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Abstract

The statistical analysis of direct Higgs searches at LEP is described. The like-
lihood ratio with respect to the background-only hypothesis (or arelated test-
statistic) is used to order experimental results. The ratio of the confidences
in the signal +background to background hypotheses, so-called “C'L;", isused
to set lower bounds on the Higgs boson mass. The excluded mass interval
which results has an untraditional but useful interpretation which differs both
from frequentist intervals which require coverage and from Bayesian credible
intervals. Issues such as flip-flopping, experimental uncertainties, discovery
significance and the transition to measurement are discussed.

1. INTRODUCTION

The interpretation of results of searches for new particles and phenomena near the sensitivity limit of an
experiment isacommon problem in particle physics. Theloss of sensitivity may be due to a combination
of small signal rates, the presence of background comparable to the expected signal, and the loss of
discrimination between two models due to insufficient experimental resolution. The search for Higgs
bosons at LEPis such an experiment. The L EP experiments have separately, and in collaboration through
the LEP working group for Higgs boson searches, developed a nearly common strategy for carrying out
and reporting the results of their direct searches.

For the time being no significant evidence of Higgs production at LEP has been observed and
lower bounds on Higgs masses have been reported. In thisreport | hope to explain how the lower bound
is derived with the so-called C' L, method, why this method is used, and how to interpret the result.

Since the SM Higgs search has the lowest number of free parameters (1) it will be used to illustrate
the features of the C'L; method. The generalization to models with several parameters (e.g. the MSSM)
is straightforward if more time-consuming in practice. The techniques described in this talk are in fact
successfully used in general scans over the many-parameter space of the MSSM in searches for the h
and A neutral bosons, in 2-parameter searches for charged Higgs bosons of a general 2-doublet Higgs
model, and in combined searches for sparticles by the LEP working group for SUSY particle searches.

Theindividual LEP experiments use either the likelihood ratio, a close approximation of the like-
lihood ratio, or theintegral of the likelihood function astheir test-statistics in Higgs searches. Exhaustive
studies [1] have shown that they have similar performances for exclusion. To simplify my presentation
| only described the likelihood ratio and | will do the same here. | will aso show how the C' L, method
can be applied in other contexts with an example of a hypothetical search for new physics via deviations
of a parameter which is measured with normal-distributed uncertainty.

2. GOALS

One of the goals of the Higgs working group is to combine the results of the searches for Higgs bosons
carried out by the four LEP experiments in a framework in which the transitions between exclusion,
observation, discovery and measurement are as small as possible. These are direct searches, so the
influence of theoretical preferencesis minimized as much as possible. The searches are designed, indeed
tuned, to maximize the sensitivity of the searches to the models. A specific modification of a purely
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classical statistical analysis (the introduction of C'Ly) is used to avoid excluding or discovering signals
whichthe searchisinfact not sensitiveto. Experimental (systematic) errorsaretaken into account. At the
time of thisworkshop the Higgs boson searches at L EP have been combined assuming that the systematic
uncertainties are uncorrelated, but part of the focus of the current combination effort is precisely to take
into account the most important correlations in the uncertainties.

Theuse of C'L, isaconscious decision not to insist on the frequentist concept of full coverage (to
guarantee that the confidence interval doesn’t include the true value of the parameter in afixed fraction
of experiments). The Higgs working group has also not insisted on an automatic procedure for the
transition between one and two-sided confidence intervals. On the other hand, it will be shown that the
non-frequentist confidence interval which results does not suffer seriously from the flip-flop effect that
the unified approach [2] is designed to address.

It has not been an explicit goal of the Higgs working group to choose a frequentist(-like) analysis
rather than a Bayesian analysis on philosophical grounds. Our attitude is rather practical, we want to do
the best we can with the data we have, where the best we can means excluding the Higgs as strongly
as possibly in its absence (in a mass region where a direct search can be sensitive) and confirming its
existence as strongly as possible in its presence (again, in a mass region where a direct search can be
sensitive).

The goal of a search is to either exclude as strongly as possible the existence of a signa in its
absence or to confirm the existence of atrue signal as strongly as possible while holding the probabilities
of falsely excluding atrue signal or falsely discovering a non-existent signal at or below specified levels.

3. SEARCH RULES

The analysis of search results can be formulated in terms of a hypothesistest. The null hypothesisisthat
the signal is absent and the aternate hypothesisis that it exists. An analysis of search results is simply
aformal definition of the procedure which quantifies the degree to which the hypotheses are favored or
excluded by an experimental observation.

The first step in defining an analysis of search results is to identify the observables in the experi-
ment which comprise the search results. The simplest observable is the number of candidates satisfying
acertain set of criteria. More advanced observables may be some feature of the candidates such as re-
constructed invariant mass, b-quark tagging probability, or even composite properties such as the output
of a multi-dimensional discriminant or artificial neural-network analysis. The next step is to define a
test-statistic or function of the observables and the model parameters (particle mass, production rate,
etc.) of the known background and hypothetical signal which ranks experiments from the least to most
signal-like (most to least background-like). The last step is to define rules for exclusion and discovery
i.e. specify ranges of values of the test-statistic in which observations will lead to one conclusion or the
other. In practice one often wishes to specify the significance of the exclusion or discovery, and not
simply give atrue or false answer. In other words a confidence level for the exclusion will be quoted. A
confidence limit for exclusion is defined as the value of a population parameter (such as a particle mass
or a production rate) which is excluded at a specified confidence level. A confidence limit is a lower
(upper) limit if the exclusion confidence is greater (less) than the specified confidence level for al values
of the population parameter below (above) the confidence limit. Note that confidence intervals obtained
in this manner do not have the same interpretation as traditional frequentist confidence intervals nor as
Bayesian credible intervals.

For convenience the test-statistic () is constructed to increase monotonically for increasingly
signal-like (decreasingly background-like) experiments so that the confidencein the signal+back ground
hypothesisis given by the probability that the test-statistic is less than or equal to the value observed in
the experiment, Q) ,ps:

CLs+b = P8+b(Q < Qobs)a (1)
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where

Qobs
Pel@< Qo) = [ % g @
and where dP;;/dQ is the probability distribution function (p.d.f.) of the test-statistic for signal+
background experiments. Small valuesof C' L., indicate poor compatibility with the signal +background
hypothesis and favor the background hypothesis. Similarly, the confidence in the background hypoth-
esis is given by the probability that the test-statistic is less than or equal to the value observed in the
experiment, Qops:

CLy = Py(Q < Qobs), ©)
where Qs 4P,
PQ<Qu) = [ 5ad0 ()

and where dP, /dQ isthe p.d.f. of the test-statistic for background-only experiments. Values of C'L;, very
close to 1 indicate poor compatibility with the background hypothesis and favor the signal+background
hypothesis.

3.1 Introducing C'Ly

Taking into account the presence of background in the data may result in a value of the estimator of a
model parameter which is “unphysical”, e.g. observing less than the mean expected number of back-
ground events could be accommodated better if the signal cross-section was negative. It isimportant to
make the distinction between the estimator, which may be expected to be “unphysical” with a probability
of up to 50% for negligible or absent signals, from the parameter itself which may well be physically
bounded. When an experimental result appears consistent with little or no signal together with a down-
ward fluctuation of the background, the exclusion may be so strong that even zero signal is excluded at
confidence levels higher than 95%. Although a perfectly valid result from a statistical point of view, it
tends to say more about the probability of observing asimilar or stronger exclusion in future experiments
with the same expected signal and background than about the non-existence of the signal itself, and it is
the latter which is of more interest to the physicist. Presumably a great deal of effort has already gone
into verifying the correctness of the background model, so thereislittle point in obtaining aresult which
is more sensitive to fluctuations of the known background than to the hypothetical signal.

One of the reasons that there is o consensus on how to treat these situations is that the result is
ambiguous. There is simply not enough information available to distinguish clearly between the signal
and the signal+background hypotheses - we just don’t know what the result means. Thiswill be clearly
illustrated when we look at distributions of the test-statistic and evaluate search potentials.

One possibl e technique for dealing with this situation isto normalize the confidence level observed
for the signal+background hypothesis, C'L., to the confidence level observed for the background-only
hypothesis, C'L;,. Thisis a generalization of the modified classical calculation of confidence limits for
single channel counting experiments presented in [3]. This also makes it possible to obtain sensible
exclusion limits on the signal even when the observed rate is so low that the background hypothesisis
called into question. Of course, the experimentalist should be aware that a low background confidence
may also indicate underestimated or forgotten systematic errors. It may be said that this modified fre-
quentist or C'L procedure (asit will be called here) is performed in order to obtain conservative limits
on the signa hypothesis. That this procedure is conservative is undeniable, but | prefer to add that it
gives an approximation to the confidence in the signal hypothesis, C'L, one might have obtained if the
experiment had been performed in the complete absence of background, or in other words, if it had been
possible to discard with absolute certainty the selected events due to background processes.

The modified frequentist re-normalization described above is smply
CLS = CLS+b/CLb. (5)
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Although C' L is not, strictly speaking, a confidence (it isaratio of confidences), the signal hypothesis
will be considered excluded at the confidence level C'I when

1-CL, <CL. (6)

The consequence of C'Ls not being a true confidence is that the hypothetical false exclusion rate is
generally lessthan the nominal rate of 1—C'L. The difference between C' I, and the actual false exclusion
rate will in fact increase as the p.d.f.s of the signal+background and background hypotheses become
more and more similar. Thus the use of C'L; increases the “coverage” of the analysis, i.e. the range of
model parameters for which an exclusion result is possible is reduced, but it aso avoids the undesirable
property of C'Lg,; that of two experiments with the same (small) expected signal rate but different
backgrounds, the experiment with the larger background may have a better expected performance.

3.2 Other definitionsof C'Lg
Three of the four LEP experiments use the above definition of C'L,, while ALEPH [4] uses

CLy, = CLgwy+ (1 —CLy) x e .

There is some skepticism on the part of the other LEP experiments to adopt this alternate definition. One
of the objections is that the appearance of the global parameter s, the total expected signal rate, opens
the way for absurd optimizations. Adding a new channel with a moderate signal rate and a completely
overwhelming background to an existing search will give an improvement to the search sensitivity out of
proportion to the signal-to-noise ratio in the additional channel (a microscopic S/N should indicate that
the new channel contains practically no information about the signal). Another objection, which is more
of a philosophical nature, is that this definition of C'Lg can not be applied to searches which consist of
looking for small deviations of parameters measured with normal-distributed errors.

4. THELIKELIHOOD RATIO TEST-STATISTIC

Thelikelihood ratio, Q()f ), istheratio of the probability densities for a given experimental result X for
two alternate hypotheses. In searches for new particles an appropriate likelihood ratio is Q = E(X' , S+
b)/ E()? ,b), that istheratio of probability density for the signal +background hypothesisto the signal-free
or background hypothesis.

Thelikelihood ratio for an experiment with independent channelsis simply a product of the likeli-
hood ratios of theindividual channels, so that the combination of additional histogram bins, independent
search channels, experiments or center-of-mass energies is straightforward and unambiguous.

The likelihood ratio can be thought of as a generalization of the change in x? for afit to a dis-
tribution including signal plus background relative to a fit to a pure background distribution. In the
high-statistics limit the distributions of —21og Q arein fact expected to converge to Ax? distributions.

Thelikelihood ratio () for experimentswith V..., independent search channel s and measurements
of adiscriminating variable z (for multidimensional discriminants replace x with %) for each candidate,
and where the absolute signal and background rates are known, can be written as

HNchan e (i+bi) (5;4-b;)™i T 5S4 (wij)+bi Bi(xi5)
j:

Q== S —ith @
Hﬁvznlchan € :’Z?z H/;1 BL(IZJ)
which can be simplified to
Nchan M SS(-/L'J)
— ,—Stot 1 121\ 1)
@=c 1:[1 U( +biBi(xij)>’ ®)
=1 j=1
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where n; is the number of observed candidates in each channel, z;; is the value of the discriminating
variable measured for each of the candidates, s; and b; are the integrated signal and background rates per
channel, s;,; isthetotal signal rate for al channels, and S;(x) and B;(x) are the probability distribution
functions of the discriminating variable for the signal and background of channel i respectively.

If the p.d.f.s of the discriminating variable are identical for the signal and background, if noneis
measured or if the distributions are expressed as binned histograms, the likelihood ratio simplifies further
0 Nchan S: ng

— o Stot -t
Q=ce 1;[1 (1 + b, ) . (9)

Note that in the complete absence of background (b = 0) and the observation of one or more
candidates, an alternate null-hypothesis must be chosen, such asthat the signal isthe one that maximizes
the likelihood function L£(s). In such a situation the existence of the signal is undeniable and the setting
of confidence limitsisfirmly in the realm of measurement.

A simplederivation showsthat the likelihood ratio method is effectively based on counting weighted
events. Since @ > 0 and P(Q < Qups) = P(In(Q) < In(Qups)) We can write

In(Q) = —stot + Z Nk W (10)

k=1

where n is the total number of events observed in al channels and the weight for each candidate & is
given by

Sk Sk(mk:)> 7 (11)

wy, = In <1 + b Br(my)
where the k index also assigns the candidate to the search channel in which it was observed. Since
the constant s;,; appears on both sides of the expression In (Q) < In (Qs), the method consists ba-
sically of comparing the observed number of weighted events with the distributions expected for the

signal+background and the background hypotheses.

4.1 Single channel counting experiment

For a counting experiment with a single channel al the candidate events have the same weight, In(1 +
s/b), so that Egn. (5) takes the form

P(X < Xobs) P(n < nobs)
L, = = , 12
¢ P(Xy < Xops)  P(np < migps) (12

where n;, and n come from the Poisson distributions of the number of events for the background and
signal +background hypotheses respectively, and n, is the number of candidates observed in the exper-
iment. Thus the modified frequentist signal exclusion confidence becomes

—(b+s)(p n
S
Nobs efb.bn ’ (13)
Zn:O n!

CL=1-

An identical result is obtained by computing the Bayesian credible interval (with uniform prior proba
bility density for the signal s’)

B [ L(s',b)ds'
JSL(8,b)ds”
Without going into detail, let’s just say that this interesting coincidence is responsible for alot of confu-
sion.

CL (14)
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4.2 Search potential optimization

The illustration of the search optimization follows closely the simple presentation of the well-known
Neyman-Pearson theorem in [5]. The same conditions that make the maximum likelihood estimator the
most efficient statistic for parameter estimation in many situations exist also for hypothesis testing. The
basic principleisillustrated in Fig. 1.

"Exclude"
/Q:QO
Perturb™ -
contour
"Discover" Q<Q
Q>Q0

e
Xs+b

Fig. 1: Illustration of Neyman-Pearson theorem applied to searches.

Imagine that the box represents the uniformly distributed set of all possible experimental outcomes
for the signal+background hypothesis. The likelihood ratio () defines a set of contours with a constant
ratio of signal+background density to background density. Suppose we choose one contour given by
Q = @y and separate al possible experiments into “discovery” (conclusion that signal hypothesis is
true) and “exclusion” (conclusion that signal doesn’t exist) classes. In practice we usually choose much
more stringent criteria for discovery than for exclusion (we set up at least two contours) and we accept
that experimental results may not always be conclusive. In order to maximize the probability for correctly
confirming (excluding) thesignal, theregion with @ > Qo (Q < Q) isdefined asthe* discovery” region
(“exclusion” region). To show that no further optimization is possible, the likelihood ratio contour is
perturbed in such away that that the fraction of signal+background experimentsis constant. But sincethe
background density outside the contour islarger than inside, the probability that abackground experiment
will lead to afalse confirmation of the signal hasincreased. Similarly, if weimagine that the perturbation
is done in such a way as to hold constant the fraction of background experiments, the probability of
falsely excluding the signal is increased since the fraction of signal+background experiments in the
exclusion region has increased. Since, for a fixed exclusion rate for background experiments or for a
fixed “discovery” rate for signal+background experiments, any perturbation of the contour given by the
likelihood ratio increases the false exclusion rate and the false discovery rate, the likelihood ratio is
shown to be the optimal test-statistic for searches.

The use of any other test-statistic (ordering principle) represents a perturbation of the optimal con-
tours defined by the likelihood ratio and thus yield less sensitive hypothesis tests for searches. All test-
statistics, including frequentist confidence intervals with or without exact coverage or Bayesian credible
intervals with reasonably unbiased or finely tuned prior probability distributions have an expected distri-
bution for background experiments and another for signal +background experiments. The distribution for
signal-only experiments (the one physicists would like to draw conclusions from) simply doesn't exist
experimentally in the large majority of searches and using other test-statistics won't make this particul ar
problem go away.

4.3 Terminology

It is probably worth defining the language used in the Higgs working group in terms of traditiona sta-
tistical terminology (in italics). Accepting the null-hypothesis (H,: there is no signal or it is too small
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to be seen) iswhat we call exclusion. The power of this test, that is the probability to correctly exclude
an absent signal is what we call the exclusion potential. The probability to falsely exclude a true signal,
that is to commit atype Il error, is what we call the false exclusion rate. In cases where there is com-
plete separation of the distributions of the likelihood ratio for the signal +background and the background
hypotheses, the false exclusion rate will be specified by one minus the confidence level of the exclusion
(for discrete probabilities there are unavoidable deviations from this ideal behavior). The power of the
discovery test is the probability to correctly confirm the signal+background hypothesis; this is what we
refer to asthe discovery potential of the experiment. The probability to falsely discover an absent signal,
that is to commit atype | error, iswhat we call the false discovery rate. Inideal cases where the likeli-
hood ratio distributions for the background and signal +background hypotheses are compl etely separated,
the significance level (here, for once, we use the same language) of the discovery is equal to the false
discovery rate.

4.4 Consequencesof C'L;

The use of C'L; as the figure of merit for signal exclusion in general causes the false exclusion rate to
be lower than the ideal rate give by the specified value of the exclusion confidence level. Similarly, the
useof (1 — CLy)/(1 — CLgyyp) instead of 1 — C'L;, for discovery [6] causes the false discovery rate in
general to be lower than the stated significance level. An example (taken from one of the Higgs searches
at LEP) of the reduced false exclusion rate for exclusion at the 95% confidence level is shownin Fig. 2.
The dashed linefor the false exclusion rate, if C'L, would be interpreted as the confidence in the signal
hypothesis, actually continues to the right until the expected signal event rate (sum over search channels
of cross-section times luminosity times branching fraction times detection efficiency) falls identically
to zero. The vertical dotted line at 92.5 GeV shows where the ideal background-free C'L; would drop
to zero suddenly when the probability to observe zero candidates is larger than 5% (expected rate of
signal events 3, as seen in middle plot of the figure) and exclusion at the 95% confidence level is no
longer possible. The bottom plot in the figure shows the potential for exclusion (reminder: the fraction
of background experiments leading to exclusion at 95% CL or higher) versus Higgs mass for C'L; (the
solid curve) and the potential if C'Lg;, were interpreted as the confidence in the signal hypothesis. In
the region to the right of 92.5 GeV, indicated by the vertical dotted line, the expected signal rate is less
than 3, and the exclusion potential for a background-free search would be identically zero.

To summarize the previous paragraph, the exclusion potential for C' L, flattens out at 5% even
when the expected signal rate is microscopic. The false exclusion rate for C'Lg is aso 5% for micro-
scopic signal rates, which isin fact entirely correct from the purely frequentist viewpoint since we know
a mistake is being made at the rate of 5% when a signal is excluded for which the experiment has no
sensitivity (we might aswell throw dice). Thisisthe main motivation for adopting the C'L; method.

Figure 3 shows an example of the likelihood ratio (@) distributions (in fact minus twice the log-
likelihood ratio) for experiments with varying degrees of sensitivity. The confidences C'L;, and C'Lgy,
are the integrals of the normalized distributions from right to left. The example is taken from the Higgs
search at LEP. For light Higgs the cross-section is large and the distributions for signal+background
and background are well separated. In this case the most probable results are either strong exclusion
(CLy ~ 0.5, tiny C'Lgyy) or astrong confirmation of the signal (CL, — 1, CLsyp ~ 0.5). Asthe
hypothetical mass of the Higgs increases, the cross-section falls, the overlap of the likelihood ratio dis-
tributions increases and the most probable results for the two hypotheses move closer to each other. One
is no longer able to conclude that one of the hypotheses is much more strongly supported than the other
- the result tends to be ambiguous. The C'L; method can be seen as away of taking this ambiguity into
account in the extraction of a single result characterizing the possible presence of asignal.
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F.E. rate

Signal rate

Fig. 2: False exclusion rate (a), expected signal rate (b) and exclusion potential (c) for exclusion at the 95% confidence level
versus Higgs mass for atypical Higgs search at LEP. The solid curvesin (a) and (c) are for C' L, and the dashed line and curve
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Fig. 3: Examples of distributions of minus twice the log-likelihood ratio (—2In(Q)) for the signal+background (light shaded
histograms on the left) and background (dark shaded histograms on the right) hypotheses from the Higgs search at LEP: a) for
alight Higgs with large cross-section, b) for a moderate Higgs with moderate cross-section, c) for a heavy Higgs with small
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Another way of interpreting C'L isthat it serves as an approximation of the confidence one might
obtain if the background events could be removed from the sample of selected events. Obvioudly, if this
were possible the experimentalist would have doneit already! But thisis possible in aMonte Carlo study
and an example of such astudy is shown in Fig. 4(a)-(d). In (a) and (b) the confidence distributions are
uniform since the distributions are formed for the hypotheses being tested, except for the small peak in
(a) which is due to the probability e~* of observing zero background candidates. The distribution of
confidencesin (c) is obtained with signal-only experiments; this is possible with gedanken experiments
but not in the real experiment. The peak at the left of (c) is due to the probability e—* of observing
zero signal candidates. The additional structurein (C) is caused by the use of histograms to describe the
signal and background discriminant distributions instead of continuous functions and is only a technical
distraction here. In (d) one sees that the peak at CL = e~ is reduced with respect to (a); thisis
because for signal+background experiments the probability to observe zero candidates is e~ (51?), In
addition there is a tail from the peak on top of the uniform distribution; this is due to the experiments
in the overlap region of the signal+background and background distributions of the test-statistic. These
features of (d) lead to overcoverage but (c) is experimentally inaccessible.
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Fig. 4. Example of distributions of confidences from a Higgs search at LEP: a) distribution of C'L; expected for background
experiments, b) distribution of C'L, expected for signal+background experiments, ¢) distribution of C L expected for signal-
only experiments, and d) distribution of modified C' L expected for signal+background experiments.

5. '‘LOOK-ELSEWHERE’ EFFECT

When establishing the significance of apossible signal from amodel with afree parameter, e.g. the mass
of the Higgs boson predicted by the Standard Model, our attention is naturally drawn to the point where
the likelihood function is maximized (corresponding to the minimum of —2in(Q)). However it is not
quite sufficient to test if the expected rate of false discovery conservatively given by (1 — CL)/(1 —
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C'Lg.yy) a the most likely point is small enough to meet our discovery criteria, since the background can
fluctuate anywhere and not just at the point we focus on because of the dataat hand. Thisisthe equivalent
of the “many-histograms’ problem in data analysis. If you look at enough histograms, sooner or later
you must find large deviations from the standard result, even if thereis no new phenomenon at work. The
“look-elsewhere’ effect, as it is called in the Higgs working at LEP, may be estimated roughly by the
ratio of the search region (e.g. the range in Higgs mass) to the experimental mass resolution. Thedilution
of the significance level was estimated to be afactor ~ 4 for the combined search at LEP with /s < 189
GeV [14]. Thisisless dramatic than it sounds, since it would imply e.g. reducing the significance of
abo observation to 4.50. In addition, if the search sensitivity is far from uniform over the mass range
under consideration (such is usually the case for the Higgs search at LEP), the background will tend to
give signal-like fluctuations mostly in the region of reduced sensitivity, thus leading to smaller dilution
factors than the rough estimate.

6. NORMAL DISTRIBUTION - AN ILLUSTRATION

A study of a search for deviations of a parameter measured with a normally distributed uncertainty is a
useful illustration of the properties of the C' L method. The background will be anormal distribution with
mean 0 and standard deviation 1. The hypothetical search will be for asignal that gives asmall, positive
deviation from 0 and for simplicity it isassumed that the standard deviation remains constant independent
of the true value of the signal. Fig. 5 shows the distribution of the observable X for the background
(Xmodet = 0) and for a hypothetical signal (X,,.qe; = 1). The log-likelihood ratio distributions for
the background and signal+background hypothesis will also be normal distributions separated by one
standard deviation, so it is sufficient to use X asthe test-statistic.

~ 2.5 [ 1T T 1T T 1T TTTT T 1T TTTT TTTT TTTT TTTT T 1T ]
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Fig. 5: Example of the unnormalized probability distributions of an observable X for background-only (solid curve) and
signal +background (dashed curve) hypotheses (example of Sec. 6.).

Since we restrict the search to positive signals, the confidences are integrals over these distribu-
tions from —oo to X, as shown in Fig. 6. Recdl that the upper bound on X,,,,4¢ is found when
CLy(Xus) = 0.05. The solid curve in the figure for C'L;, is independent of the signal model and in-
dicates the compatibility of the observation with the background hypothesis. Values of C'L;, closeto 1
indicate a signal-like (non background-like) result. The dashed curve shows C' L, for X041 = 1. For
other values of X,,,,4c1, C'Lsyp IS 0btained by sliding the dashed curve to the left (but not to the left of
CLy) or to theright. A family of C'L; curves (dotted curves) for X,,04e; = 0.1 — 4.0 are also shown.
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Several features are apparent in the figure.

o CL,approaches C Ly for X, 0401 >~ 3 for any value of X .
o CLsapproaches C Ly, for X, >~ 2 even for smal values of X,,,,qe;-

e For increasingly large, negative values of X, the upper bound on X,,,,4¢; given by C'L, ap-
proaches zero slowly but never reachesit.

It is also apparent from the figure that lower bounds at the 95% confidence level, defined by the value of
Ximoder that solves C'Lg( X ) = 0.95, also exist. Theselower bounds make sense when the evidence for
asigna is strong but as long as the observation is consistent with background they don’t contain much
information. In fact, it is not hard to show that when evidence for asignal is strong, that the confidence
intervals found by more traditional techniques are recovered from the C'L; method. For example, the
84% confidence level upper and lower bounds correspond exactly to the traditional frequentist 68%
confidence interval and the 68% Bayesian credible interval (with uniform prior from zero to c0). Thisis
accomplished with little flip-flopping on the part of the physicist. The upper bound is computed with a
procedure which is entirely independent of the observed result, be it very compatible with background
or an outstanding discovery of asignal. The only flip-flopping is the subjective decision whether or not
to quote the lower bound. A confidence interval which doesn’'t contain zero can be misunderstood if
the signal is poorly established and, for example, the LEP Higgs searches will probably not quote upper
bounds on the Higgs mass until at least “ possible observation” criteria have been met.
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Fig. 6: Confidences versus observed value of X for the background-only hypothesis (C Ly, solid curve), the signal +background
hypothesisfor X,0de1 = 1 (C'Ls1, dashed curve) and various C'L s curves (dotted) for X 04 ranging from 0.1to 4 (example
of Sec. 6.).

6.1 Normal distribution - exclusion

If an experiment is entirely without sensitivity to a model, it should be forbidden to exclude it, and if
the sensitivity is poor it should be extremely difficult to exclude it. In the present example the use of the
purely frequentist C'L.,, which gives optimal sensitivity for exclusion, has the frequentist property of
being wrong afixed fraction of the time, also for microscopic values of X,,,,q4.; Where the experiment is
clearly not sensitive to the model being tested. Fig 7 shows the false exclusion rate versus signal model
for both frequentist and C' L methods. The C'L; curve hasasow turn-on from zero for no signal towards
the specified false exclusion rate (5%) as the background and signal +background distributions separate.

The exclusion potentials for the purely frequentist and C' L, methods are compared in Fig. 8. The
exclusion potentials converge as they both approach 100%, the region where the distributions of X are
well-separated (~ 30 separation). For X,,,q; <~ 2 the overlap of the distributions of X is large,
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the sensitivity of the experiment is obviously poor, and the exclusion potentia of the C'Ls method is
naturally suppressed.
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Fig. 7: Probability of falsely excluding the signal versus the signal model parameter X,,,0q4e: When using C' L5 (solid line)
and C L (dashed curve) to set exclusion limits at the 95% confidence level (example of Sec. 6.).
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Fig. 8: The probability of excluding the false signal hypothesis versus the signal model parameter X,,,04.; When using C' L,
(solid curve) and C'L; to set exclusion limits at the 95% confidence level (example of Sec. 6.).

6.2 Normal distribution - discovery

If an experiment is entirely without sensitivity to amodel, it should be forbidden to discover it whether or
not it might observe large background fluctuations. Fig. 9 shows how the discovery potentia is affected
by the generalization of C'L; for the determine of the signal significance. The plots contain the same
information on log and linear scales. One seesthat using 1 —C' L, < 5.7 x 10~ 7 asthe discovery criterion
allows experiments with no sensitivity to the signal to make discoveries (admittedly with asmall rate, but
even so thisis not reasonable) whereasthisis very strongly suppressed by using (1 —CLy) /(1 —CLgy)
instead. This suppression has mostly disappeared by the time the background and signal+background
distributions of X are separated at about the 50 level. The false discovery ratefor 1 — C'L;, is the stated
value of 1 — C'L;, whereasit is effectively zero for (1 — C'Ly) /(1 — C' L) for less than 20 separation
of the background and signal+background models and converges towards the stated value for ~ 5o
separation.
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7. BACKGROUND SUBTRACTION

Background in the search resultsis accounted for in several ways. First, it appearsin the likelihood ratio
(or other test-statistic). Second, even if doesn’'t appear in the test-statistic (which would thus be non-
optimal), the confidences are computed by comparison of the value of the test-statistic observed in the
experiment with the distributions of the test-statistic expected for the background and background+signal
hypotheses.

It is often tempting to shift the background estimate in order to obtain conservative results (con-
scious overcoverage). Increasing the background estimate leaves less room for the hypothetical signal
thus leading to conservative discovery significances. However, this also leads to overly aggressive ex-
clusion results (undercoverage) if, when the experiment is carried out, the observed result is reasonably
compatible with the background expectations. If the background estimate is decreased then exclusion
becomes conservative and discovery overly aggressive.

If the expected background rate is set to zero for the gedanken experiments in the computation
of the distributions of the test-statistic, then all selected data events are considered to originate from the
signal, exclusion results are maximally conservative and no conclusions whatsoever can be drawn about
observation or discovery (since C'L, = 1 by construction). The advantage of this extreme procedure
is that it tolerates unknown systematic uncertainties in the background estimates [7]. A disadvantage,
in addtion to the extremely conservative exclusion and the complete absence of discovery potential, is
that in such a case there is a mismatch between the hypotheses being tested and the hypotheses used
to generate the distributions of the test-statistic. Thus the likelihood ratio is no longer guaranteed to be
optimal and methods with tunable parameters, for example [8] and [9], will perform better.

A final comment on background subtraction isthat taking the ratio C'L,/C L, = C'L, to define
an approximate signal-only hypothesis test may appear to be a background-subtraction procedure, but
if the background is properly accounted for in the computations of C'L,,;, and C'Ly, they are already
“background-subtracted” quantities and no further background subtraction is possible.

8. SEARCH OPTIMIZATION

In section 3. it was shown that given a certain amount of information about a search, the choice of the
the likelihood ratio with respect to the background-only hypothesis as the test-statistic will maximize the
sensitivity of the search for both exclusion and discovery. However, the choice of what information to
put in the likelihood ratio is a critical aspect of optimization. Analysis that assigns events to two classes,
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the rejected class (none of these participate in the confidence computation) or the accepted class (all of
these participate with equal weight in the confidence computation) is the basis of the simple counting
experiment. Adjustment of the cut(s) that define the two classes will affect the discovery and exclusion
potentials. At this point minimizing the average (or median) value of C'L, expected for background
experiments by adjustment of the cuts will maximize the exclusion potential [10]. It should be kept
in mind that although the exclusion and discovery potentials are maximized for a specific information
content with the use of the likelihood ratio, this is not the same as saying that the information content
that globally maximizes the exclusion potential also globally maximizes the discovery potential.

If the search has several well-defined final states (9. HZ — 4jets, HZ — 2jets + 111,
etc.) with different signal to noise ratios (S/N) , the search sensitivity isimproved by splitting the search
into separate channels so that events selected in a channel with lower SIN are weighted less than those
selected in a channel with a good S/N. Since the likelihood ratio accounts for the variations between
channels of S/N in an optimal way, the addition of a channel always improves the search sensitivity, even
if the background rate is large and/or S/N is poor (but uncertainties on the background can dampen or
even reverse the improvement, so there is an optimal amount of background to allow [11]).

If in addition to topology, the measured values of some feature(s) of the event are different for the
signal and background, this can be introduced into the likelihood ratio with additional improvementsin
the sensitivity. Of particular importance isthe identification of observables directly related to a parameter
in the signal model being tested (e.g. the reconstructed mass of the Higgs candidate in the Higgs search),
but also roughly model-independent observables are quite useful (e.g. b-tagging for H — bb is only
mildly m g -dependent due to reconstruction effects).

One danger of optimization is that the event selection gets sub-divided enough that statistical
fluctuations in the detector simulation of either the background or the signal produce spurious peaks of
large S/N, resulting in an artificial improvement of the search sensitivity. One way to detect the onset of
this over-training is to split the detector simulation into sub-samples. If the search sensitivity is better
for both of the sub-samples than for the combined sample, thisis clear evidence of over-training in the
sub-samples. If the full-sample gives results compatible with the mean of the sub-samples, then the full
sample ismost likely not suffering from over-training.

The performance of a statistical analysis of search results should not improve by the increase of
the background with no additional efficiency for the signal (and it should not improve significantly if
the added signal efficiency comes at the cost of an overwhelming background). The C'L; method is
relatively immune to this kind of false optimization - thisis a strong point in its favor.

9. UNCERTAINTIES

Very seldom are all the ingredients of a search without experimental (systematic) uncertainty. Back-
ground rates and signal detection efficiencies, even the theoretical input may be uncertain (e.g. missing
higher order corrections). Since aconfidenceinterval is already an expression of uncertainty, one doesn’t
want to quote an uncertainty on the confidence limits, but rather modify the confidence limitsto allow for
the experimental uncertainty. A simple procedure isto shift all the relevant parameters (backgrounds, ef-
ficiencies, etc) coherently by one standard deviation of each of the individual parametersin the direction
which weakens the confidence limit. Cousins and Highland have shown in [12] that such a procedureis
far too pessimistic.

What isdone in the Higgs searches at LEP isto use traditional Bayesian techniquesto infer alike-
lihood distribution for the parameters in question and then treat them as probability distributions in the
generation of gedanken experiments (with MC, FFT or whatever technique). For each gedanken experi-
ment anew set of “smeared” efficiencies and background rates are generated and from these, background
and signal events are generated to form the input to the likelihood ratio for this gedanken experiment.
This procedure is the generalization of the Monte Carlo computation which is compared to the analytic

94



approximations derived in [12] for simple counting experiments in the presence of background and re-
produces those results. This should not be asurprise sincethe C L method applied to the likelihood ratio
for single-channel counting experiments is equivalent to the Bayesian credible limits computed with a
flat prior distribution used in [12].

The consequences of this“smearing” procedureisthat the likelihood ratio distributions get widened
and that especially the background tail under the signal+background distribution and the signal+
background tail under the background distribution are enhanced. In other words the overlap of the
distributions has increased. This reduces both the exclusion and discovery potentia of the search and
tends to weaken both discovery-like and exclusion-like observations. Aswas described above, the effect
on moderate exclusion (95% CL) tends to be minor, but for extreme exclusion and especially for discov-
ery the effect can be relatively dramatic (dramatic meaning that a discovery significance can easily be
reduced by a sigmawhen the experimental uncertainty is accounted for). The experience with the LEP
Higgs searches confirms the conclusion in [12] that even moderately large uncertainties (say ~ 20%)
have little effect on exclusion limits (lowering expected and observed lower bounds on my at LEP by
typically afew hundred MeV).

Important correlations between the parameters that describe the signal and background rates and
distributions should certainly be taken into account. This is one of the current activities of the Higgs
working group. The effect of correlations is expected to be most noticeable in case of discovery-like
results.

10. TECHNICAL CHALLENGES

The brute-force method of computing the distributions of the likelihood ratio expected for the background-
only and signal plus background hypothesesisto use a Monte Carlo computer program. Of course, this
iS unnecessary in certain situations, for example high-statistics searches where all uncertainties, statisti-

cal and experimental, can be described by analytic distribution functions; and relatively simple counting

experiments in the absence of uncertainties where direct sums of Poisson probabilities can describe the

results.

The mgjor drawback of the Monte Carlo method isthat it is computationally intensive, but modern
computers are relatively inexpensive and powerful so thisis not nearly as strong an objection as it was
only afew years ago. In addition, since the likelihood ratio istheratio of local probability densities, effi-
cient computation of discovery significances (and extremely strong exclusion) is possible by generating
weighted Monte Carlo experiments. In the tiny tail of the background distribution which one integrates
to find the discovery significancevia (1 — CLy)/(1 — CL44}) ones generates signal+background exper-
iments and weights them by the inverse likelihood ratio. Thisis highly efficient sinceit isin thisregion
that the density of signal+background experimentsislarge. In thetiny tail of the signal plus background
distribution which one integrates to find the exclusion confidence via C'Lg,/C L}, ones generates back-
ground experiments and weights them by the likelihood ratio. Thisis highly efficient since it isin this
region that the density of background experimentsis large. With only a few thousand Monte Carlo ex-
periments discovery significances for the Higgs search at LEP in the 50 region can be computed with
a relative statistical precision of a few per cent (ignoring, of course, the significance reduction of the
“look-elsewhere” effect).

One of the current challengesin the LEP working group for Higgs boson searchesisto handle ever-
increasing numbers of selected eventswhich slow the Monte Carlo and other numerical integrations down
considerably. Since the likelihood ratio distribution for /V selected events is the convolution (/V times)
of the likelihood ratio distribution for 1 selected event, the likelihood ratio distributions can quickly be
computed with a fast Fourier transform (FFT) [13]. This technique, developed and used by one the
LEP experiments, promises to make revolutionary reductions in the computing power needed to obtain
the likelihood ratio distributions. Recently it has also been shown in the working group that analytic
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approximations work quite well in this situation even if the large-statistics limit of normal distributions
hasn’t been reached yet.

11. HIGGSSEARCH AT LEPWITH /s < 189 GeV

In this section the preliminary results of the search in data taken at LEP with /s < 189 GeV for the
neutral Higgs boson predicted by the Standard Model are described [14]. The results are obtained with
the combination of the results of the four experiments. At that time theworking groupwasusing 1 —C' L,
asthe significance indicator and so | refrain fromusing (1 — C'Ly) /(1 — C'L4y) here.
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Fig. 10: The negative log-likelihood ratio versus m . The shaded bands show the 68 and 91% probability bands for the signal
at the “true” mass. The expected signal curves (dotted) show the median response away from the “true” mass for four different
Higgs masses.

The test-statistic —2 log (Q versus my computed for the observed results should have a minimum
near the true Higgs mass and the more negative the value at the minimum the more significant the resullt.
There isindeed a minimum with a negative value near 97 GeV in the data, shown in Fig. 10, indicating
adlight preference for the signal hypothesis (results from data taken at higher values of /s shown at the
same conference showed that the slight preference for signal wasin fact due to a fluctuation).

The significance of the result is given by 1 — C'L;, which is plotted as a function of mg in
Fig. 11. Values of 1 — C'L, below 6 x 10~7, corresponding to a five standard deviations fluctuation
of the background, are considered to be in the discovery region. However, it is not enough just to read
off the value of 1 — C'L; at the minimum of —2log @ since this only gives the probability that the
background fluctuated at precisely that mass and in principle it could have fluctuated anywhere in the
mass region not already strongly excluded by previous searches and up to the limit of sensitivity. A rough
estimate based on Monte Carlo studies showsthat 1 — C'L;, must be multiplied by about a factor of four,
corresponding roughly to the width of the mass search region divided by the typical mass resolution.
This gives an effective 1 — C'L,;, of about 5%, in other words a significance corresponding to a bit less
than two standard deviations.

Regardless of the interpretation of the result at 97 GeV, a 95% confidence level lower limit on the
Higgs mass may be set by identifying the mass region where C'L; < 0.05, as shown in Fig. 12. The
average limit expected in the absence of signal is 97.2 GeV and the limit observed by LEP is 95.2 GeV.
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12. CONCLUSION

A modified frequentist analysis of search results used in searches for Higgs bosons at LEP, the so-called
C L method, has been presented. It offersageneral, practical (robust, if you like) solution to the problem
of dealing with confidence limits for small signals in the presence of backgrounds. The definition of the
confidence interval obtained is useful but somewhat untraditional. It neither adheres to the frequentist
principle of coverage (it overcovers by design as the experimental sensitivity to the hypothetical signal
vanishes) nor does it indicate the bounds of a Bayesian subjective probability distribution. Instead it
indicates the boundary (or boundaries if it is reasonable to quote both) of a region where one would not
have expected to observe equally or less signal-like results than the actual observation in case the signal
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hypothesis were true (at or below a specified rate). Let me try to make an important point about the
previous sentence as clearly and simply as possible (even my friends claim | got it wrong all the three
times| tried to explain thisin my presentation): The lower bounds on the Higgs mass that are quoted for
the direct Higgs searches at LEP say absolutely nothing about the probability of the Higgs mass being
higher or lower than some value. To make such a statement the direct search results must be first folded
with a prior probability distribution for the Higgs mass[15].

The Higgs searches at LEP usethe likelihood ratio with respect to the background-only hypothesis
(which could be called more generally the insensitivity limit or bound) or closely related test-statisticsto
order the results of their searches. Simple application of the Neyman-Pearson theorem shows that thisis
the optimal way of distinguishing between the signal/no-signal hypotheses - which is the first objective
of asearch.

The C'Ls method, together with the use of the likelihood ratio with respect to the insensitivity
limit is general enough to be applicable to different types of searches (counting experiments, parameter
measurements, multichannel searches with measurements of multidimensional discriminants such as the
Higgs searches at LEP). There exists a complement of C L, for discovery significance which strongly
reduces the chances of making a discovery with an experiment which isin fact insensitive to the signal
in question, at the cost of asmall reduction in the discovery potential for truly sensitive experiments.

Experimental uncertainties of all types can be accounted for by “smearing” the gedanken exper-
iments of the confidence computations. The experience of the Higgs searches at LEP is that except in
extreme situations their inclusion does not lead to unintuitive results.

The issue of flip-flopping (deciding whether to quote one or two-sided confidence intervals based
on the data) is mostly avoided by the C L method. For example, the procedure used by the Higgs groups
to find the lower bound of the Higgs mass is independent of how compatible the data are with either
the background or signal+background hypotheses. Two-sided intervals are not very meaningful when
thereis no significant evidence of asignal, but as the significance increases, the interval defined by C' L
will approach those of traditional measurement techniques (even if the interpretations differ). This and
the use of the likelihood ratio as the test-statistic give a clear point of contact with those techniques.
Thus there can be a rather smooth transition from exclusion, to observation, to discovery and finaly to
measurement (assuming of course that the signal is there somewhere and that we are clever enough to
build an experiment to find it, otherwise the story ends with exclusion).
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Discussion after talk of Alex Read. Chairman: Roger Barlow.

M asahiro Kuze

You mentioned about the experimental uncertainty. Sometimes it's not easy to assume Gaussian
errorswith well-known sigma. Some quantities are best described by aflat distribution with strict bounds.
Arethere any discussionsin the Higgs group ... ?

A. Read

In Delphi, one year we had one channel where there was a convolution of a Gaussian with the
uniform distribution over some region. Since we do it by Monte Carlo, such things are easy to put in.

M. Kuze

Asyou said, it makes a small change in the limits, but when there is really a positive signal and
you want to get the significance, this can change by an order of magnitude.

A. Read

| haven't given you any examples. You can imagine that errors in the background (if | show this
on alog scale you might see it better) can easily give fluctuations out here to the left in the region where
the distribution is very sparse, and in fact those fluctuations will be much bigger than the fluctuations
that you get at the signal under the background when you're doing exclusion. So what we've seen in the
Higgs group is just what you said earlier: Unless your errors are really big, they don’'t make such abig
impact on exclusion results, but they can easily take one or two sigma off your discovery significance.

M. Kuze

Yes, in this case this problem can be rather subjective. It depends on each physicist and can be a
difficult problem.

Glen Cowan

| want to understand better this business of dividing C'Ls.;, by C'Ly. | understand that if you do
that it makes your interval more conservative. So my first question is can you quantify by how much it
becomes more conservative, can you statethat if you want to give a95% confidence level upper limit what
is your coverage probability, say as afunction of the hypothesized Higgs mass. Could you quantify that
in the following way? Suppose you were just to use the number of candidate events as the basis of your
test statistic. You don’t measure any invariant masses or anything like that, but you just use the number of
candidate events, and if you were to make the plot which has appeared on various transparencies today,
of the limit as a function of the expected background, and you get a family of curves for a number of
candidates, how would that family of curves look like in your method ? You can ignore the second part
of the question if that wasn’t clear, but I’ll get back to it. The main thing wasthat | do not understand the
theoretical justification for dividing by C'Ls,.

A. Read

It's related to conditional probability, and the ideais that you make an observation, and according
to C'L;, the compatibility of the background confidence, theresult isunlikely. But it's even more unlikely
that it can be accounted for by signal plus background and somehow the ratio of these two istelling you
something about this probability. As| say, it's an approximation, it's not stringent.
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M. Woodroofe

If | could elaborate alittle bit on what was just said. If there are only counts, then that’s absolutely
right that you have the conditional probability given background lessthan or equal to N. | tried to justify
that in my talk; | don't know if | succeeded. If there are X’s present it becomes alittle more complicated,
and | can't see my way through the calculations but it's not at all clear to me that it's still conditional
probability in the case that there are X's present.

Bob Cousins

Virgil Highland's criticism of Guinter Zech’s original paper was that the conditional probability in
the denominator is actually not the probability conditioned on what you measure. | think that this speaker
made it clear that he was conditioning on a number known in the Monte Carlo. He was not conditioning
on a number that the experimenter can know, so Virgil’s criticism was to say that the conditional proba-
bility should be calculated using Bayes Theorem. So the first thing | did when | got your paper was to
check that you calculated the conditional probability the sameway Virgil did, which you did, and Giinter
Zech'sreply (if | can speak for him) was basically to say we're going to condition on this number which
isin our Monte Carlo. Let's call it a convention but it gives reasonable results | think. So there is this
technical detail of the conditioning on something that’s only in the Monte Carlo.

A. Read

| stress again it's only an approximation.

Glnter Zech

Sorry but | must make aremark. In this paper | never claimed that there is coverage, so this was
just a frequentist interpretation of a Bayesian formula. | think this interpretation is correct as it was. It
does not fulfill coverage, and it has the property that it is equal to the standard frequentist method aslong
as you have no background expectation, and it fulfills the likelihood principle in other cases, and this
definesit fully.
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