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We report on an empirical comparison of several multivariate classification techniques (e.g., random forests, Bayesian
classification, support vector machines) for signal identification; our experiments use K* mass as a test case. We show
1) the effect of using different cost matrices in generalization performance and 2) how information about physical
constraints obtained from kinematic fitting procedures can be used to enrich the original feature representation. The
latter step is done through a derivation of A particle parameters (e.g., momentum, energy, and mass) using kinematic
fitting; the degree of fit using a x? statistic is used as a new feature. Overall, our goal is to investigate how to
incorporate physical constraints to improve classification performance.
1. Introduction
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how to exploit multivariate techniques and physi-
cal constraints for signal classification and enhance-
ment. Traditional techniques that exploit physical
constraints use "kinematic fitting” to improve mea-
sured quantities and to provide a means to cut back-
ground. We propose an additional step where a mul-
tivariate classification technique is invoked on Monte
Carlo data to generate a predictive model. The
model is used to separate signal events from back-
ground events. Applying the model to real data re-
sults in a (predicted) signal distribution where ev-
idence for the existence of a particle of interest is
enhanced.

1.1. The Physical Experiment

We begin by describing the physical experiment. A
broad band energetic photon beam () hits a lig-
uid hydrogen target, the proton (p). The photon
interacts and produces a number of charged and un-
charged particles. We will look for the following re-
action:

p — AK*T (1)

Our data set contains information about the in-
cident photon (v), and three charged particles, K,
p, and 7~ . While the charged particles are detected,
the uncharged ones are not seen, and must be in-
ferred from the missing mass (e.g., 7°).

For each detected charged particle we measure
the momentum p and the polar angle 6 and azimuthal
angle ¢. From these quantities we can construct the
three vector, p = ip, + jpy + kp. where i, j and k
are the unit vectors. We also measure the Time-of-
Flight (TOF). From the TOF and momentum we can
calculate the mass m of the particle. Finally, for each
particle, we are able to construct a 4-vector, (E,p),
where E = \/p2 + m2.

In this particular paper we focus on identifying
the presence of K** after the photon-proton interac-
tion (yp). This is in practice not of real interest, but
stands as a convenient test case to assess the value
behind multivariate classification techniques. Invok-
ing these techniques is justified by the inherent dif-
ficulty in separating signal events from background
events (many background reactions produce similar
measured particles).
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1.2. Using Kinematic Fitting and
Physical Constraints

At first we applied the technique of kinematic fitting
. This technique takes advantage of constraints such
as energy and momentum conservation to improve
measured quantities and to provide a means to cut
background. We have chosen to use the Lagrange
multiplier method. First, the unknown variables are
divided into a set of measured variables (77) and a
set of unmeasured variables (f) such as the missing
momentum or the 4-vector for a decay particle. For
each constraint equation a new variable J; is intro-
duced. These variables are the Lagrange multipliers.
To find the best fit we minimize

COLEX) = (o =)V i =) + 28T f (@)
by differentiating x? with respect to all the vari-
ables, linearizing the constraint equations and iterat-
ing. Here 7y is a vector containing the initial guesses
for the measured quantities, V' is the covariance ma-
trix comprising the estimated errors on the measured

"
quantities, and f represents the constraints such as
energy and momentum conservation.

1.3. Generating Confidence Levels

For our purposes, we are interested in using kine-
matic fitting to obtain a confidence level (goodness
of fit to the data). As an example, let’s look into the
fitting procedure as applied to the proton (p) and pi-
minus (77) tracks with the A hypothesis. Explicitly,
the constraint equations are as follows:

E, + E, — E,
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The 2 distribution for this fit is the result of a
fit to the histogram using the functional form of a >
distribution with two degrees of freedom plus a flat
background term. Explicitly,

P
J63) = e 4 P (6)

P, is a measure of how close the distribution in the
histogram is to an ideal x? distribution, for which
P, = 1. The Confidence Level (CL) is the primary
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measure of the goodness of fit to the data and is given
by the equation

CL = /:0 f(z;n)dz (7)

where f(z:n) is the x? probability density function
with n degrees of freedom (where we have assumed
normally distributed errors).

2. Using Multivariate Classification
Techniques

In addition to the traditional approach of kinematic
fitting, we suggest using multivariate classification
techniques for signal identification and enhancement.
Our approach consists of using the confidence levels
(goodness of fit to the data described above) as new
features into a classification problem. The resulting
model implicitly uses the kinematic fitting results to
further enhance the signal of interest (e.g., to en-
hance K*T).

2.1. The Classification Problem

We begin by giving a brief overview of the clas-
sification problem % 3. A classifier receives as in-
put a set of training examples T' = {(x,y)}, where
x = (a1,as,--- ,a,) is a vector or point in the input
space (z € X), and y is a point in the output space
(y € V). We assume T consists of independently
and identically distributed (i.i.d.) examples obtained
according to a fixed but unknown joint probability
distribution. The outcome of the classifier is a func-
tion h (or hypothesis) mapping the input space to
the output space, h : X — ). Function h can then
be used to predict the class of previously unseen at-
tribute vectors.

2.2. Data for Analysis

In our study, the output variable for each event indi-
cates if the photon-proton interaction resulted in the
production of K** (positive event) or not (negative
event). Each feature vector x is made of 45 features.
The first 4 features are confidence level numbers de-
rived from the kinematic fits (Section 1.3). The next
feature corresponds to the total energy. The last 40
features characterize 8 particles (3 of them detected
and 5 inferred). Each particle is represented by en-
ergy E, momentum p, polar angle 6, azimuthal angle
¢, and mass squared m?2.
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Table 1.
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Columns 2-3: Mean accuracy performance (Acc.) with different misclassification costs. Numbers en-

closed in parentheses represent standard deviations. Columns 4-5: Mean false positive rates (FPR) with different

misclassification costs.

Analysis Technique Acc. Equal Costs

Acc. Unequal Costs

FPR Equal Costs FPR Unequal Costs

Naive Bayes 85.59 (0.86) 86.79% (0.78) 20.1 6.8
Support Vector Machines 87.69 (0.70) 88.29 (0.51) 18.7 1.6
Multilayer Perceptron 88.57 (0.85) 90.58 (0.73) 14.3 3.0
ADTree 88.90 (1.14) 90.81* (0.96) 115 3.7
Decision Tree 89.23 (0.93) 91.97* (0.87) 12.7 4.7
Random Forest 90.02 (1.12) 92.34% (0.95) 11.6 4.3

Our data set is derived using the CEBAF
large angle spectrometer (CLAS). We gathered 1000
Monte Carlo signal events and 6000 Monte Carlo
background events. The real data comprised about
13,500 events.

2.3. Using Monte Carlo Data and
Variable Misclassification Costs

Our first set of experiments were limited to Monte
Carlo data for which the value of the output vari-
able of each event is known. Our study compared
the performance of several classification algorithms
in terms of predictive accuracy. We employed several
algorithms including decision trees, support-vector
machines, random forests, etc.

First we reduced the original size of the input
space through a feature selection process, using in-
formation gain as the evaluation metric . For each
algorithm we varied the amount of misclassification
costs. Table 1 shows our results. The first column de-
scribes the multivariate classification techniques used
for our experiments. The second column shows accu-
racy estimations with equal misclassifications costs;
the third column shows accuracy estimations where
the cost of a false positive is 3 times more expen-
sive than the cost of a false negative. Each result
is the average of 5 trials of 10-fold cross validation
each ®. An asterisk at the top right of a number
implies the difference is significant at the p = 0.01
level (assuming a two-tailed ¢-student distribution).
Overall there is a significant increase in performance
by adding a penalty when mislabelling background
events as target events. In addition, Table 1 shows
how for this particular domain, varying misclassifi-
cation costs can yield a significant reduction in the
false positive rate (FPR %, columns 4-5).

Our results denote a preference for the strategy

behind “random forests”. We have observed similar
results in other experiments 4. Random forests have
the ability to reduce the variance and bias compo-
nents of error by voting over multiple decision trees
using on each tree a random selection of features °.
They exhibit robust behavior against problems with
multiple systematic errors as is common to problems

in particle physics.

2.4. Signal Enhancement on Real Data

Our next set of experiments used real data for which
the value of the output variable of an event is un-
known. In this case the problem is not to maximize
accuracy performance (i.e., minimize a risk func-
tional such as zero-one loss) but instead to provide
enough evidence to believe that the signal event oc-
curred multiple times during the photon-proton in-
The goal is to find a technique able to
enhance the signal distribution over the background
distribution.

teraction.

Our approach to deal with the signal enhance-
ment problem is as follows. Applying a multivariate
technique M on Monte Carlo data yields a predictive
model hjps. One can then apply hps on the real data
to generate a histogram for the predicted signal dis-
tribution. If model hjps exhibits good performance,
we expect the histogram generated through hjs to
provide evidence for the occurrence of the desired
signal.

To illustrate our approach Figure 1 (left) shows
a histogram generated with all real data; the z-axis
corresponds to the squared mass (m?) of the signal
particle (K**). Figure 1 (middle) shows a histogram
generated by taking only those events predicted as
signal on the real data by a classification model.
Kinematic fitting variables were part of the feature
vectors. We employed random forests as the clas-
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Histograms using (left) real data (middle) predicted signals on real data by random forests, and (right) predicted signals
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on real data by random forests using cost-sensitive information. The x-axis corresponds to K** squared mass (units are in p

sification technique; the derived information helps
isolate and enhance the signal distribution. Fig-
ure 1 (right) shows the corresponding histogram us-
ing random forests with cost sensitive classification
and kinematic fitting variables. The resulting his-
togram shows an even larger enhancement over the
signal distribution.

To quantify the difference between Figure 1
(middle) and Figure 1 (right), we computed the dis-
tance between each of these empirical distributions.
We used relative entropy ¢ K(f1||f2) to compute the
distance between probability distributions f; and fa,
where

K(fllf2) = 3 fi1og 35 ®

and index i varies along the values of the random
variable. In our case, let f. be the distribution
for the real data (Figure 1 left), fr. be the distri-
bution for kinematic fitting and classification (Fig-
ure 1 middle), and fi.s be the distribution for kine-
matic fitting and cost sensitive classification (Fig-
ure 1 right). We found empirically the following re-
sults: K (fr||fre) = 0.2798; K(fr||fres) = 0.4048.
This indicates the distribution obtained by combin-
ing kinematic fitting with cost-sensitive classification
yields a new signal distribution that has a larger
separation from the original real data (in terms of

relative-entropy).

3. Conclusions

Our study suggests generating a predictive model
over Monte Carlo data to produce a distribution over
real data where a signal of interest is enhanced. Our
model integrates information about physical con-
straints using kinematic fitting.

Our current work adds confidence levels derived
from kinematic fitting as new features for classifica-

tion. One unexplored area is to determine the degree
to which multivariate classification techniques con-
tribute to signal enhancement without any informa-
tion derived from kinematic fitting. It is important
to understand how current classification techniques
can exploit information derived from physical con-
straints.
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