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1OPTIMIZATION OF SIGNAL SIGNIFICANCE BY BAGGING DECISION TREESI. NARSKY356-48 California Institute of Te
hnology, High Energy Physi
s, Pasadena, CA 91125, USAE-mail: narsky�hep.
alte
h.eduAn algorithm for optimization of signal signi�
an
e or any other 
lassi�
ation �gure of merit (FOM) suited for analysisof HEP data is des
ribed. This algorithm trains de
ision trees on many bootstrap repli
as of training data with ea
htree required to optimize the signal signi�
an
e or any other 
hosen FOM. New data are then 
lassi�ed by a simplemajority vote of the built trees. The performan
e of the algorithm has been studied using a sear
h for the radiativeleptoni
 de
ay B ! 
l� at BABAR and shown to be superior to that of all other attempted 
lassi�ers in
luding su
hpowerful methods as boosted de
ision trees. In the B ! 
e� 
hannel, the des
ribed algorithm in
reases the expe
tedsignal signi�
an
e from 2:4� obtained by an original method designed for the B ! 
l� analysis to 3:0�.1. Introdu
tionVarious pattern 
lassi�
ation tools have been em-ployed in analysis of HEP data to separate signalfrom ba
kground. One of the problems fa
ed byHEP analysts is the indire
t nature of available 
las-si�ers. In HEP analysis, one typi
ally wants to opti-mize a FOM expressed as a fun
tion of signal andba
kground, S and B, expe
ted in the signal re-gion. An example of su
h FOM is signal signi�
an
e,S=pS +B, often used by physi
ists to express the
leanliness of the signal in the presen
e of statisti-
al 
u
tuations of observed signal and ba
kground.None of the available popular 
lassi�ers optimizesthis FOM dire
tly. Commer
ial implementations ofde
ision trees, su
h as CART1, split training datainto signal- and ba
kground-dominated re
tangularregions using the Gini index, Q = 2p(1 � p), asthe optimization 
riterion, where p is the 
orre
tly
lassi�ed fra
tion of events in a tree node. Neuralnetworks2 typi
ally minimize a quadrati
 
lassi�
a-tion error,PNn=1(yn � f(xn))2, where yn is the true
lass of an event, -1 for ba
kground and 1 for sig-nal, f(xn) is the 
ontinuous value of the neural net-work predi
tion in the range [�1; 1℄, and the sum isover N events in the training data set. Similarly,AdaBoost3 minimizes an exponential 
lassi�
ationerror,PNn=1 exp(�ynf(xn)). These optimization 
ri-teria are not ne
essarily optimal for maximizationof the signal signi�
an
e. The usual solution is tobuild a neural net or an AdaBoost 
lassi�er and then�nd an optimal 
ut on the 
ontinuous output of the
lassi�er to maximize the signal signi�
an
e. Alter-natively, one 
ould 
onstru
t a de
ision tree withmany terminal nodes and then 
ombine these nodes

to maximize the signal signi�
an
e.De
ision trees in StatPatternRe
ognition4; 5 al-low the user to optimize any FOM supplied as an im-plementation of an abstra
t C++ interfa
e in
ludedin the pa
kage. A default implementation of the de-
ision tree in
ludes both standard �gures of meritused for 
onventional de
ision trees su
h as the Giniindex and HEP-spe
i�
 �gures of merit su
h as thesignal signi�
an
e or the signal purity, S=(S +B).A de
ision tree, even if it dire
tly optimizes thedesired FOM, is rarely powerful enough to a
hievea good separation between signal and ba
kground.The medio
re predi
tive power of a single de
isiontree 
an be greatly enhan
ed by one of the two pop-ular methods for 
ombining 
lassi�ers | boosting3and bagging6; the latter approa
h 
an be used in 
on-jun
tion with the random forest te
hnology7. Thisnote 
ompares predi
tive power of several 
lassi-�ers using a sear
h for the radiative leptoni
 de
ayB ! 
l� at BABAR. It is shown that the greatest sig-nal signi�
an
e is obtained by bagging an ensembleof de
ision trees, with ea
h member of the ensembleoptimizing the signal signi�
an
e. This study is de-s
ribed in more detail in two notes4; 5 posted at thephysi
s ar
hive.2. De
ision Trees inStatPatternRe
ognitionA de
ision tree re
ursively splits training data intore
tangular regions (nodes). For ea
h node, the treeexamines all possible binary splits in ea
h dimensionand sele
ts the one with the highest FOM. This pro-
edure is repeated until a stopping 
riterion, spe
i-�ed as the minimal number of events per tree node, is
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2satis�ed. The tree 
ontinues making new nodes untilit is 
omposed of leaves only | nodes that 
annot besplit without a de
rease in the FOM and nodes that
annot be split be
ause they have too few events.As mentioned above, a 
onventional de
ision treeoften uses the Gini index, Q(p; q) = �2pq, for splitoptimization, where p and q = 1� p are fra
tions of
orre
tly 
lassi�ed and mis
lassi�ed events in a givennode. If a parent node with the total event weightW is split into two daughter nodes with weights W1and W2 = W �W1, the best de
ision split is 
hosento maximize Qsplit = (W1Q1 + W2Q2)=W , whereQ1 and Q2 are �gures of merit 
omputed for the twodaughter nodes. Note that a 
onventional de
isiontree treats the two 
ategories, signal and ba
kground,symmetri
ally. In HEP analysis, one usually wishesto optimize an asymmetri
 FOM. StatPatternRe
og-nition o�ers a modi�ed splitting algorithm for thispurpose. The best de
ision split is now 
hosen tomaximize Qsplit = max(Q1; Q2), where Q1 and Q2are the asymmetri
 �gures of merit for the daughternodes. In 
ase of the signal signi�
an
e, the FOM isgiven by Q(s; b) = s=ps+ b, where s and b are sig-nal and ba
kground weights in a given node. Afterthe tree is grown, the terminal nodes are merged tooptimize the overall asymmetri
 FOM. The mergingalgorithm sorts all terminal nodes by signal purityin des
ending order and 
omputes the overall FOMfor the n �rst nodes in the sorted list with n tak-ing 
onse
utive values from 1 to the full length ofthe list. The optimal 
ombination of the terminalnodes is given by the highest FOM 
omputed in thismanner.This algorithm for optimization of an asymmet-ri
 FOM is nothing but an empiri
al solution. It isnot guaranteed that this algorithm will produ
e ahigher asymmetri
 FOM than the one obtained bya 
onventional de
ision tree using the Gini index orany other symmetri
 expression as a split 
riterion.It has been shown experimentally that this algorithmtends to produ
e higher values of the signal signi�-
an
e when applied to physi
s data sets. This noteis an example of su
h an appli
ation.3. Bagging De
ision TreesThe predi
tive power of a single 
lassi�er 
an be en-han
ed by boosting3 or bagging6. Both these meth-ods work by training many 
lassi�ers, e.g., de
ision

trees, on variants of the original training data set.A boosting algorithm enhan
es weights of mis
lassi-�ed events and redu
es weights of 
orre
tly 
lassi�edevents and trains a new 
lassi�er on the reweightedsample. In 
ontrast, bagging algorithms do notreweight events. Instead, they train new 
lassi�erson bootstrap repli
as of the training set. After train-ing is 
ompleted, events are 
lassi�ed by the majorityvote of the trained 
lassi�ers. For su

essful appli
a-tion of the bagging algorithm, the underlying 
lassi-�er must be sensitive to small 
hanges in the trainingdata. Otherwise all trained 
lassi�ers will be simi-lar, and the performan
e of the single 
lassi�er willnot be improved. This 
ondition is satis�ed by ade
ision tree with �ne terminal nodes. Be
ause ofthe small node size ea
h de
ision tree is signi�
antlyovertrained; if the tree were used just by itself, itspredi
tive power on a test data set would be quitepoor. However, be
ause the �nal de
ision is madeby the majority vote of all the trees, the algorithmdelivers a high predi
tive power.Random forest7, typi
ally used in 
onjun
tionwith bagging, is a te
hnique that randomly sele
ts asubset of input variables for ea
h de
ision split. Thisapproa
h 
an make individual trees more indepen-dent of ea
h other and in
rease the overall predi
tivepower.Boosting and bagging algorithms o�er 
ompeti-tive predi
tive power. It is really hard, if possible, topredi
t outright whi
h algorithm will perform bet-ter in any 
lassi�
ation problem. For optimizationof the signal signi�
an
e, however, bagging is the
hoi
e favored by intuition. Reweighting events hasan un
lear impa
t on the e�e
tiveness of the opti-mization routine with respe
t to the 
hosen asym-metri
 FOM. While it may be possible to design areweighting algorithm eÆ
ient for optimization of aspe
i�
 FOM, at present su
h reweighting algorithmsare not known. Bagging, on the other hand, o�ersan obvious solution. If the base 
lassi�er dire
tlyoptimizes the 
hosen FOM, bagging is equivalent tooptimization of this FOM integrated over bootstraprepli
as.
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34. Separation of Signal and Ba
kgroundin a Sear
h for the RadiativeLeptoni
 De
ay B ! 
l� at BABARA sear
h for the radiative leptoni
 de
ay B ! 
l� is
urrently in progress at BABAR; results of this anal-ysis will be made available to the publi
 in the nearfuture. The analysis fo
uses on measuring the Bmeson de
ay 
onstant, fB , whi
h has not been pre-viously measured.Several samples of simulated Monte Carlo (MC)events are used to study signal and ba
kground sig-natures in this analysis: B ! 
l� signal sampleswith about 1.2M events in ea
h 
hannel, large sam-ples of generi
 B+B�, B0 �B0, 
�
, uds and �+��MC events, as well as several ex
lusive semileptoni
modes generated separately with a typi
al samplesize of several hundred thousand events.Various preliminary requirements have been im-posed to enhan
e the signal purity and at the sametime redu
e the MC samples to a manageable size.After these preliminary requirements have been im-posed, eleven variables are in
luded in the �nal opti-mization pro
edure. Distributions of these variablesand more details on applied sele
tion requirements
an be found elsewhere4.The signal and 
ombined ba
kground MC sam-ples are used by various optimization algorithms tomaximize the signal signi�
an
e expe
ted in 210 fb�1of data. The training samples used for this opti-mization 
onsist of roughly half a million signal andba
kground MC events in both ele
tron and muon
hannels, appropriately weighted a

ording to the in-tegrated luminosity observed in the data. The train-ing:validation:test ratio for the sample sizes is 2:1:1.Signal MC samples are weighted assuming a bran
h-ing fra
tion of 3� 10�6 for ea
h 
hannel.The authors of this analysis deploy an original
ut optimization routine4 for separation of signal andba
kground. This pro
edure divides the availablerange for ea
h variable into intervals of presele
tedlength and �nds an optimal set among all possible
ombinations of orthogonal 
uts. Besides the originalmethod designed by the analysts, several 
lassi�ershave been used:� De
ision tree optimizing the signal signi�-
an
e S=pS +B.� Bump hunter8 optimizing the signal signi�-
an
e.

� 700 boosted binary splits.� 50 boosted de
ision trees with minimal nodesize 100 events.� Combiner of sub
lassi�ers trained on in-dividual ba
kground 
omponents usingboosted binary splits.� 100 bagged de
ision trees with ea
h tree op-timizing the signal signi�
an
e; the minimalnode size has been set to 100 events.Parameters of all 
lassi�ers have been optimized by
omparing values of the statisti
al signi�
an
e ob-tained for the validation samples.Results are shown in Table 1. The output ofthe des
ribed bagging algorithm for the B ! 
e�test data is shown in Fig. 1. The bagging algorithmprovides the best value of the signal signi�
an
e. Itgives a 24% improvement over the original methoddeveloped by the analysts, and a 14% improvementover boosted de
ision trees; both numbers are quotedfor the B ! 
e� 
hannel.
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Fig. 1. Output of the bagging algorithm with 100 trained de-
ision trees for the B ! 
e� test sample. The 
ut maximizingthe signal signi�
an
e, obtained using the validation sample,is shown with a verti
al line.The bagging algorithm with de
ision trees opti-mizing the Gini index showed an 8% improvementin the B ! 
e� signal signi�
an
e 
ompared tothe boosted de
ision trees. But the signal signi�-
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4Table 1. Signal signi�
an
es, Strain, Svalid, and Stest, for the B ! 
l� training, validation, and test samples obtained with various
lassi�
ation methods. The signal signi�
an
e 
omputed for the test sample should be used to judge the predi
tive power of thein
luded 
lassi�ers. W1 and W0 represent the signal and ba
kground, respe
tively, expe
ted in the signal region after the 
lassi�
ation
riteria have been applied; these two numbers have been estimated using the test samples. All numbers have been normalized to theintegrated luminosity of 210 fb�1. The best value of the expe
ted signal signi�
an
e is shown in boldfa
e.Method B ! 
e� B ! 
��Strain Svalid Stest W1 W0 Strain Svalid Stest W1 W0Original method 2.66 - 2.42 37.5 202.2 1.75 - 1.62 25.8 227.4De
ision tree 3.28 2.72 2.16 20.3 68.1 1.74 1.63 1.54 29.0 325.9Bump hunter with one bump 2.72 2.54 2.31 47.5 376.6 1.76 1.54 1.54 31.7 393.8Boosted binary splits 2.53 2.65 2.25 76.4 1077.3 1.66 1.71 1.44 45.2 935.6Boosted de
ision trees 13.63 2.99 2.62 58.0 432.8 11.87 1.97 1.75 41.6 523.0Combiner of ba
kground sub
lassi�ers 3.03 2.88 2.49 83.2 1037.2 1.84 1.90 1.66 55.2 1057.1Bagged de
ision trees 9.20 3.25 2.99 69.1 465.8 8.09 2.07 1.98 49.4 571.1
an
e obtained with this method was 9% worse thanthat obtained by the bagging algorithm with de
isiontrees optimizing the signal signi�
an
e. The 14% im-provement of the proposed bagging algorithm overthe boosted de
ision trees therefore originated fromtwo sour
es: 1) using bagging instead of boosting,and 2) using the signal signi�
an
e instead of theGini index as a FOM for the de
ision tree optimiza-tion.In an attempt to improve the signal signi�
an
eeven further, the random forest approa
h has beenattempted with the number of randomly sampled(with repla
ement) input variables taking values 1, 6,and 11. No signi�
ant improvement over the baggingalgorithm has been found.This note des
ribes a somewhat unusual appli-
ation of boosted and bagged de
ision trees to dataanalysis with the ultimate goal of 
lassi�
ation de-�ned as maximization of the signal signi�
an
e. The
lassi�er performan
e in this 
ase is driven by a smallfra
tion of the data set in
luded in the signal re-gion. In a typi
al appli
ation of boosted de
isiontrees, one minimizes the exponential loss averagedover the whole data set. The optimal node size forboosted de
ision trees is typi
ally mu
h larger thanthe optimal node size for bagged de
ision trees. Inthis analysis, the optimal node sizes for both boostedand bagged de
ision trees are 
omparable.5. SummaryA bagging algorithm suitable for optimization of anasymmetri
 FOM for HEP analyses has been de-s
ribed. This algorithm has been shown to give asigni�
ant improvement of the signal signi�
an
e inthe sear
h for the radiative leptoni
 de
ay B ! 
l�at BABAR.
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