumn shows a

ura
y estimations wherethe 
ost of a false positive is 3 times more expen-sive than the 
ost of a false negative. Ea
h resultis the average of 5 trials of 10-fold 
ross validationea
h 3. An asterisk at the top right of a numberimplies the di�eren
e is signi�
ant at the p = 0:01level (assuming a two-tailed t-student distribution).Overall there is a signi�
ant in
rease in performan
eby adding a penalty when mislabelling ba
kgroundevents as target events. In addition, Table 1 showshow for this parti
ular domain, varying mis
lassi�-
ation 
osts 
an yield a signi�
ant redu
tion in thefalse positive rate (FPR %, 
olumns 4-5).Our results denote a preferen
e for the strategy

behind \random forests". We have observed similarresults in other experiments 4. Random forests havethe ability to redu
e the varian
e and bias 
ompo-nents of error by voting over multiple de
ision treesusing on ea
h tree a random sele
tion of features 5.They exhibit robust behavior against problems withmultiple systemati
 errors as is 
ommon to problemsin parti
le physi
s.2.4. Signal Enhan
ement on Real DataOur next set of experiments used real data for whi
hthe value of the output variable of an event is un-known. In this 
ase the problem is not to maximizea

ura
y performan
e (i.e., minimize a risk fun
-tional su
h as zero-one loss) but instead to provideenough eviden
e to believe that the signal event o
-
urred multiple times during the photon-proton in-tera
tion. The goal is to �nd a te
hnique able toenhan
e the signal distribution over the ba
kgrounddistribution.Our approa
h to deal with the signal enhan
e-ment problem is as follows. Applying a multivariatete
hniqueM on Monte Carlo data yields a predi
tivemodel hM . One 
an then apply hM on the real datato generate a histogram for the predi
ted signal dis-tribution. If model hM exhibits good performan
e,we expe
t the histogram generated through hM toprovide eviden
e for the o

urren
e of the desiredsignal.To illustrate our approa
h Figure 1 (left) showsa histogram generated with all real data; the x-axis
orresponds to the squared mass (m2) of the signalparti
le (K�+). Figure 1 (middle) shows a histogramgenerated by taking only those events predi
ted assignal on the real data by a 
lassi�
ation model.Kinemati
 �tting variables were part of the featureve
tors. We employed random forests as the 
las-
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Fig. 1. Histograms using (left) real data (middle) predi
ted signals on real data by random forests, and (right) predi
ted signalson real data by random forests using 
ost-sensitive information. The x-axis 
orresponds to K+� squared mass (units are in GeV2
4 ).si�
ation te
hnique; the derived information helpsisolate and enhan
e the signal distribution. Fig-ure 1 (right) shows the 
orresponding histogram us-ing random forests with 
ost sensitive 
lassi�
ationand kinemati
 �tting variables. The resulting his-togram shows an even larger enhan
ement over thesignal distribution.To quantify the di�eren
e between Figure 1(middle) and Figure 1 (right), we 
omputed the dis-tan
e between ea
h of these empiri
al distributions.We used relative entropy 6 K(f1jjf2) to 
ompute thedistan
e between probability distributions f1 and f2,where K(f1jjf2) =Xi f i1 log f i1f i2 (8)and index i varies along the values of the randomvariable. In our 
ase, let fr be the distributionfor the real data (Figure 1 left), fk
 be the distri-bution for kinemati
 �tting and 
lassi�
ation (Fig-ure 1 middle), and fk
s be the distribution for kine-mati
 �tting and 
ost sensitive 
lassi�
ation (Fig-ure 1 right). We found empiri
ally the following re-sults: K(frjjfk
) = 0:2798; K(frjjfk
s) = 0:4048.This indi
ates the distribution obtained by 
ombin-ing kinemati
 �tting with 
ost-sensitive 
lassi�
ationyields a new signal distribution that has a largerseparation from the original real data (in terms ofrelative-entropy).3. Con
lusionsOur study suggests generating a predi
tive modelover Monte Carlo data to produ
e a distribution overreal data where a signal of interest is enhan
ed. Ourmodel integrates information about physi
al 
on-straints using kinemati
 �tting.Our 
urrent work adds 
on�den
e levels derivedfrom kinemati
 �tting as new features for 
lassi�
a-

tion. One unexplored area is to determine the degreeto whi
h multivariate 
lassi�
ation te
hniques 
on-tribute to signal enhan
ement without any informa-tion derived from kinemati
 �tting. It is importantto understand how 
urrent 
lassi�
ation te
hniques
an exploit information derived from physi
al 
on-straints.A
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