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Abstract
The statistical analysis of direct Higgs searches at LEP is described. The like-
lihood ratio with respect to the background-only hypothesis (or a related test-
statistic) is used to order experimental results. The ratio of the confidences
in thesignal+background to background hypotheses, so-called “ ���	� ” , isused
to set lower bounds on the Higgs boson mass. The excluded mass interval
which results has an untraditional but useful interpretation which differs both
from frequentist intervals which require coverage and from Bayesian credible
intervals. Issues such as flip-flopping, experimental uncertainties, discovery
significanceand the transition to measurement arediscussed.

1. INTRODUCTION

The interpretation of results of searches for new particles and phenomena near the sensitivity limit of an
experiment isacommon problem in particlephysics. Thelossof sensitivity may bedueto acombination
of small signal rates, the presence of background comparable to the expected signal, and the loss of
discrimination between two models due to insufficient experimental resolution. The search for Higgs
bosonsat LEPissuch an experiment. TheLEPexperimentshaveseparately, and in collaboration through
the LEP working group for Higgs boson searches, developed a nearly common strategy for carrying out
and reporting the results of their direct searches.

For the time being no significant evidence of Higgs production at LEP has been observed and
lower bounds on Higgs masses havebeen reported. In this report I hope to explain how the lower bound
is derived with theso-called �
��� method, why this method is used, and how to interpret the result.

SincetheSM Higgssearch hasthelowest number of freeparameters(1) it will beused to illustrate
the features of the ���	� method. The generalization to models with several parameters (e.g. the MSSM)
is straightforward if more time-consuming in practice. The techniques described in this talk are in fact
successfully used in general scans over the many-parameter space of the MSSM in searches for the �
and 
 neutral bosons, in 2-parameter searches for charged Higgs bosons of a general 2-doublet Higgs
model, and in combined searches for sparticles by theLEP working group for SUSY particlesearches.

The individual LEP experiments use either the likelihood ratio, a close approximation of the like-
lihood ratio, or theintegral of thelikelihood function astheir test-statistics in Higgssearches. Exhaustive
studies [1] have shown that they have similar performances for exclusion. To simplify my presentation
I only described the likelihood ratio and I will do the same here. I will also show how the �
��� method
can beapplied in other contextswith an exampleof ahypothetical search for new physicsviadeviations
of aparameter which is measured with normal-distributed uncertainty.

2. GOALS

One of the goals of the Higgs working group is to combine the results of the searches for Higgs bosons
carried out by the four LEP experiments in a framework in which the transitions between exclusion,
observation, discovery and measurement are as small as possible. These are direct searches, so the
influenceof theoretical preferences isminimized asmuch aspossible. Thesearchesaredesigned, indeed
tuned, to maximize the sensitivity of the searches to the models. A specific modification of a purely
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classical statistical analysis (the introduction of �
��� ) is used to avoid excluding or discovering signals
which thesearch isin fact not sensitiveto. Experimental (systematic) errorsaretaken into account. At the
timeof thisworkshop theHiggsboson searchesat LEPhavebeen combined assuming that thesystematic
uncertainties are uncorrelated, but part of the focus of the current combination effort is precisely to take
into account themost important correlations in theuncertainties.

Theuseof ���	� isaconsciousdecision not to insist on the frequentist concept of full coverage(to
guarantee that the confidence interval doesn’t include the true value of the parameter in a fixed fraction
of experiments). The Higgs working group has also not insisted on an automatic procedure for the
transition between one and two-sided confidence intervals. On the other hand, it will be shown that the
non-frequentist confidence interval which results does not suffer seriously from the flip-flop effect that
theunified approach [2] is designed to address.

It has not been an explicit goal of the Higgs working group to choose a frequentist(-like) analysis
rather than a Bayesian analysis on philosophical grounds. Our attitude is rather practical, we want to do
the best we can with the data we have, where the best we can means excluding the Higgs as strongly
as possibly in its absence (in a mass region where a direct search can be sensitive) and confirming its
existence as strongly as possible in its presence (again, in a mass region where a direct search can be
sensitive).

The goal of a search is to either exclude as strongly as possible the existence of a signal in its
absenceor to confirm theexistenceof atruesignal asstrongly aspossiblewhileholding theprobabilities
of falsely excluding a truesignal or falsely discovering anon-existent signal at or below specified levels.

3. SEARCH RULES

Theanalysisof search resultscan be formulated in termsof ahypothesis test. Thenull hypothesis is that
the signal is absent and the alternate hypothesis is that it exists. An analysis of search results is simply
a formal definition of the procedure which quantifies the degree to which the hypotheses are favored or
excluded by an experimental observation.

The first step in defining an analysis of search results is to identify the observables in the experi-
ment which comprise the search results. The simplest observable is the number of candidates satisfying
a certain set of criteria. More advanced observables may be some feature of the candidates such as re-
constructed invariant mass, b-quark tagging probability, or even composite properties such as the output
of a multi-dimensional discriminant or artificial neural-network analysis. The next step is to define a
test-statistic or function of the observables and the model parameters (particle mass, production rate,
etc.) of the known background and hypothetical signal which ranks experiments from the least to most
signal-like (most to least background-like). The last step is to define rules for exclusion and discovery
i.e. specify ranges of values of the test-statistic in which observations will lead to one conclusion or the
other. In practice one often wishes to specify the significance of the exclusion or discovery, and not
simply give a true or false answer. In other words a confidence level for the exclusion will be quoted. A
confidence limit for exclusion is defined as the value of a population parameter (such as a particle mass
or a production rate) which is excluded at a specified confidence level. A confidence limit is a lower
(upper) limit if theexclusion confidence isgreater (less) than thespecified confidence level for all values
of the population parameter below (above) the confidence limit. Note that confidence intervals obtained
in this manner do not have the same interpretation as traditional frequentist confidence intervals nor as
Bayesian credible intervals.

For convenience the test-statistic � is constructed to increase monotonically for increasingly
signal-like(decreasingly background-like) experimentsso that theconfidencein thesignal �������������������! 
hypothesis is given by the probability that the test-statistic is less than or equal to the value observed in
theexperiment, �#"%$ � : ��� �'& $)(+* �'& $-, �/./� "0$ �2143 (1)
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where

* ��& $-, �5.+� "0$ �21 (
687:9<;
=?>

 * �'& $
 ��  �� 3 (2)

and where  * �'& $�@  �� is the probability distribution function (p.d.f.) of the test-statistic for signal+
backgroundexperiments. Small valuesof �
� �'& $ indicatepoor compatibility with thesignal+background
hypothesis and favor the background hypothesis. Similarly, the confidence in the background hypoth-
esis is given by the probability that the test-statistic is less than or equal to the value observed in the
experiment, � "0$ � : ���	$ (+* $ , �/./�A"0$ � 143 (3)

where

*B$�, �5.+� "0$ �21 (
6 7C9<;
=?>

 *B$
 ��  �� (4)

and where  * $ @  �� is thep.d.f. of thetest-statistic for background-only experiments. Valuesof ���	$ very
close to 1 indicate poor compatibility with the background hypothesis and favor the signal+background
hypothesis.

3.1 Introducing �
���
Taking into account the presence of background in the data may result in a value of the estimator of a
model parameter which is “unphysical” , e.g. observing less than the mean expected number of back-
ground events could be accommodated better if the signal cross-section was negative. It is important to
makethedistinction between theestimator, which may beexpected to be“unphysical” with aprobability
of up to 50% for negligible or absent signals, from the parameter itself which may well be physically
bounded. When an experimental result appears consistent with little or no signal together with a down-
ward fluctuation of the background, the exclusion may be so strong that even zero signal is excluded at
confidence levels higher than 95%. Although a perfectly valid result from a statistical point of view, it
tendsto say moreabout theprobability of observing asimilar or stronger exclusion in futureexperiments
with the same expected signal and background than about the non-existence of the signal itself, and it is
the latter which is of more interest to the physicist. Presumably a great deal of effort has already gone
into verifying thecorrectnessof thebackground model, so there is littlepoint in obtaining aresult which
is moresensitive to fluctuations of theknown background than to thehypothetical signal.

One of the reasons that there is no consensus on how to treat these situations is that the result is
ambiguous. There is simply not enough information available to distinguish clearly between the signal
and the signal+background hypotheses - we just don’t know what the result means. This will be clearly
illustrated when we look at distributions of the test-statistic and evaluatesearch potentials.

Onepossibletechniquefor dealing with thissituation isto normalizetheconfidencelevel observed
for thesignal+background hypothesis, �
� �'& $ , to theconfidence level observed for thebackground-only
hypothesis, �
� $ . This is a generalization of the modified classical calculation of confidence limits for
single channel counting experiments presented in [3]. This also makes it possible to obtain sensible
exclusion limits on the signal even when the observed rate is so low that the background hypothesis is
called into question. Of course, the experimentalist should be aware that a low background confidence
may also indicate underestimated or forgotten systematic errors. It may be said that this modified fre-
quentist or ���	� procedure (as it will be called here) is performed in order to obtain conservative limits
on the signal hypothesis. That this procedure is conservative is undeniable, but I prefer to add that it
gives an approximation to the confidence in the signal hypothesis, ���	� , one might have obtained if the
experiment had been performed in thecompleteabsenceof background, or in other words, if it had been
possible to discard with absolutecertainty theselected events due to background processes.

Themodified frequentist re-normalization described above is simply

�
� �AD �
� ��& $-@ �
� $�E (5)
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Although �
��� is not, strictly speaking, a confidence (it is a ratio of confidences), the signal hypothesis
will beconsidered excluded at theconfidence level �
� when

FHG �
� � .+IH� E (6)

The consequence of �
� � not being a true confidence is that the hypothetical false exclusion rate is
generally lessthan thenominal rateof

F�G �
� . Thedifferencebetween �
��� and theactual falseexclusion
rate will in fact increase as the p.d.f.’s of the signal+background and background hypotheses become
more and more similar. Thus the use of �
�	� increases the “coverage” of the analysis, i.e. the range of
model parameters for which an exclusion result is possible is reduced, but it also avoids the undesirable
property of ��� �'& $ that of two experiments with the same (small) expected signal rate but different
backgrounds, theexperiment with the larger background may haveabetter expected performance.

3.2 Other definitions of �
� �
Threeof the four LEP experiments use theabovedefinition of �
��� , whileALEPH [4] uses

�
��� ( ��� �'& $ � , FJG �
� $ 1!KML = � E
There issomeskepticism on thepart of theother LEPexperiments to adopt thisalternatedefinition. One
of the objections is that the appearance of the global parameter N , the total expected signal rate, opens
the way for absurd optimizations. Adding a new channel with a moderate signal rate and a completely
overwhelming background to an existing search will givean improvement to thesearch sensitivity out of
proportion to the signal-to-noise ratio in the additional channel (a microscopic S/N should indicate that
thenew channel containspractically no information about thesignal). Another objection, which ismore
of a philosophical nature, is that this definition of �
��� can not be applied to searches which consist of
looking for small deviations of parameters measured with normal-distributed errors.

4. THE LIKELIHOOD RATIO TEST-STATISTIC

The likelihood ratio, � ,#OP 1 , is the ratio of theprobability densities for agiven experimental result OP for
two alternate hypotheses. In searches for new particles an appropriate likelihood ratio is � (RQS,#OP 3 NT�� 1 @�QU,#OP 3 � 1 , that istheratio of probability density for thesignal+background hypothesisto thesignal-free
or background hypothesis.

The likelihood ratio for an experiment with independent channels issimply aproduct of the likeli-
hood ratiosof the individual channels, so that thecombination of additional histogram bins, independent
search channels, experiments or center-of-mass energies is straightforward and unambiguous.

The likelihood ratio can be thought of as a generalization of the change in V	W for a fit to a dis-
tribution including signal plus background relative to a fit to a pure background distribution. In the
high-statistics limit thedistributions of

G�X8Y Z\[ � are in fact expected to converge to ]UV^W distributions.

Thelikelihood ratio � for experimentswith _#`:acb�d independent searchchannelsandmeasurements
of a discriminating variable e (for multidimensional discriminants replace e with Oe ) for each candidate,
and where theabsolutesignal and background ratesareknown, can bewritten as

� (
f8gih4jlkmCn?o pcqsr ;<t<u�9vtxwxy � t & $ txz k td tx{f|k�gih4jlkmCn?o p q 9}t $

k tt
d tx{

d t~�n?o � t���t y�� t�� z & $ t���t y�� t�� z� t & $ td t~'n?oB� m , e m�~ 1 (7)

which can besimplified to

� ( L = ��� 7 �
f!gxh4j�k
min?o

d t
~'n?o

F � N m%��m , e m�~ 1
� m � m , e m�~ 1 3 (8)
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where � m is the number of observed candidates in each channel, e m�~ is the value of the discriminating
variablemeasured for each of thecandidates, N m and � m are the integrated signal and background ratesper
channel, N�� " � is the total signal rate for all channels, and ��m , e 1 and � m , e 1 are the probability distribution
functions of thediscriminating variable for thesignal and background of channel � respectively.

If the p.d.f.’s of the discriminating variable are identical for the signal and background, if none is
measured or if thedistributionsareexpressed asbinned histograms, thelikelihood ratio simplifiesfurther
to

� ( L = ��� 7 �
f8gxh�jlk
mCn?o

F � N m
� m

d t E (9)

Note that in the complete absence of background ( � (�� ) and the observation of one or more
candidates, an alternatenull-hypothesismust bechosen, such asthat thesignal is theonethat maximizes
the likelihood function QU, N 1 . In such a situation the existence of the signal is undeniable and the setting
of confidence limits is firmly in the realm of measurement.

A simplederivationshowsthat thelikelihood ratiomethod iseffectively basedoncountingweighted
events. Since �5� � and *
, �5.+� "0$ �21 (+*�, Y � , � 1 . Y � , � "0$ �2141 wecan write

Y � , � 1 ( G N�� " �?�
d
� n�o � �2�A� (10)

where � is the total number of events observed in all channels and the weight for each candidate � is
given by

�A� ( Y � F � N �
� �
��� ,x� � 1� � ,x� � 1 3 (11)

where the � index also assigns the candidate to the search channel in which it was observed. Since
the constant N � " � appears on both sides of the expression

Y � , � 1 . Y � , � "0$ ��1 , the method consists ba-
sically of comparing the observed number of weighted events with the distributions expected for the
signal+background and thebackground hypotheses.

4.1 Singlechannel counting exper iment

For a counting experiment with a single channel all the candidate events have the same weight,
Y � , F �N @ � 1 , so that Eqn. (5) takes the form

IH��� ( *�, P . P "0$ � 1
*
, P $ . P "0$ �21 (

*�, ��.R��"0$ � 1
*
, � $ .�� "0$ �21 3 (12)

where ��$ and � come from the Poisson distributions of the number of events for the background and
signal+background hypotheses respectively, and � "0$ � is thenumber of candidatesobserved in theexper-
iment. Thus themodified frequentist signal exclusion confidencebecomes

IH� ( FHG d 7:9<;d ns� p-q�r
9�u�;iwxy $ &�� z kd {d 7:9�;d ns� p q
9 $ kd { E (13)

An identical result is obtained by computing the Bayesian credible interval (with uniform prior proba-
bility density for thesignal N�  )

IH� (
>� QU, N�  3 � 1  �N� >� QU, N   3 � 1  �N   E (14)

Without going into detail, let’s just say that this interesting coincidence is responsible for a lot of confu-
sion.
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4.2 Search potential optimization

The illustration of the search optimization follows closely the simple presentation of the well-known
Neyman-Pearson theorem in [5]. The same conditions that make the maximum likelihood estimator the
most efficient statistic for parameter estimation in many situations exist also for hypothesis testing. The
basic principle is illustrated in Fig. 1.

"Exclude"

"Discover"

Q=Q0

Q<Q0

Q>Q0

X
¡

s+b

Perturb
contour

Fig. 1: Illustration of Neyman-Pearson theorem applied to searches.

Imaginethat thebox representstheuniformly distributed set of all possibleexperimental outcomes
for the signal+background hypothesis. The likelihood ratio � defines a set of contours with a constant
ratio of signal+background density to background density. Suppose we choose one contour given by� ( � � and separate all possible experiments into “discovery” (conclusion that signal hypothesis is
true) and “exclusion” (conclusion that signal doesn’t exist) classes. In practice we usually choose much
more stringent criteria for discovery than for exclusion (we set up at least two contours) and we accept
that experimental resultsmay not alwaysbeconclusive. In order to maximizetheprobability for correctly
confirming (excluding) thesignal, theregion with �5�+� � ( �/./� � ) isdefined asthe“discovery” region
(“exclusion” region). To show that no further optimization is possible, the likelihood ratio contour is
perturbed in such away that that thefraction of signal+background experimentsisconstant. But sincethe
backgrounddensity outsidethecontour islarger than inside, theprobability that abackgroundexperiment
will lead to afalseconfirmation of thesignal hasincreased. Similarly, if weimaginethat theperturbation
is done in such a way as to hold constant the fraction of background experiments, the probability of
falsely excluding the signal is increased since the fraction of signal+background experiments in the
exclusion region has increased. Since, for a fixed exclusion rate for background experiments or for a
fixed “discovery” rate for signal+background experiments, any perturbation of the contour given by the
likelihood ratio increases the false exclusion rate and the false discovery rate, the likelihood ratio is
shown to be theoptimal test-statistic for searches.

Theuseof any other test-statistic (ordering principle) representsaperturbation of theoptimal con-
tours defined by the likelihood ratio and thus yield less sensitive hypothesis tests for searches. All test-
statistics, including frequentist confidence intervals with or without exact coverageor Bayesian credible
intervalswith reasonably unbiased or finely tuned prior probability distributionshavean expected distri-
bution for background experimentsand another for signal+background experiments. Thedistribution for
signal-only experiments (the one physicists would like to draw conclusions from) simply doesn’t exist
experimentally in the largemajority of searchesand using other test-statisticswon’t make thisparticular
problem go away.

4.3 Terminology

It is probably worth defining the language used in the Higgs working group in terms of traditional sta-
tistical terminology (in italics). Accepting the null-hypothesis (¢ � : there is no signal or it is too small
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to be seen) is what we call exclusion. The power of this test, that is the probability to correctly exclude
an absent signal is what we call the exclusion potential. The probability to falsely exclude a true signal,
that is to commit a type II error, is what we call the false exclusion rate. In cases where there is com-
pleteseparation of thedistributionsof the likelihood ratio for thesignal+background and thebackground
hypotheses, the false exclusion rate will be specified by one minus the confidence level of the exclusion
(for discrete probabilities there are unavoidable deviations from this ideal behavior). The power of the
discovery test is the probability to correctly confirm the signal+background hypothesis; this is what we
refer to as thediscovery potential of theexperiment. Theprobability to falsely discover an absent signal,
that is to commit a type I error, is what we call the false discovery rate. In ideal cases where the likeli-
hood ratio distributionsfor thebackground and signal+background hypothesesarecompletely separated,
the significance level (here, for once, we use the same language) of the discovery is equal to the false
discovery rate.

4.4 Consequences of �
� �
The use of �
��� as the figure of merit for signal exclusion in general causes the false exclusion rate to
be lower than the ideal rate give by the specified value of the exclusion confidence level. Similarly, the
use of , F#G �
��$ 1 @£, F#G �
� �'& $ 1 instead of

F#G �
��$ for discovery [6] causes the false discovery rate in
general to be lower than thestated significance level. An example (taken from oneof theHiggssearches
at LEP) of the reduced false exclusion rate for exclusion at the 95% confidence level is shown in Fig. 2.
Thedashed linefor thefalseexclusion rate, if �
� ��& $ would beinterpreted astheconfidencein thesignal
hypothesis, actually continues to the right until theexpected signal event rate (sum over search channels
of cross-section times luminosity times branching fraction times detection efficiency) falls identically
to zero. The vertical dotted line at 92.5 GeV shows where the ideal background-free �
� � would drop
to zero suddenly when the probability to observe zero candidates is larger than 5% (expected rate of
signal events 3, as seen in middle plot of the figure) and exclusion at the 95% confidence level is no
longer possible. The bottom plot in the figure shows the potential for exclusion (reminder: the fraction
of background experiments leading to exclusion at 95% CL or higher) versus Higgs mass for �
� � (the
solid curve) and the potential if �
� �'& $ were interpreted as the confidence in the signal hypothesis. In
the region to the right of 92.5 GeV, indicated by the vertical dotted line, the expected signal rate is less
than 3, and theexclusion potential for abackground-freesearch would be identically zero.

To summarize the previous paragraph, the exclusion potential for �
� �'& $ flattens out at 5% even
when the expected signal rate is microscopic. The false exclusion rate for �
� �'& $ is also 5% for micro-
scopic signal rates, which is in fact entirely correct from thepurely frequentist viewpoint sinceweknow
a mistake is being made at the rate of 5% when a signal is excluded for which the experiment has no
sensitivity (wemight as well throw dice). This is themain motivation for adopting the �
� � method.

Figure 3 shows an example of the likelihood ratio ( � ) distributions (in fact minus twice the log-
likelihood ratio) for experiments with varying degrees of sensitivity. The confidences �
� $ and �
� �'& $
are the integrals of the normalized distributions from right to left. The example is taken from the Higgs
search at LEP. For light Higgs the cross-section is large and the distributions for signal+background
and background are well separated. In this case the most probable results are either strong exclusion
( �
� $�¤¥�\Ev¦ , tiny �
� �'& $ ) or a strong confirmation of the signal ( �
� $�§ F

, �
� �'& $¨¤©�£Ev¦ ). As the
hypothetical mass of the Higgs increases, the cross-section falls, the overlap of the likelihood ratio dis-
tributions increasesand themost probable results for the two hypothesesmovecloser to each other. One
is no longer able to conclude that one of the hypotheses is much more strongly supported than the other
- the result tends to be ambiguous. The �
��� method can be seen as a way of taking this ambiguity into
account in theextraction of asingle result characterizing thepossiblepresenceof asignal.
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Fig. 2: False exclusion rate (a), expected signal rate (b) and exclusion potential (c) for exclusion at the 95% confidence level

versus Higgs mass for a typical Higgs search at LEP. Thesolid curves in (a) and (c) are for °B± ; and thedashed lineand curve

for °B± ;xu�9 . Thevertical dotted lines show where theexpected signal rate in (b) falls below 3.

0
²250

500
750

1000

-100-80 -60 -40 -20 0 20 40 60 80 100
²

0
²500

1000

1500

-40 -30 -20 -10 0 10 20 30 40

0
²2000

4000

-10 -8 -6 -4 -2 0 2 4 6 8 10

-2ln(Q)

a)

-2ln(Q)

b)
³

-2ln(Q)

c)´
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a light Higgs with large cross-section, b) for a moderate Higgs with moderate cross-section, c) for a heavy Higgs with small

cross-section. Thevertical scales arearbitrary.
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Another way of interpreting �
��� is that it servesasan approximation of theconfidenceonemight
obtain if the background events could be removed from the sample of selected events. Obviously, if this
werepossibletheexperimentalist would havedoneit already! But this ispossible in aMonteCarlo study
and an example of such a study is shown in Fig. 4(a)-(d). In (a) and (b) the confidence distributions are
uniform since the distributions are formed for the hypotheses being tested, except for the small peak in
(a) which is due to the probability L = $ of observing zero background candidates. The distribution of
confidences in (c) is obtained with signal-only experiments; this is possible with gedanken experiments
but not in the real experiment. The peak at the left of (c) is due to the probability L = � of observing
zero signal candidates. The additional structure in (c) is caused by the use of histograms to describe the
signal and background discriminant distributions instead of continuous functions and is only a technical
distraction here. In (d) one sees that the peak at �
� ( L = � is reduced with respect to (a); this is
because for signal+background experiments the probability to observe zero candidates is L =

y ��& $ z . In
addition there is a tail from the peak on top of the uniform distribution; this is due to the experiments
in the overlap region of the signal+background and background distributions of the test-statistic. These
features of (d) lead to overcoveragebut (c) is experimentally inaccessible.
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Fig. 4: Example of distributions of confidences from a Higgs search at LEP: a) distribution of °B± 9 expected for background

experiments, b) distribution of °B± ;xu�9 expected for signal+background experiments, c) distribution of °B± ; expected for signal-

only experiments, and d) distribution of modified °B± ; expected for signal+background experiments.

5. ‘LOOK-ELSEWHERE’ EFFECT

When establishing thesignificanceof apossiblesignal from amodel with afreeparameter, e.g. themass
of the Higgs boson predicted by the Standard Model, our attention is naturally drawn to the point where
the likelihood function is maximized (corresponding to the minimum of

G�X£Â � , � 1 ). However it is not
quite sufficient to test if the expected rate of false discovery conservatively given by , FSG �
� $ 1 @\, F�G
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�
� �'& $ 1 at themost likely point issmall enough to meet our discovery criteria, since thebackground can
fluctuateanywhereand not just at thepoint wefocuson becauseof thedataat hand. Thisistheequivalent
of the “many-histograms” problem in data analysis. If you look at enough histograms, sooner or later
you must find largedeviationsfrom thestandard result, even if there isno new phenomenon at work. The
“ look-elsewhere” effect, as it is called in the Higgs working at LEP, may be estimated roughly by the
ratio of thesearch region (e.g. therangein Higgsmass) to theexperimental massresolution. Thedilution
of thesignificance level wasestimated to beafactor ¤�Ã for thecombined search at LEPwith Ä NÅ. F£Æ\Ç
GeV [14]. This is less dramatic than it sounds, since it would imply e.g. reducing the significance of
a ¦£È observation to ÃºEv¦£È . In addition, if the search sensitivity is far from uniform over the mass range
under consideration (such is usually the case for the Higgs search at LEP), the background will tend to
give signal-like fluctuations mostly in the region of reduced sensitivity, thus leading to smaller dilution
factors than the rough estimate.

6. NORMAL DISTRIBUTION - AN ILLUSTRATION

A study of a search for deviations of a parameter measured with a normally distributed uncertainty is a
useful illustrationof thepropertiesof the �
��� method. Thebackgroundwill beanormal distributionwith
mean 0 and standard deviation 1. Thehypothetical search will be for asignal that givesasmall, positive
deviation from 0 and for simplicity it isassumed that thestandard deviation remainsconstant independent
of the true value of the signal. Fig. 5 shows the distribution of the observable

P
for the background

(
PÊÉ "0Ë p�Ì (Í� ) and for a hypothetical signal (

PÎÉ "0Ë p�Ì ( F
). The log-likelihood ratio distributions for

the background and signal+background hypothesis will also be normal distributions separated by one
standard deviation, so it is sufficient to use

P
as the test-statistic.
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Fig. 5: Example of the unnormalized probability distributions of an observable Û for background-only (solid curve) and

signal+background (dashed curve) hypotheses (exampleof Sec. 6.).

Since we restrict the search to positive signals, the confidences are integrals over these distribu-
tions from

G�Ü
to
P "0$ � as shown in Fig. 6. Recall that the upper bound on

P É "0Ë p�Ì is found when�
� �2, P "0$ �21 (Ý�\Ev�\¦ . The solid curve in the figure for �
� $ is independent of the signal model and in-
dicates the compatibility of the observation with the background hypothesis. Values of �
��$ close to 1
indicateasignal-like (non background-like) result. Thedashed curveshows �
� �'& $ for

PÎÉ "0Ë p�Ì ( F
. For

other values of
P É "0Ë p�Ì , �
� �'& $ is obtained by sliding the dashed curve to the left (but not to the left of�
� $ ) or to the right. A family of �
��� curves (dotted curves) for

PÎÉ "0Ë p�Ì (Þ�£E FÅG ÃºEv� are also shown.
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Several features areapparent in thefigure.

ß ���	� approaches �
� �'& $ for
P É "0Ë p�Ì � ¤+à for any valueof

P "0$ � .ß ���	� approaches �
� �'& $ for
P "0$ � � ¤ X

even for small values of
PÊÉ "0Ë p�Ì .ß For increasingly large, negative values of

P "0$ � the upper bound on
PÎÉ "0Ë p�Ì given by �
� � ap-

proacheszero slowly but never reaches it.

It isalso apparent from thefigure that lower boundsat the95% confidence level, defined by thevalueofPÎÉ "0Ë p�Ì that solves ��� �2, P "0$ �21 (+�£E Ç ¦ , also exist. Theselower boundsmakesensewhen theevidencefor
a signal is strong but as long as the observation is consistent with background they don’t contain much
information. In fact, it is not hard to show that when evidence for a signal is strong, that the confidence
intervals found by more traditional techniques are recovered from the �
��� method. For example, the
84% confidence level upper and lower bounds correspond exactly to the traditional frequentist 68%
confidence interval and the68% Bayesian credible interval (with uniform prior from zero to

Ü
). This is

accomplished with little flip-flopping on the part of the physicist. The upper bound is computed with a
procedure which is entirely independent of the observed result, be it very compatible with background
or an outstanding discovery of a signal. The only flip-flopping is the subjective decision whether or not
to quote the lower bound. A confidence interval which doesn’t contain zero can be misunderstood if
the signal is poorly established and, for example, the LEP Higgs searches will probably not quote upper
bounds on theHiggs mass until at least “possibleobservation” criteriahavebeen met.
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Fig. 6: Confidencesversusobserved valueof Û for thebackground-only hypothesis( °B± 9 , solid curve), thesignal+background

hypothesisfor ÛÅá 7Câ�ãxä\åçæ ( °B± ;xu�9 , dashed curve) and various °�± ; curves(dotted) for ÛÅá 7:âlãxä ranging from 0.1 to 4 (example

of Sec. 6.).

6.1 Normal distr ibution - exclusion

If an experiment is entirely without sensitivity to a model, it should be forbidden to exclude it, and if
the sensitivity is poor it should be extremely difficult to exclude it. In the present example the use of the
purely frequentist �
� �'& $ , which gives optimal sensitivity for exclusion, has the frequentist property of
being wrong a fixed fraction of the time, also for microscopic values of

PÎÉ "0Ë p%Ì where the experiment is
clearly not sensitive to the model being tested. Fig 7 shows the false exclusion rate versus signal model
for both frequentist and �
��� methods. The �
��� curvehasaslow turn-on from zero for no signal towards
thespecified falseexclusion rate (5%) as thebackground and signal+background distributions separate.

The exclusion potentials for the purely frequentist and �
��� methods are compared in Fig. 8. The
exclusion potentials converge as they both approach 100%, the region where the distributions of

P
are

well-separated ( ¤èà\È separation). For
PÊÉ "0Ë p�ÌÎé ¤ X

the overlap of the distributions of
P

is large,
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the sensitivity of the experiment is obviously poor, and the exclusion potential of the �
��� method is
naturally suppressed.

X
ê

model

F
a

ls
e

 e
xc

lu
si

o
n

 r
a

te

0

0.01

0.02

0.03

0.04

0.05

0
ë

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
ì

Fig. 7: Probability of falsely excluding the signal versus the signal model parameter ÛÅá 7:âlãiä when using °B± ;xu�9 (solid line)

and °B± ; (dashed curve) to set exclusion limits at the95% confidence level (exampleof Sec. 6.).
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Fig. 8: The probability of excluding the false signal hypothesis versus the signal model parameter Û á 7:âlãxä when using °B± ;xu�9
(solid curve) and °B± ; to set exclusion limitsat the95% confidence level (exampleof Sec. 6.).

6.2 Normal distr ibution - discovery

If an experiment isentirely without sensitivity to amodel, it should beforbidden to discover it whether or
not it might observe large background fluctuations. Fig. 9 shows how the discovery potential is affected
by the generalization of �
��� for the determine of the signal significance. The plots contain the same
information on log and linear scales. Oneseesthat using

FºG �
� $ é ¦£Eví K F � =?î asthediscovery criterion
allowsexperimentswith no sensitivity to thesignal to makediscoveries(admittedly with asmall rate, but
even so this isnot reasonable) whereasthis isvery strongly suppressed by using , F�G ��� $ 1 @\, F�G �
� �'& $ 1
instead. This suppression has mostly disappeared by the time the background and signal+background
distributions of

P
are separated at about the ¦\È level. The false discovery rate for

FHG �
� $ is the stated
value of

FAG ���	$ whereas it is effectively zero for , FHG �
��$ 1 @£, FHG �
� �'& $ 1 for less than
X È separation

of the background and signal+background models and converges towards the stated value for ¤ï¦£È
separation.
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7. BACKGROUND SUBTRACTION

Background in thesearch results isaccounted for in several ways. First, it appears in the likelihood ratio
(or other test-statistic). Second, even if doesn’t appear in the test-statistic (which would thus be non-
optimal), the confidences are computed by comparison of the value of the test-statistic observed in the
experiment with thedistributionsof thetest-statistic expected for thebackground and background+signal
hypotheses.

It is often tempting to shift the background estimate in order to obtain conservative results (con-
scious overcoverage). Increasing the background estimate leaves less room for the hypothetical signal
thus leading to conservative discovery significances. However, this also leads to overly aggressive ex-
clusion results (undercoverage) if, when the experiment is carried out, the observed result is reasonably
compatible with the background expectations. If the background estimate is decreased then exclusion
becomes conservativeand discovery overly aggressive.

If the expected background rate is set to zero for the gedanken experiments in the computation
of the distributions of the test-statistic, then all selected data events are considered to originate from the
signal, exclusion results are maximally conservative and no conclusions whatsoever can be drawn about
observation or discovery (since �
� $#( F

by construction). The advantage of this extreme procedure
is that it tolerates unknown systematic uncertainties in the background estimates [7]. A disadvantage,
in addtion to the extremely conservative exclusion and the complete absence of discovery potential, is
that in such a case there is a mismatch between the hypotheses being tested and the hypotheses used
to generate the distributions of the test-statistic. Thus the likelihood ratio is no longer guaranteed to be
optimal and methods with tunableparameters, for example [8] and [9], will perform better.

A final comment on background subtraction is that taking the ratio �
� �'& $-@ �
� $J( �
� � to define
an approximate signal-only hypothesis test may appear to be a background-subtraction procedure, but
if the background is properly accounted for in the computations of �
� �'& $ and �
� $ , they are already
“background-subtracted” quantities and no further background subtraction is possible.

8. SEARCH OPTIMIZATION

In section 3. it was shown that given a certain amount of information about a search, the choice of the
the likelihood ratio with respect to thebackground-only hypothesisas thetest-statistic will maximizethe
sensitivity of the search for both exclusion and discovery. However, the choice of what information to
put in the likelihood ratio isacritical aspect of optimization. Analysis that assignsevents to two classes,
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the rejected class (none of these participate in the confidence computation) or the accepted class (all of
these participate with equal weight in the confidence computation) is the basis of the simple counting
experiment. Adjustment of the cut(s) that define the two classes will affect the discovery and exclusion
potentials. At this point minimizing the average (or median) value of �
� � expected for background
experiments by adjustment of the cuts will maximize the exclusion potential [10]. It should be kept
in mind that although the exclusion and discovery potentials are maximized for a specific information
content with the use of the likelihood ratio, this is not the same as saying that the information content
that globally maximizes theexclusion potential also globally maximizes thediscovery potential.

If the search has several well-defined final states (e.g. õ÷ö § Ã£ø L4ù N 3 õ÷ö § X ø L4ù N
� Â & Â = ,
etc.) with different signal to noise ratios (S/N) , thesearch sensitivity is improved by splitting thesearch
into separate channels so that events selected in a channel with lower S/N are weighted less than those
selected in a channel with a good S/N. Since the likelihood ratio accounts for the variations between
channelsof S/N in an optimal way, theaddition of achannel always improvesthesearch sensitivity, even
if the background rate is large and/or S/N is poor (but uncertainties on the background can dampen or
even reverse the improvement, so there is an optimal amount of background to allow [11]).

If in addition to topology, themeasured valuesof somefeature(s) of theevent aredifferent for the
signal and background, this can be introduced into the likelihood ratio with additional improvements in
thesensitivity. Of particular importanceistheidentification of observablesdirectly related to aparameter
in thesignal model being tested (e.g. thereconstructed massof theHiggscandidate in theHiggssearch),
but also roughly model-independent observables are quite useful (e.g. b-tagging for õ § �4ú � is only
mildly �üû -dependent due to reconstruction effects).

One danger of optimization is that the event selection gets sub-divided enough that statistical
fluctuations in the detector simulation of either the background or the signal produce spurious peaks of
large S/N, resulting in an artificial improvement of the search sensitivity. One way to detect the onset of
this over-training is to split the detector simulation into sub-samples. If the search sensitivity is better
for both of the sub-samples than for the combined sample, this is clear evidence of over-training in the
sub-samples. If the full-sample gives results compatible with the mean of the sub-samples, then the full
sample is most likely not suffering from over-training.

The performance of a statistical analysis of search results should not improve by the increase of
the background with no additional efficiency for the signal (and it should not improve significantly if
the added signal efficiency comes at the cost of an overwhelming background). The �
��� method is
relatively immune to this kind of falseoptimization - this is astrong point in its favor.

9. UNCERTAINTIES

Very seldom are all the ingredients of a search without experimental (systematic) uncertainty. Back-
ground rates and signal detection efficiencies, even the theoretical input may be uncertain (e.g. missing
higher order corrections). Sinceaconfidenceinterval isalready an expression of uncertainty, onedoesn’t
want to quotean uncertainty on theconfidencelimits, but rather modify theconfidencelimitsto allow for
theexperimental uncertainty. A simpleprocedure is to shift all therelevant parameters(backgrounds, ef-
ficiencies, etc) coherently by onestandard deviation of each of the individual parameters in thedirection
which weakens the confidence limit. Cousins and Highland have shown in [12] that such a procedure is
far too pessimistic.

What isdone in theHiggssearchesat LEPis to usetraditional Bayesian techniques to infer a like-
lihood distribution for the parameters in question and then treat them as probability distributions in the
generation of gedanken experiments (with MC, FFT or whatever technique). For each gedanken experi-
ment anew set of “smeared” efficienciesand background ratesaregenerated and from these, background
and signal events are generated to form the input to the likelihood ratio for this gedanken experiment.
This procedure is the generalization of the Monte Carlo computation which is compared to the analytic
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approximations derived in [12] for simple counting experiments in the presence of background and re-
producesthoseresults. Thisshould not beasurprisesincethe �
� � method applied to thelikelihood ratio
for single-channel counting experiments is equivalent to the Bayesian credible limits computed with a
flat prior distribution used in [12].

Theconsequencesof this“smearing” procedureisthat thelikelihood ratiodistributionsget widened
and that especially the background tail under the signal+background distribution and the signal+
background tail under the background distribution are enhanced. In other words the overlap of the
distributions has increased. This reduces both the exclusion and discovery potential of the search and
tends to weaken both discovery-likeand exclusion-likeobservations. Aswasdescribed above, theeffect
on moderateexclusion (95% CL) tends to beminor, but for extremeexclusion and especially for discov-
ery the effect can be relatively dramatic (dramatic meaning that a discovery significance can easily be
reduced by a sigma when the experimental uncertainty is accounted for). The experience with the LEP
Higgs searches confirms the conclusion in [12] that even moderately large uncertainties (say ¤ X � %)
have little effect on exclusion limits (lowering expected and observed lower bounds on �üû at LEP by
typically a few hundred MeV).

Important correlations between the parameters that describe the signal and background rates and
distributions should certainly be taken into account. This is one of the current activities of the Higgs
working group. The effect of correlations is expected to be most noticeable in case of discovery-like
results.

10. TECHNICAL CHALLENGES

Thebrute-forcemethodof computing thedistributionsof thelikelihood ratioexpected for thebackground-
only and signal plus background hypotheses is to use a Monte Carlo computer program. Of course, this
is unnecessary in certain situations, for example high-statistics searches where all uncertainties, statisti-
cal and experimental, can bedescribed by analytic distribution functions; and relatively simplecounting
experiments in the absence of uncertainties where direct sums of Poisson probabilities can describe the
results.

Themajor drawback of theMonteCarlo method is that it iscomputationally intensive, but modern
computers are relatively inexpensive and powerful so this is not nearly as strong an objection as it was
only a few yearsago. In addition, since the likelihood ratio is theratio of local probability densities, effi-
cient computation of discovery significances (and extremely strong exclusion) is possible by generating
weighted Monte Carlo experiments. In the tiny tail of the background distribution which one integrates
to find thediscovery significancevia , F!G �
� $ 1 @£, F!G �
� �'& $ 1 onesgeneratessignal+background exper-
iments and weights them by the inverse likelihood ratio. This is highly efficient since it is in this region
that thedensity of signal+background experiments is large. In the tiny tail of thesignal plusbackground
distribution which one integrates to find the exclusion confidence via �
� �'& $�@ ��� $ ones generates back-
ground experiments and weights them by the likelihood ratio. This is highly efficient since it is in this
region that the density of background experiments is large. With only a few thousand Monte Carlo ex-
periments discovery significances for the Higgs search at LEP in the ¦£È region can be computed with
a relative statistical precision of a few per cent (ignoring, of course, the significance reduction of the
“ look-elsewhere” effect).

Oneof thecurrent challengesin theLEPworking group for Higgsboson searchesisto handleever-
increasingnumbersof selectedeventswhichslow theMonteCarloandother numerical integrationsdown
considerably. Since the likelihood ratio distribution for _ selected events is the convolution ( _ times)
of the likelihood ratio distribution for 1 selected event, the likelihood ratio distributions can quickly be
computed with a fast Fourier transform (FFT) [13]. This technique, developed and used by one the
LEP experiments, promises to make revolutionary reductions in the computing power needed to obtain
the likelihood ratio distributions. Recently it has also been shown in the working group that analytic
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approximations work quite well in this situation even if the large-statistics limit of normal distributions
hasn’t been reached yet.

11. HIGGS SEARCH AT LEP WITH Ä ý éÿþ�� � GeV

In this section the preliminary results of the search in data taken at LEP with Ä N é F£Æ\Ç
GeV for the

neutral Higgs boson predicted by the Standard Model are described [14]. The results are obtained with
thecombination of theresultsof thefour experiments. At that timetheworking group wasusing

FºG �
� $
as thesignificance indicator and so I refrain from using , FHG �
� $ 1 @£, FHG ��� �'& $ 1 here.
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Fig. 10: Thenegative log-likelihood ratio versus �
� . Theshaded bands show the68 and 91% probability bands for thesignal

at the “ true” mass. Theexpected signal curves (dotted) show themedian responseaway from the “ true” mass for four different

Higgs masses.

The test-statistic
G�X8Y Z\[ � versus �üû computed for the observed results should have a minimum

near the trueHiggsmassand themorenegative thevalueat theminimum themoresignificant the result.
There is indeed a minimum with a negative value near 97 GeV in the data, shown in Fig. 10, indicating
aslight preference for thesignal hypothesis (results from data taken at higher valuesof Ä N shown at the
sameconferenceshowed that theslight preference for signal was in fact due to afluctuation).

The significance of the result is given by
F G �
� $ , which is plotted as a function of �üû in

Fig. 11. Values of
F
G �
� $ below � K F � =?î , corresponding to a five standard deviations fluctuation

of the background, are considered to be in the discovery region. However, it is not enough just to read
off the value of

F G �
� $ at the minimum of
G�X8Y Z\[ � since this only gives the probability that the

background fluctuated at precisely that mass and in principle it could have fluctuated anywhere in the
massregion not already strongly excluded by previoussearchesand up to thelimit of sensitivity. A rough
estimatebased on MonteCarlo studiesshows that

F)G ��� $ must bemultiplied by about a factor of four,
corresponding roughly to the width of the mass search region divided by the typical mass resolution.
This gives an effective

FÅG �
� $ of about 5%, in other words a significance corresponding to a bit less
than two standard deviations.

Regardless of the interpretation of the result at 97 GeV, a 95% confidence level lower limit on the
Higgs mass may be set by identifying the mass region where �
��� é �\Ev�\¦ , as shown in Fig. 12. The
average limit expected in theabsenceof signal is 97.2 GeV and the limit observed by LEP is 95.2 GeV.
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12. CONCLUSION

A modified frequentist analysisof search resultsused in searches for Higgsbosonsat LEP, theso-called�
� � method, hasbeen presented. It offersageneral, practical (robust, if you like) solution to theproblem
of dealing with confidence limits for small signals in the presence of backgrounds. The definition of the
confidence interval obtained is useful but somewhat untraditional. It neither adheres to the frequentist
principle of coverage (it overcovers by design as the experimental sensitivity to the hypothetical signal
vanishes) nor does it indicate the bounds of a Bayesian subjective probability distribution. Instead it
indicates the boundary (or boundaries if it is reasonable to quote both) of a region where one would not
have expected to observe equally or less signal-like results than the actual observation in case the signal
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hypothesis were true (at or below a specified rate). Let me try to make an important point about the
previous sentence as clearly and simply as possible (even my friends claim I got it wrong all the three
times I tried to explain this in my presentation): The lower boundson theHiggsmass that arequoted for
the direct Higgs searches at LEP say absolutely nothing about the probability of the Higgs mass being
higher or lower than some value. To make such a statement the direct search results must be first folded
with aprior probability distribution for theHiggs mass [15].

TheHiggssearchesat LEPusethelikelihood ratio with respect to thebackground-only hypothesis
(which could becalled moregenerally the insensitivity limit or bound) or closely related test-statistics to
order the resultsof their searches. Simpleapplication of theNeyman-Pearson theorem shows that this is
the optimal way of distinguishing between the signal/no-signal hypotheses - which is the first objective
of asearch.

The �
��� method, together with the use of the likelihood ratio with respect to the insensitivity
limit is general enough to be applicable to different types of searches (counting experiments, parameter
measurements, multichannel searcheswith measurementsof multidimensional discriminantssuch as the
Higgs searches at LEP). There exists a complement of �
� � for discovery significance which strongly
reduces the chances of making a discovery with an experiment which is in fact insensitive to the signal
in question, at thecost of asmall reduction in thediscovery potential for truly sensitiveexperiments.

Experimental uncertainties of all types can be accounted for by “smearing” the gedanken exper-
iments of the confidence computations. The experience of the Higgs searches at LEP is that except in
extremesituations their inclusion doesnot lead to unintuitive results.

The issue of flip-flopping (deciding whether to quote one or two-sided confidence intervals based
on thedata) ismostly avoided by the �
��� method. For example, theprocedureused by theHiggsgroups
to find the lower bound of the Higgs mass is independent of how compatible the data are with either
the background or signal+background hypotheses. Two-sided intervals are not very meaningful when
there isno significant evidenceof asignal, but as thesignificance increases, the interval defined by �
���
will approach those of traditional measurement techniques (even if the interpretations differ). This and
the use of the likelihood ratio as the test-statistic give a clear point of contact with those techniques.
Thus there can be a rather smooth transition from exclusion, to observation, to discovery and finally to
measurement (assuming of course that the signal is there somewhere and that we are clever enough to
build an experiment to find it, otherwise thestory ends with exclusion).

Acknowledgements

On behalf of the LEP experiments and the LEP working group for Higgs boson searches, I would like
to thank F. James and L. Lyons for their initiative to organize this workshop and for their invitation to
present our work. The local organizers, F. James and Y. Perrin, have done a superb job. This work has
been supported in part by theUniversity of Oslo and theNorwegian Research Council.

References

[1] LEP Working Group for Higgs Boson Searches (P. Bock et al.), CERN preprint CERN-EP/98-046
(1998).

[2] G. Feldman and R. Cousins, Phys Rev D57 (1998) 3873-3889.

[3] G. Zech, Nucl. Instr. and Meth. A277 (1988) 608.

[4] S. Jin, “TheSignal Estimator Limit Setting Method” , theseproceedings.

[5] S. L. Meyer, Data Analysis for Scientistsand Engineers, John Wiley and Sons, 1975, ISBN 0-471-
59995-6.

98



  

[6] Suggested recently by W. Murray, LEP working group for Higgs boson searches.

[7] J.-F. Grivaz and F. LeDiberder, Nucl. Instr. and Meth. A333 (1993) 320.

[8] P. Janot and F. LeDiberder, Nucl. Instr. and Meth. A411 (1998) 449.

[9] P. Bock, Heidelberg University preprint HD-PY-96/05 (1996).

[10] A.L. Read, DELPHI collaboration note97-158 PHYS 737 (1997).

[11] A. Favara, M. Pieri, L3 internal note2066 (1997).

[12] R.D. Cousins and V.L. Highland, Nucl. Instr. and Meth. A320 (1992) 331.

[13] H. Hu, J. Nielsen, “Analytic ConfidenceLevel Calculationsusing theLikelihood Ratio and Fourier
Transform”, theseproceedings.

[14] A. Read, proceedingsof International EurophysicsConferenceon High Energy Physics, July 14-21,
1999, Tampere, Finland.

[15] R. Cousins, “Difficulties with Frequentist and Bayesian approaches to limit setting” , these pro-
ceedings. G. D’Agostini, “Confidence limits: what is the problem? Is there the solution?” , these
proceedings.

99



  

Discussion after talk of Alex Read. Chairman: Roger Bar low.

Masahiro Kuze

You mentioned about the experimental uncertainty. Sometimes it’s not easy to assume Gaussian
errorswithwell-knownsigma. Somequantitiesarebest describedby aflat distributionwithstrict bounds.
Are thereany discussions in theHiggs group ... ?

A. Read

In Delphi, one year we had one channel where there was a convolution of a Gaussian with the
uniform distribution over someregion. Sincewedo it by MonteCarlo, such things areeasy to put in.

M. Kuze

As you said, it makes a small change in the limits, but when there is really a positive signal and
you want to get thesignificance, this can changeby an order of magnitude.

A. Read

I haven’t given you any examples. You can imagine that errors in the background (if I show this
on a log scaleyou might see it better) can easily givefluctuationsout here to the left in the region where
the distribution is very sparse, and in fact those fluctuations will be much bigger than the fluctuations
that you get at thesignal under thebackground when you’redoing exclusion. So what we’veseen in the
Higgs group is just what you said earlier: Unless your errors are really big, they don’t make such a big
impact on exclusion results, but they can easily takeoneor two sigmaoff your discovery significance.

M. Kuze

Yes, in this case this problem can be rather subjective. It depends on each physicist and can be a
difficult problem.

Glen Cowan

I want to understand better this business of dividing �
� �'& $ by ��� $ . I understand that if you do
that it makes your interval more conservative. So my first question is can you quantify by how much it
becomesmoreconservative, canyoustatethat if youwant togivea95%confidencelevel upper limit what
is your coverage probability, say as a function of the hypothesized Higgs mass. Could you quantify that
in the following way? Suppose you were just to use the number of candidate events as the basis of your
test statistic. You don’t measureany invariant massesor anything likethat, but you just usethenumber of
candidate events, and if you were to make the plot which has appeared on various transparencies today,
of the limit as a function of the expected background, and you get a family of curves for a number of
candidates, how would that family of curves look like in your method ? You can ignore the second part
of thequestion if that wasn’t clear, but I’ ll get back to it. Themain thing wasthat I do not understand the
theoretical justification for dividing by �
� $ .
A. Read

It’s related to conditional probability, and the idea is that you makean observation, and according
to �
��$ thecompatibility of thebackground confidence, theresult isunlikely. But it’seven moreunlikely
that it can be accounted for by signal plus background and somehow the ratio of these two is telling you
something about this probability. As I say, it’s an approximation, it’s not stringent.
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M. Woodroofe

If I could elaboratea littlebit on what was just said. If thereareonly counts, then that’sabsolutely
right that you have theconditional probability given background less than or equal to N. I tried to justify
that in my talk; I don’t know if I succeeded. If thereareX’spresent it becomesalittlemorecomplicated,
and I can’t see my way through the calculations but it’s not at all clear to me that it’s still conditional
probability in thecase that thereareX’s present.

Bob Cousins

Virgil Highland’scriticism of Günter Zech’soriginal paper was that theconditional probability in
thedenominator isactually not theprobability conditioned on what you measure. I think that thisspeaker
made it clear that hewasconditioning on anumber known in theMonteCarlo. Hewasnot conditioning
on a number that the experimenter can know, so Virgil’s criticism was to say that the conditional proba-
bility should be calculated using Bayes Theorem. So the first thing I did when I got your paper was to
check that you calculated theconditional probability thesameway Virgil did, which you did, and Günter
Zech’s reply (if I can speak for him) wasbasically to say we’regoing to condition on thisnumber which
is in our Monte Carlo. Let’s call it a convention but it gives reasonable results I think. So there is this
technical detail of theconditioning on something that’s only in theMonteCarlo.

A. Read

I stress again it’s only an approximation.

Günter Zech

Sorry but I must make a remark. In this paper I never claimed that there is coverage, so this was
just a frequentist interpretation of a Bayesian formula. I think this interpretation is correct as it was. It
doesnot fulfill coverage, and it hastheproperty that it isequal to thestandard frequentist method as long
as you have no background expectation, and it fulfills the likelihood principle in other cases, and this
defines it fully.
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