OPTIMIZATION OF SIGNAL SIGNIFICANCE BY BAGGING DECISION TREES

I. NARSKY

356-48 California Institute of Te
hnology, High Energy Physi
s, Pasadena, CA 91125, USA E -mail: narsky@hep.caltech.edu

An algorithm for optimization of signal significance or any other classification figure of merit (FOM) suited for analysis of trains described. This algorithm trains described training the company training on the company of the compa tree required to optimize the signal significance or any other chosen FOM. New data are then classified by a simple maiority vote of the built trees. The performance of the algorithm has been studied using a search for the radiative leptonic decay $B \to \gamma l \nu$ at BABAR and shown to be superior to that of all other attempted classifiers including such powerful methods as boosted decision trees. In the $B \to \gamma e \nu$ channel, the described algorithm increases the expected signal significance from 2.4 σ obtained by an original method designed for the $B \to \gamma l \nu$ analysis to 3.0 σ .

1. Introduction

Various pattern classification tools have been employed in analysis of HEP data to separate signal from ba
kground. One of the problems fa
ed by HEP analysts is the indirect nature of available classifiers. In HEP analysis, one typically wants to optimize a FOM expressed as a function of signal and ba
kground, ^S and B, expe
ted in the signal region. An example of such FOM is signal significance, $S/\sqrt{S+B}$, often used by physicists to express the cleanliness of the signal in the presence of statistical fluctuations of observed signal and background. None of the available popular classifiers optimizes this FOM directly. Commercial implementations of de
ision trees, su
h as CART¹ , split training data into signal- and ba
kground-dominated re
tangular regions using the Gini index, $Q = 2p(1 - p)$, as the optimization criterion, where p is the correctly lassied fra
tion of events in a tree node. Neural networks-typically minimize a quadratic classincation error, $\sum_{n=1}^{N}(y_n-f(x_n))^2$, where y_n is the true class of an event, -1 for background and 1 for signal, $f(x_n)$ is the continuous value of the neural network prediction in the range $[-1, 1]$, and the sum is over N events in the training data set. Similarly, AdaBoost³ minimizes an exponential classification error, $\sum_{n=1}^{N} \exp(-y_n f(x_n))$. These optimization criteria are not ne
essarily optimal for maximization of the signal signi
an
e. The usual solution is to build a neural net or an AdaBoost lassier and then find an optimal cut on the continuous output of the classifier to maximize the signal significance. Alternatively, one could construct a decision tree with many terminal nodes and then combine these nodes

to maximize the signal significance.

Decision trees in StatPatternRecognition + allow the user to optimize any FOM supplied as an implementation of an abstract $C++$ interface included in the pa
kage. A default implementation of the de cision tree includes both standard figures of merit used for conventional decision trees such as the Gini index and HEP-specific figures of merit such as the signal significance or the signal purity, $S/(S + B)$.

A decision tree, even if it directly optimizes the desired FOM, is rarely powerful enough to a
hieve a good separation between signal and ba
kground. The mediocre predictive power of a single decision tree an be greatly enhan
ed by one of the two popular methods for combining classifiers $-$ boosting³ and bagging ; the latter approach can be used in conjunction with the random forest technology . This note ompares predi
tive power of several lassi fiers using a search for the radiative leptonic decay $B \to \gamma l \nu$ at BABAR. It is shown that the greatest signal significance is obtained by bagging an ensemble of de
ision trees, with ea
h member of the ensemble optimizing the signal signi
an
e. This study is described in more detail in two notes ? – posted at the physi
s ar
hive.

2. De
ision Trees in StatPatternRe
ognition

A decision tree recursively splits training data into rectangular regions (nodes). For each node, the tree examines all possible binary splits in ea
h dimension and sele
ts the one with the highest FOM. This pro cedure is repeated until a stopping criterion, specified as the minimal number of events per tree node, is

 $\overline{1}$

2

satisfied. The tree continues making new nodes until it is composed of leaves only $-$ nodes that cannot be split without a de
rease in the FOM and nodes that annot be split be
ause they have too few events.

As mentioned above, a conventional decision tree often uses the Gini index, $Q(p,q) = -2pq$, for split optimization, where p and $q = 1 - p$ are fractions of orre
tly lassied and mis
lassied events in a given node. If a parent node with the total event weight W is split into two daughter nodes with weights W_1 and $W_2 = W - W_1$, the best decision split is chosen to maximize $Q_{\text{split}} = (W_1 Q_1 + W_2 Q_2)/W$, where Q_1 and Q_2 are figures of merit computed for the two daughter nodes. Note that a conventional decision tree treats the two ategories, signal and ba
kground, symmetri
ally. In HEP analysis, one usually wishes to optimize an asymmetri FOM. StatPatternRe
ognition offers a modified splitting algorithm for this purpose. The best decision split is now chosen to maximize $Q_{\text{split}} = \max(Q_1, Q_2)$, where Q_1 and Q_2 are the asymmetric figures of merit for the daughter nodes. In case of the signal significance, the FOM is given by $Q(s, b) = s/\sqrt{s+b}$, where s and b are signal and ba
kground weights in a given node. After the tree is grown, the terminal nodes are merged to optimize the overall asymmetri FOM. The merging algorithm sorts all terminal nodes by signal purity in des
ending order and omputes the overall FOM for the n first nodes in the sorted list with n taking onse
utive values from 1 to the full length of the list. The optimal ombination of the terminal nodes is given by the highest FOM omputed in this manner.

This algorithm for optimization of an asymmetric FOM is nothing but an empirical solution. It is not guaranteed that this algorithm will produ
e a higher asymmetric FOM than the one obtained by a conventional decision tree using the Gini index or any other symmetric expression as a split criterion. It has been shown experimentally that this algorithm tends to produ
e higher values of the signal signi an
e when applied to physi
s data sets. This note is an example of su
h an appli
ation.

3. Bagging Decision Trees

The predictive power of a single classifier can be enhanced by boosting or bagging. Both these methods work by training many classifiers, e.g., decision

trees, on variants of the original training data set. A boosting algorithm enhan
es weights of mis
lassi fied events and reduces weights of correctly classified events and trains a new classifier on the reweighted sample. In ontrast, bagging algorithms do not reweight events. Instead, they train new lassiers on bootstrap repli
as of the training set. After training is ompleted, events are lassied by the ma jority vote of the trained classifiers. For successful application of the bagging algorithm, the underlying lassi fier must be sensitive to small changes in the training data. Otherwise all trained classifiers will be similar, and the performance of the single classifier will not be improved. This condition is satisfied by a decision tree with fine terminal nodes. Because of the small node size each decision tree is significantly overtrained; if the tree were used just by itself, its predi
tive power on a test data set would be quite poor. However, because the final decision is made by the ma jority vote of all the trees, the algorithm delivers a high predi
tive power.

Random forest , typically used in conjunction with bagging, is a technique that randomly selects a subset of input variables for each decision split. This approach can make individual trees more independent of each other and increase the overall predictive power.

Boosting and bagging algorithms offer competitive predi
tive power. It is really hard, if possible, to predi
t outright whi
h algorithm will perform better in any classification problem. For optimization of the signal signi
an
e, however, bagging is the hoi
e favored by intuition. Reweighting events has an unclear impact on the effectiveness of the optimization routine with respe
t to the hosen asymmetri FOM. While it may be possible to design a reweighting algorithm efficient for optimization of a specific FOM, at present such reweighting algorithms are not known. Bagging, on the other hand, offers an obvious solution. If the base classifier directly optimizes the hosen FOM, bagging is equivalent to optimization of this FOM integrated over bootstrap repli
as.

4. Separation of Signal and Ba
kground in a Sear
h for the Radiative Leptonic Decay $B \to \gamma l \nu$ at BABAR

A search for the radiative leptonic decay $B \to \gamma l \nu$ is urrently in progress at BABAR; results of this analysis will be made available to the publi in the near future. The analysis focuses on measuring the B meson decay constant, f_B , which has not been previously measured.

Several samples of simulated Monte Carlo (MC) events are used to study signal and ba
kground signatures in this analysis: $B \to \gamma l \nu$ signal samples with about 1.2M events in each channel, large samples of generic D D , D^*D^* , CC , uus and τ τ MC events, as well as several ex
lusive semileptoni modes generated separately with a typical sample size of several hundred thousand events.

Various preliminary requirements have been imposed to enhan
e the signal purity and at the same time redu
e the MC samples to a manageable size. After these preliminary requirements have been imposed, eleven variables are included in the final optimization pro
edure. Distributions of these variables and more details on applied sele
tion requirements can be found elsewhere .

The signal and combined background MC samples are used by various optimization algorithms to maximize the signal significance expected in $210 fb^{-1}$ of data. The training samples used for this optimization onsist of roughly half a million signal and ba
kground MC events in both ele
tron and muon channels, appropriately weighted according to the integrated luminosity observed in the data. The training:validation:test ratio for the sample sizes is 2:1:1. Signal MC samples are weighted assuming a bran
h- $\frac{1}{10}$ ing fraction of 3×10^{-4} for each channel.

The authors of this analysis deploy an original cut optimization routine Tor separation of signal and ba
kground. This pro
edure divides the available range for ea
h variable into intervals of presele
ted length and finds an optimal set among all possible combinations of orthogonal cuts. Besides the original method designed by the analysts, several classifiers have been used:

- Decision tree optimizing the signal significance $S/\sqrt{S+B}$.
- \bullet Bump nunter optimizing the signal signinan
e.
- 700 boosted binary splits. \bullet
- ϵ 50 boosted de
ision trees with minimal node size 100 events.
- Combiner of sub
lassiers trained on individual ba
kground omponents using boosted binary splits.
- 100 bagged decision trees with each tree optimizing the signal significance; the minimal node size has been set to 100 events.

Parameters of all lassiers have been optimized by comparing values of the statistical significance obtained for the validation samples.

Results are shown in Table 1. The output of the described bagging algorithm for the $B \to \gamma e \nu$ test data is shown in Fig. 1. The bagging algorithm provides the best value of the signal significance. It gives a 24% improvement over the original method developed by the analysts, and a 14% improvement over boosted de
ision trees; both numbers are quoted for the $B \to \gamma e \nu$ channel.

Fig. 1. Output of the bagging algorithm with 100 trained de cision trees for the $B \to \gamma e \nu$ test sample. The cut maximizing the signal significance, obtained using the validation sample, is shown with a vertical line.

The bagging algorithm with decision trees optimizing the Gini index showed an 8% improvement in the $B \rightarrow \gamma e \nu$ signal significance compared to the boosted decision trees. But the signal signifi4

and the Strain, Strain classification methods. The signal significance computed for the test sample should be used to judge the predictive power of the included classifiers. W₁ and W₀ represent the signal and background, respectively, expected in the signal region after the classification riteria have been applied; these two numbers have been estimated using the test samples. All numbers have been normalized to the integrated fuminosity of 210 fb = . The best value of the expected signal significance is shown in boldface.

Method	$B \rightarrow \gamma e \nu$					$B \to \gamma \mu \nu$				
	s_{train}	\mathcal{S}_{valid}	S_{test}	W_1	W_0	s_{train}	\mathcal{S}_{valid}	S_{test}	W_1	W_0
Original method	2.66		2.42	37.5	202.2	1.75	\sim	1.62	25.8	227.4
Decision tree	3.28	2.72	2.16	20.3	68.1	1.74	.63	$1.54\,$	29.0	325.9
Bump hunter with one bump	2.72	2.54	2.31	47.5	376.6	1.76	.54	1.54	31.7	393.8
Boosted binary splits	2.53	2.65	2.25	76.4	1077.3	1.66	l.71	1.44	45.2	935.6
Boosted decision trees	13.63	2.99	2.62	58.0	432.8	11.87	1.97	1.75	41.6	523.0
Combiner of background subclassifiers	3.03	2.88	2.49	83.2	1037.2	1.84	. 90	1.66	55.2	1057.1
Bagged decision trees	9.20	3.25	2.99	69.1	465.8	8.09	2.07	1.98	49.4	571.1

an
e obtained with this method was 9% worse than that obtained by the bagging algorithm with decision trees optimizing the signal significance. The 14% improvement of the proposed bagging algorithm over the boosted de
ision trees therefore originated from two sour
es: 1) using bagging instead of boosting, and 2) using the signal significance instead of the Gini index as a FOM for the decision tree optimization.

In an attempt to improve the signal significance even further, the random forest approa
h has been attempted with the number of randomly sampled (with repla
ement) input variables taking values 1, 6, and 11. No significant improvement over the bagging algorithm has been found.

This note des
ribes a somewhat unusual appli ation of boosted and bagged de
ision trees to data analysis with the ultimate goal of classification defined as maximization of the signal significance. The classifier performance in this case is driven by a small fraction of the data set included in the signal region. In a typi
al appli
ation of boosted de
ision trees, one minimizes the exponential loss averaged over the whole data set. The optimal node size for boosted decision trees is typically much larger than the optimal node size for bagged decision trees. In this analysis, the optimal node sizes for both boosted and bagged decision trees are comparable.

5. Summary

A bagging algorithm suitable for optimization of an asymmetri FOM for HEP analyses has been des
ribed. This algorithm has been shown to give a significant improvement of the signal significance in the search for the radiative leptonic decay $B \to \gamma l \nu$ at BABAR.

Acknowledgments

Thanks to Gregory Dubois-Felsmann, Byron Roe and Frank Porter for useful dis
ussions and omments on this work. Thanks to Ed Chen for data and documentation on the $B \to \gamma l \nu$ analysis. Thanks to Harrison Prosper for presenting this work at Phystat 2005. This work is partially supported by Department of Energy under Grant DE-FG03-92-ER40701.

Referen
es

- 1. L. Breiman et al., *Classification and Regression* Trees, Waldsworth International, 1984.
- 2. S. Haykin, Neural Networks: A Comprehensive Foundation, Prenti
e Hall, 1999.
- 3. Y. Freund and R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. of Computer and System Sciences 55, 119-139 (1997).
- 4. I. Narsky, $StatPattern Recognition: A C++ Package$ for Statisti
al Analysis of High Energy Physi
s Data, physi
s/0507143, 2005.
- 5. I. Narsky, *Optimization of Signal Significance by* Bagging Decision Trees, physics/0507157, 2005.
- 6. L. Breiman, Bagging Predi
tors, Ma
hine Learning 26, 123-140 (1996).
- 7. L. Breiman, Random Forests, Ma
hine Learning 45, 5-32 (2001).
- 8. J. Friedman and N. Fisher, Bump hunting in high dimensional data, Statistics and Computing 9, 123-143 (1999).