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OPTIMIZATION OF SIGNAL SIGNIFICANCE BY BAGGING DECISION TREES
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An algorithm for optimization of signal significance or any other classification figure of merit (FOM) suited for analysis
of HEP data is described. This algorithm trains decision trees on many bootstrap replicas of training data with each
tree required to optimize the signal significance or any other chosen FOM. New data are then classified by a simple
majority vote of the built trees. The performance of the algorithm has been studied using a search for the radiative
leptonic decay B — «lv at BABAR and shown to be superior to that of all other attempted classifiers including such
powerful methods as boosted decision trees. In the B — «yer channel, the described algorithm increases the expected
signal significance from 2.40 obtained by an original method designed for the B — ~lv analysis to 3.00.

1. Introduction

Various pattern classification tools have been em-
ployed in analysis of HEP data to separate signal
from background. One of the problems faced by
HEP analysts is the indirect nature of available clas-
sifiers. In HEP analysis, one typically wants to opti-
mize a FOM expressed as a function of signal and
background, S and B, expected in the signal re-
gion. An example of such FOM is signal significance,
S/\/S + B, often used by physicists to express the
cleanliness of the signal in the presence of statisti-
cal fluctuations of observed signal and background.
None of the available popular classifiers optimizes
this FOM directly. Commercial implementations of
decision trees, such as CART!, split training data
into signal- and background-dominated rectangular
regions using the Gini index, @ = 2p(1 — p), as
the optimization criterion, where p is the correctly
classified fraction of events in a tree node. Neural
networks? typically minimize a quadratic classifica-
tion error, - (yn — f(2,))?, where y,, is the true
class of an event, -1 for background and 1 for sig-
nal, f(x,) is the continuous value of the neural net-
work prediction in the range [—1, 1], and the sum is
over N events in the training data set. Similarly,
AdaBoost? minimizes an exponential classification
error, ZnNzl exp(—ynf(x,)). These optimization cri-
teria are not necessarily optimal for maximization
of the signal significance. The usual solution is to
build a neural net or an AdaBoost classifier and then
find an optimal cut on the continuous output of the
classifier to maximize the signal significance. Alter-
natively, one could construct a decision tree with
many terminal nodes and then combine these nodes

to maximize the signal significance.

Decision trees in StatPatternRecognition?:
low the user to optimize any FOM supplied as an im-
plementation of an abstract C++ interface included
in the package. A default implementation of the de-
cision tree includes both standard figures of merit
used for conventional decision trees such as the Gini
index and HEP-specific figures of merit such as the
signal significance or the signal purity, S/(S + B).

A decision tree, even if it directly optimizes the
desired FOM, is rarely powerful enough to achieve
a good separation between signal and background.
The mediocre predictive power of a single decision
tree can be greatly enhanced by one of the two pop-
ular methods for combining classifiers — boosting?
and bagging®; the latter approach can be used in con-
junction with the random forest technology’. This
note compares predictive power of several classi-
fiers using a search for the radiative leptonic decay
B — «lv at BABAR. It is shown that the greatest sig-
nal significance is obtained by bagging an ensemble
of decision trees, with each member of the ensemble
optimizing the signal significance. This study is de-
scribed in more detail in two notes® ® posted at the
physics archive.

5 al-

2. Decision Trees in
StatPatternRecognition

A decision tree recursively splits training data into
rectangular regions (nodes). For each node, the tree
examines all possible binary splits in each dimension
and selects the one with the highest FOM. This pro-
cedure is repeated until a stopping criterion, speci-
fied as the minimal number of events per tree node, is
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satisfied. The tree continues making new nodes until
it is composed of leaves only — nodes that cannot be
split without a decrease in the FOM and nodes that
cannot be split because they have too few events.

As mentioned above, a conventional decision tree
often uses the Gini index, Q(p,q) = —2pq, for split
optimization, where p and ¢ = 1 — p are fractions of
correctly classified and misclassified events in a given
node. If a parent node with the total event weight
W is split into two daughter nodes with weights W}
and Wy = W — Wy, the best decision split is chosen
(W1Q1 + WzQz)/W, where
@1 and @, are figures of merit computed for the two
daughter nodes. Note that a conventional decision
tree treats the two categories, signal and background,
symmetrically. In HEP analysis, one usually wishes
to optimize an asymmetric FOM. StatPatternRecog-
nition offers a modified splitting algorithm for this
purpose. The best decision split is now chosen to
maximize Qsplit = max(Q1,Q2), where )1 and Q-
are the asymmetric figures of merit for the daughter
nodes. In case of the signal significance, the FOM is
given by Q(s,b) = s/v/s + b, where s and b are sig-
nal and background weights in a given node. After
the tree is grown, the terminal nodes are merged to
optimize the overall asymmetric FOM. The merging
algorithm sorts all terminal nodes by signal purity
in descending order and computes the overall FOM
for the n first nodes in the sorted list with n tak-
ing consecutive values from 1 to the full length of
the list. The optimal combination of the terminal
nodes is given by the highest FOM computed in this
manner.

to maximize Qsplit =

This algorithm for optimization of an asymmet-
ric FOM is nothing but an empirical solution. It is
not guaranteed that this algorithm will produce a
higher asymmetric FOM than the one obtained by
a conventional decision tree using the Gini index or
any other symmetric expression as a split criterion.
It has been shown experimentally that this algorithm
tends to produce higher values of the signal signifi-
cance when applied to physics data sets. This note
is an example of such an application.

3. Bagging Decision Trees

The predictive power of a single classifier can be en-
hanced by boosting® or bagging®. Both these meth-
ods work by training many classifiers, e.g., decision
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trees, on variants of the original training data set.
A boosting algorithm enhances weights of misclassi-
fied events and reduces weights of correctly classified
events and trains a new classifier on the reweighted
sample. In contrast, bagging algorithms do not
reweight events. Instead, they train new classifiers
on bootstrap replicas of the training set. After train-
ing is completed, events are classified by the majority
vote of the trained classifiers. For successful applica-
tion of the bagging algorithm, the underlying classi-
fier must be sensitive to small changes in the training
data. Otherwise all trained classifiers will be simi-
lar, and the performance of the single classifier will
not be improved. This condition is satisfied by a
decision tree with fine terminal nodes. Because of
the small node size each decision tree is significantly
overtrained; if the tree were used just by itself, its
predictive power on a test data set would be quite
poor. However, because the final decision is made
by the majority vote of all the trees, the algorithm
delivers a high predictive power.

Random forest”, typically used in conjunction
with bagging, is a technique that randomly selects a
subset of input variables for each decision split. This
approach can make individual trees more indepen-
dent of each other and increase the overall predictive
power.

Boosting and bagging algorithms offer competi-
tive predictive power. It is really hard, if possible, to
predict outright which algorithm will perform bet-
ter in any classification problem. For optimization
of the signal significance, however, bagging is the
choice favored by intuition. Reweighting events has
an unclear impact on the effectiveness of the opti-
mization routine with respect to the chosen asym-
metric FOM. While it may be possible to design a
reweighting algorithm efficient for optimization of a
specific FOM, at present such reweighting algorithms
are not known. Bagging, on the other hand, offers
an obvious solution. If the base classifier directly
optimizes the chosen FOM, bagging is equivalent to
optimization of this FOM integrated over bootstrap
replicas.
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4. Separation of Signal and Background
in a Search for the Radiative
Leptonic Decay B — ~lv at BaBar

A search for the radiative leptonic decay B — vlv is
currently in progress at BaBARr; results of this anal-
ysis will be made available to the public in the near
future. The analysis focuses on measuring the B
meson decay constant, fp, which has not been pre-
viously measured.

Several samples of simulated Monte Carlo (MC)
events are used to study signal and background sig-
natures in this analysis: B — ~lv signal samples
with about 1.2M events in each channel, large sam-
ples of generic BYB~, B°B°, c¢, uds and 777~
MC events, as well as several exclusive semileptonic
modes generated separately with a typical sample
size of several hundred thousand events.

Various preliminary requirements have been im-
posed to enhance the signal purity and at the same
time reduce the MC samples to a manageable size.
After these preliminary requirements have been im-
posed, eleven variables are included in the final opti-
mization procedure. Distributions of these variables
and more details on applied selection requirements
can be found elsewhere?.

The signal and combined background MC sam-
ples are used by various optimization algorithms to
maximize the signal significance expected in 210 fb~!
of data. The training samples used for this opti-
mization consist of roughly half a million signal and
background MC events in both electron and muon
channels, appropriately weighted according to the in-
tegrated luminosity observed in the data. The train-
ing:validation:test ratio for the sample sizes is 2:1:1.
Signal MC samples are weighted assuming a branch-
ing fraction of 3 x 107° for each channel.

The authors of this analysis deploy an original
cut optimization routine? for separation of signal and
background. This procedure divides the available
range for each variable into intervals of preselected
length and finds an optimal set among all possible
combinations of orthogonal cuts. Besides the original
method designed by the analysts, several classifiers
have been used:

e Decision tree optimizing the signal signifi-
cance S/v/S + B.

e Bump hunter® optimizing the signal signifi-
cance.
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e 700 boosted binary splits.

e 50 boosted decision trees with minimal node
size 100 events.

e Combiner of subclassifiers trained on in-
dividual background components using
boosted binary splits.

e 100 bagged decision trees with each tree op-
timizing the signal significance; the minimal
node size has been set to 100 events.

Parameters of all classifiers have been optimized by
comparing values of the statistical significance ob-
tained for the validation samples.

Results are shown in Table 1. The output of
the described bagging algorithm for the B — vev
test data is shown in Fig. 1. The bagging algorithm
provides the best value of the signal significance. It
gives a 24% improvement over the original method
developed by the analysts, and a 14% improvement
over boosted decision trees; both numbers are quoted
for the B — «yev channel.

— signal
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Fig. 1. Output of the bagging algorithm with 100 trained de-
cision trees for the B — yev test sample. The cut maximizing
the signal significance, obtained using the validation sample,
is shown with a vertical line.

The bagging algorithm with decision trees opti-
mizing the Gini index showed an 8% improvement
in the B — ~ev signal significance compared to
the boosted decision trees. But the signal signifi-
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alids @and Stegt, for the B — ylv training, validation, and test samples obtained with various

classification methods. The signal significance computed for the test sample should be used to judge the predictive power of the
included classifiers. W1 and Wy represent the signal and background, respectively, expected in the signal region after the classification
criteria have been applied; these two numbers have been estimated using the test samples. All numbers have been normalized to the
integrated luminosity of 210 fb~!. The best value of the expected signal significance is shown in boldface.

Method B — yev B — yuv
Strain | Svalid | Stest | Wi | Wo | Spraiy | Svalig | Stest | W1 | Wo
Original method 2.66 - 2.42 37.5 202.2 1.75 - 1.62 25.8 227.4
Decision tree 3.28 2.72 2.16 20.3 68.1 1.74 1.63 1.54 29.0 325.9
Bump hunter with one bump 2.72 2.54 2.31 47.5 376.6 1.76 1.54 1.54 31.7 393.8
Boosted binary splits 2.53 2.65 2.25 76.4 | 1077.3 1.66 1.71 1.44 45.2 935.6
Boosted decision trees 13.63 2.99 2.62 58.0 432.8 11.87 1.97 1.75 41.6 523.0
Combiner of background subclassifiers 3.03 2.88 2.49 83.2 | 1037.2 1.84 1.90 1.66 55.2 | 1057.1
Bagged decision trees 9.20 3.25 2.99 69.1 465.8 8.09 2.07 1.98 49.4 571.1
cance obtained with this method was 9% worse than Acknowledgments

that obtained by the bagging algorithm with decision
trees optimizing the signal significance. The 14% im-
provement of the proposed bagging algorithm over
the boosted decision trees therefore originated from
two sources: 1) using bagging instead of boosting,
and 2) using the signal significance instead of the
Gini index as a FOM for the decision tree optimiza-
tion.

In an attempt to improve the signal significance
even further, the random forest approach has been
attempted with the number of randomly sampled
(with replacement) input variables taking values 1, 6,
and 11. No significant improvement over the bagging
algorithm has been found.

This note describes a somewhat unusual appli-
cation of boosted and bagged decision trees to data
analysis with the ultimate goal of classification de-
fined as maximization of the signal significance. The
classifier performance in this case is driven by a small
fraction of the data set included in the signal re-
gion. In a typical application of boosted decision
trees, one minimizes the exponential loss averaged
over the whole data set. The optimal node size for
boosted decision trees is typically much larger than
the optimal node size for bagged decision trees. In
this analysis, the optimal node sizes for both boosted
and bagged decision trees are comparable.

5. Summary

A bagging algorithm suitable for optimization of an
asymmetric FOM for HEP analyses has been de-
scribed. This algorithm has been shown to give a
significant improvement of the signal significance in
the search for the radiative leptonic decay B — ~lv
at BABAR.
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