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1SIGNAL ENHANCEMENT USING MULTIVARIATE CLASSIFICATIONTECHNIQUES AND PHYSICAL CONSTRAINTSR. VILALTA and P. SARDADept. of Computer Siene, University of Houston, 4800 Calhoun Rd., Houston TX 77204, USAE-mail: fvilalta,ppsardag�s.uh.eduG. MUTCHLER and B. P. PADLEYBonner Nulear Lab, Rie University, 6100 Main Street, Houston, TX 77005, USAE-mail: fmuthler,padleyg�rie.eduS. TAYLORDept. of Physis and Astronomy, Ohio University, 251 Clippinger Labs, Athens, OH 45701, USAE-mail: staylor�jlab.orgWe report on an empirial omparison of several multivariate lassi�ation tehniques (e.g., random forests, Bayesianlassi�ation, support vetor mahines) for signal identi�ation; our experiments use K* mass as a test ase. We show1) the e�et of using di�erent ost matries in generalization performane and 2) how information about physialonstraints obtained from kinemati �tting proedures an be used to enrih the original feature representation. Thelatter step is done through a derivation of � partile parameters (e.g., momentum, energy, and mass) using kinemati�tting; the degree of �t using a �2 statisti is used as a new feature. Overall, our goal is to investigate how toinorporate physial onstraints to improve lassi�ation performane.1. IntrodutionThe purpose of this analysis is to gain insight onhow to exploit multivariate tehniques and physi-al onstraints for signal lassi�ation and enhane-ment. Traditional tehniques that exploit physialonstraints use "kinemati �tting" to improve mea-sured quantities and to provide a means to ut bak-ground. We propose an additional step where a mul-tivariate lassi�ation tehnique is invoked on MonteCarlo data to generate a preditive model. Themodel is used to separate signal events from bak-ground events. Applying the model to real data re-sults in a (predited) signal distribution where ev-idene for the existene of a partile of interest isenhaned.1.1. The Physial ExperimentWe begin by desribing the physial experiment. Abroad band energeti photon beam () hits a liq-uid hydrogen target, the proton (p). The photoninterats and produes a number of harged and un-harged partiles. We will look for the following re-ation: p ! �K�+ (1)

p ! �K+�0 (2)p ! K+p���0 (3)Our data set ontains information about the in-ident photon (), and three harged partiles, K+,p, and ��. While the harged partiles are deteted,the unharged ones are not seen, and must be in-ferred from the missing mass (e.g., �0).For eah deteted harged partile we measurethe momentum p and the polar angle � and azimuthalangle �. From these quantities we an onstrut thethree vetor, p = ipx + jpy + kpz where i, j and kare the unit vetors. We also measure the Time-of-Flight (TOF). From the TOF and momentum we analulate the massm of the partile. Finally, for eahpartile, we are able to onstrut a 4-vetor, (E;p),where E =pp2 +m2.In this partiular paper we fous on identifyingthe presene of K�+ after the photon-proton intera-tion (p). This is in pratie not of real interest, butstands as a onvenient test ase to assess the valuebehind multivariate lassi�ation tehniques. Invok-ing these tehniques is justi�ed by the inherent dif-�ulty in separating signal events from bakgroundevents (many bakground reations produe similarmeasured partiles).
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21.2. Using Kinemati Fitting andPhysial ConstraintsAt �rst we applied the tehnique of kinemati �tting1. This tehnique takes advantage of onstraints suhas energy and momentum onservation to improvemeasured quantities and to provide a means to utbakground. We have hosen to use the Lagrangemultiplier method. First, the unknown variables aredivided into a set of measured variables (~�) and aset of unmeasured variables (~�) suh as the missingmomentum or the 4-vetor for a deay partile. Foreah onstraint equation a new variable �i is intro-dued. These variables are the Lagrange multipliers.To �nd the best �t we minimize�2(~�; ~�; ~�) = (~�0 � ~�)TV �1(~�0 � ~�) + 2~�T ~f (4)by di�erentiating �2 with respet to all the vari-ables, linearizing the onstraint equations and iterat-ing. Here ~�0 is a vetor ontaining the initial guessesfor the measured quantities, V is the ovariane ma-trix omprising the estimated errors on the measuredquantities, and ~f represents the onstraints suh asenergy and momentum onservation.1.3. Generating Con�dene LevelsFor our purposes, we are interested in using kine-mati �tting to obtain a on�dene level (goodnessof �t to the data). As an example, let's look into the�tting proedure as applied to the proton (p) and pi-minus (��) traks with the � hypothesis. Expliitly,the onstraint equations are as follows:~f = 266666664 Ep +E� �E�~pp + ~p� � ~p�(y � y�)pz� � (z � z�)py�(x� x�)pz� � (z � z�)px�(y � yp)pzp � (z � zp)pyp(x� xp)pzp � (z � zp)pxp

377777775 = ~0: (5)The �2 distribution for this �t is the result of a�t to the histogram using the funtional form of a �2distribution with two degrees of freedom plus a atbakground term. Expliitly,f(�2) = P12 e�P2�2=2 + P3: (6)P2 is a measure of how lose the distribution in thehistogram is to an ideal �2 distribution, for whihP2 = 1. The Con�dene Level (CL) is the primary

measure of the goodness of �t to the data and is givenby the equationCL = Z 1�2 f(z;n)dz (7)where f(z:n) is the �2 probability density funtionwith n degrees of freedom (where we have assumednormally distributed errors).2. Using Multivariate Classi�ationTehniquesIn addition to the traditional approah of kinemati�tting, we suggest using multivariate lassi�ationtehniques for signal identi�ation and enhanement.Our approah onsists of using the on�dene levels(goodness of �t to the data desribed above) as newfeatures into a lassi�ation problem. The resultingmodel impliitly uses the kinemati �tting results tofurther enhane the signal of interest (e.g., to en-hane K�+).2.1. The Classi�ation ProblemWe begin by giving a brief overview of the las-si�ation problem 2; 3. A lassi�er reeives as in-put a set of training examples T = f(x; y)g, wherex = (a1; a2; � � � ; an) is a vetor or point in the inputspae (x 2 X ), and y is a point in the output spae(y 2 Y). We assume T onsists of independentlyand identially distributed (i.i.d.) examples obtainedaording to a �xed but unknown joint probabilitydistribution. The outome of the lassi�er is a fun-tion h (or hypothesis) mapping the input spae tothe output spae, h : X ! Y . Funtion h an thenbe used to predit the lass of previously unseen at-tribute vetors.2.2. Data for AnalysisIn our study, the output variable for eah event indi-ates if the photon-proton interation resulted in theprodution of K�+ (positive event) or not (negativeevent). Eah feature vetor x is made of 45 features.The �rst 4 features are on�dene level numbers de-rived from the kinemati �ts (Setion 1.3). The nextfeature orresponds to the total energy. The last 40features haraterize 8 partiles (3 of them detetedand 5 inferred). Eah partile is represented by en-ergy E, momentum p, polar angle �, azimuthal angle�, and mass squared m2.
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3Table 1. Columns 2-3: Mean auray performane (A.) with di�erent mislassi�ation osts. Numbers en-losed in parentheses represent standard deviations. Columns 4-5: Mean false positive rates (FPR) with di�erentmislassi�ation osts.Analysis Tehnique A. Equal Costs A. Unequal Costs FPR Equal Costs FPR Unequal CostsNaive Bayes 85:59 (0:86) 86:79� (0:78) 20:1 6:8Support Vetor Mahines 87:69 (0:70) 88:29 (0:51) 18:7 1:6Multilayer Pereptron 88:57 (0:85) 90:58 (0:73) 14:3 3:0ADTree 88:90 (1:14) 90:81� (0:96) 11:5 3:7Deision Tree 89:23 (0:93) 91:97� (0:87) 12:7 4:7Random Forest 90:02 (1:12) 92:34� (0:95) 11:6 4:3Our data set is derived using the CEBAFlarge angle spetrometer (CLAS). We gathered 1000Monte Carlo signal events and 6000 Monte Carlobakground events. The real data omprised about13,500 events.2.3. Using Monte Carlo Data andVariable Mislassi�ation CostsOur �rst set of experiments were limited to MonteCarlo data for whih the value of the output vari-able of eah event is known. Our study omparedthe performane of several lassi�ation algorithmsin terms of preditive auray. We employed severalalgorithms inluding deision trees, support-vetormahines, random forests, et.First we redued the original size of the inputspae through a feature seletion proess, using in-formation gain as the evaluation metri 3. For eahalgorithm we varied the amount of mislassi�ationosts. Table 1 shows our results. The �rst olumn de-sribes the multivariate lassi�ation tehniques usedfor our experiments. The seond olumn shows au-ray estimations with equal mislassi�ations osts;the third olumn shows auray estimations wherethe ost of a false positive is 3 times more expen-sive than the ost of a false negative. Eah resultis the average of 5 trials of 10-fold ross validationeah 3. An asterisk at the top right of a numberimplies the di�erene is signi�ant at the p = 0:01level (assuming a two-tailed t-student distribution).Overall there is a signi�ant inrease in performaneby adding a penalty when mislabelling bakgroundevents as target events. In addition, Table 1 showshow for this partiular domain, varying mislassi�-ation osts an yield a signi�ant redution in thefalse positive rate (FPR %, olumns 4-5).Our results denote a preferene for the strategy

behind \random forests". We have observed similarresults in other experiments 4. Random forests havethe ability to redue the variane and bias ompo-nents of error by voting over multiple deision treesusing on eah tree a random seletion of features 5.They exhibit robust behavior against problems withmultiple systemati errors as is ommon to problemsin partile physis.2.4. Signal Enhanement on Real DataOur next set of experiments used real data for whihthe value of the output variable of an event is un-known. In this ase the problem is not to maximizeauray performane (i.e., minimize a risk fun-tional suh as zero-one loss) but instead to provideenough evidene to believe that the signal event o-urred multiple times during the photon-proton in-teration. The goal is to �nd a tehnique able toenhane the signal distribution over the bakgrounddistribution.Our approah to deal with the signal enhane-ment problem is as follows. Applying a multivariatetehniqueM on Monte Carlo data yields a preditivemodel hM . One an then apply hM on the real datato generate a histogram for the predited signal dis-tribution. If model hM exhibits good performane,we expet the histogram generated through hM toprovide evidene for the ourrene of the desiredsignal.To illustrate our approah Figure 1 (left) showsa histogram generated with all real data; the x-axisorresponds to the squared mass (m2) of the signalpartile (K�+). Figure 1 (middle) shows a histogramgenerated by taking only those events predited assignal on the real data by a lassi�ation model.Kinemati �tting variables were part of the featurevetors. We employed random forests as the las-
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Fig. 1. Histograms using (left) real data (middle) predited signals on real data by random forests, and (right) predited signalson real data by random forests using ost-sensitive information. The x-axis orresponds to K+� squared mass (units are in GeV24 ).si�ation tehnique; the derived information helpsisolate and enhane the signal distribution. Fig-ure 1 (right) shows the orresponding histogram us-ing random forests with ost sensitive lassi�ationand kinemati �tting variables. The resulting his-togram shows an even larger enhanement over thesignal distribution.To quantify the di�erene between Figure 1(middle) and Figure 1 (right), we omputed the dis-tane between eah of these empirial distributions.We used relative entropy 6 K(f1jjf2) to ompute thedistane between probability distributions f1 and f2,where K(f1jjf2) =Xi f i1 log f i1f i2 (8)and index i varies along the values of the randomvariable. In our ase, let fr be the distributionfor the real data (Figure 1 left), fk be the distri-bution for kinemati �tting and lassi�ation (Fig-ure 1 middle), and fks be the distribution for kine-mati �tting and ost sensitive lassi�ation (Fig-ure 1 right). We found empirially the following re-sults: K(frjjfk) = 0:2798; K(frjjfks) = 0:4048.This indiates the distribution obtained by ombin-ing kinemati �tting with ost-sensitive lassi�ationyields a new signal distribution that has a largerseparation from the original real data (in terms ofrelative-entropy).3. ConlusionsOur study suggests generating a preditive modelover Monte Carlo data to produe a distribution overreal data where a signal of interest is enhaned. Ourmodel integrates information about physial on-straints using kinemati �tting.Our urrent work adds on�dene levels derivedfrom kinemati �tting as new features for lassi�a-

tion. One unexplored area is to determine the degreeto whih multivariate lassi�ation tehniques on-tribute to signal enhanement without any informa-tion derived from kinemati �tting. It is importantto understand how urrent lassi�ation tehniquesan exploit information derived from physial on-straints.AknowledgmentsThis material is based upon work supported by theNational Siene Foundation under Grants no. IIS-431130 and IIS-448542, and by the Department ofEnergy under Grant no. DE-FG03-93ER40772.Referenes1. A. G. Frodesen (1979). \Probability and Statistis inPartile Physis", Oxford University Press.2. R. O. Duda, P. E. Hart, and D. G. Stork (2001).\Pattern Classi�ation", John Wiley Ed. 2nd Edi-tion.3. T. Hastie, R. Tibshirani, and J. Friedman (2001).\The Elements of Statistial Learning, Data Mining,Inferene, and Predition", Springer-Verlag.4. P. Bargassa, S. Herrin, S-J Lee, P. Padley, R. Vi-lalta (2005). "Appliation of Mahine Learning Toolsto Partile Physis", Conferene on Statistial Prob-lems in Partile Physis, Astrophysis and Cosmol-ogy (PHYSTAT05).5. L. Breiman (2001). "Random Forests", MahineLearning 45(1) pp. 5-32. Springer Siene-BusinessMedia.6. T. M. Cover and J. Thomas (1991). \Elements ofInformation Theory", Wiley-Intersiene.


