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1OPTIMIZATION OF SIGNAL SIGNIFICANCE BY BAGGING DECISION TREESI. NARSKY356-48 California Institute of Tehnology, High Energy Physis, Pasadena, CA 91125, USAE-mail: narsky�hep.alteh.eduAn algorithm for optimization of signal signi�ane or any other lassi�ation �gure of merit (FOM) suited for analysisof HEP data is desribed. This algorithm trains deision trees on many bootstrap replias of training data with eahtree required to optimize the signal signi�ane or any other hosen FOM. New data are then lassi�ed by a simplemajority vote of the built trees. The performane of the algorithm has been studied using a searh for the radiativeleptoni deay B ! l� at BABAR and shown to be superior to that of all other attempted lassi�ers inluding suhpowerful methods as boosted deision trees. In the B ! e� hannel, the desribed algorithm inreases the expetedsignal signi�ane from 2:4� obtained by an original method designed for the B ! l� analysis to 3:0�.1. IntrodutionVarious pattern lassi�ation tools have been em-ployed in analysis of HEP data to separate signalfrom bakground. One of the problems faed byHEP analysts is the indiret nature of available las-si�ers. In HEP analysis, one typially wants to opti-mize a FOM expressed as a funtion of signal andbakground, S and B, expeted in the signal re-gion. An example of suh FOM is signal signi�ane,S=pS +B, often used by physiists to express theleanliness of the signal in the presene of statisti-al utuations of observed signal and bakground.None of the available popular lassi�ers optimizesthis FOM diretly. Commerial implementations ofdeision trees, suh as CART1, split training datainto signal- and bakground-dominated retangularregions using the Gini index, Q = 2p(1 � p), asthe optimization riterion, where p is the orretlylassi�ed fration of events in a tree node. Neuralnetworks2 typially minimize a quadrati lassi�a-tion error,PNn=1(yn � f(xn))2, where yn is the truelass of an event, -1 for bakground and 1 for sig-nal, f(xn) is the ontinuous value of the neural net-work predition in the range [�1; 1℄, and the sum isover N events in the training data set. Similarly,AdaBoost3 minimizes an exponential lassi�ationerror,PNn=1 exp(�ynf(xn)). These optimization ri-teria are not neessarily optimal for maximizationof the signal signi�ane. The usual solution is tobuild a neural net or an AdaBoost lassi�er and then�nd an optimal ut on the ontinuous output of thelassi�er to maximize the signal signi�ane. Alter-natively, one ould onstrut a deision tree withmany terminal nodes and then ombine these nodes

to maximize the signal signi�ane.Deision trees in StatPatternReognition4; 5 al-low the user to optimize any FOM supplied as an im-plementation of an abstrat C++ interfae inludedin the pakage. A default implementation of the de-ision tree inludes both standard �gures of meritused for onventional deision trees suh as the Giniindex and HEP-spei� �gures of merit suh as thesignal signi�ane or the signal purity, S=(S +B).A deision tree, even if it diretly optimizes thedesired FOM, is rarely powerful enough to ahievea good separation between signal and bakground.The mediore preditive power of a single deisiontree an be greatly enhaned by one of the two pop-ular methods for ombining lassi�ers | boosting3and bagging6; the latter approah an be used in on-juntion with the random forest tehnology7. Thisnote ompares preditive power of several lassi-�ers using a searh for the radiative leptoni deayB ! l� at BABAR. It is shown that the greatest sig-nal signi�ane is obtained by bagging an ensembleof deision trees, with eah member of the ensembleoptimizing the signal signi�ane. This study is de-sribed in more detail in two notes4; 5 posted at thephysis arhive.2. Deision Trees inStatPatternReognitionA deision tree reursively splits training data intoretangular regions (nodes). For eah node, the treeexamines all possible binary splits in eah dimensionand selets the one with the highest FOM. This pro-edure is repeated until a stopping riterion, spei-�ed as the minimal number of events per tree node, is
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2satis�ed. The tree ontinues making new nodes untilit is omposed of leaves only | nodes that annot besplit without a derease in the FOM and nodes thatannot be split beause they have too few events.As mentioned above, a onventional deision treeoften uses the Gini index, Q(p; q) = �2pq, for splitoptimization, where p and q = 1� p are frations oforretly lassi�ed and mislassi�ed events in a givennode. If a parent node with the total event weightW is split into two daughter nodes with weights W1and W2 = W �W1, the best deision split is hosento maximize Qsplit = (W1Q1 + W2Q2)=W , whereQ1 and Q2 are �gures of merit omputed for the twodaughter nodes. Note that a onventional deisiontree treats the two ategories, signal and bakground,symmetrially. In HEP analysis, one usually wishesto optimize an asymmetri FOM. StatPatternReog-nition o�ers a modi�ed splitting algorithm for thispurpose. The best deision split is now hosen tomaximize Qsplit = max(Q1; Q2), where Q1 and Q2are the asymmetri �gures of merit for the daughternodes. In ase of the signal signi�ane, the FOM isgiven by Q(s; b) = s=ps+ b, where s and b are sig-nal and bakground weights in a given node. Afterthe tree is grown, the terminal nodes are merged tooptimize the overall asymmetri FOM. The mergingalgorithm sorts all terminal nodes by signal purityin desending order and omputes the overall FOMfor the n �rst nodes in the sorted list with n tak-ing onseutive values from 1 to the full length ofthe list. The optimal ombination of the terminalnodes is given by the highest FOM omputed in thismanner.This algorithm for optimization of an asymmet-ri FOM is nothing but an empirial solution. It isnot guaranteed that this algorithm will produe ahigher asymmetri FOM than the one obtained bya onventional deision tree using the Gini index orany other symmetri expression as a split riterion.It has been shown experimentally that this algorithmtends to produe higher values of the signal signi�-ane when applied to physis data sets. This noteis an example of suh an appliation.3. Bagging Deision TreesThe preditive power of a single lassi�er an be en-haned by boosting3 or bagging6. Both these meth-ods work by training many lassi�ers, e.g., deision

trees, on variants of the original training data set.A boosting algorithm enhanes weights of mislassi-�ed events and redues weights of orretly lassi�edevents and trains a new lassi�er on the reweightedsample. In ontrast, bagging algorithms do notreweight events. Instead, they train new lassi�erson bootstrap replias of the training set. After train-ing is ompleted, events are lassi�ed by the majorityvote of the trained lassi�ers. For suessful applia-tion of the bagging algorithm, the underlying lassi-�er must be sensitive to small hanges in the trainingdata. Otherwise all trained lassi�ers will be simi-lar, and the performane of the single lassi�er willnot be improved. This ondition is satis�ed by adeision tree with �ne terminal nodes. Beause ofthe small node size eah deision tree is signi�antlyovertrained; if the tree were used just by itself, itspreditive power on a test data set would be quitepoor. However, beause the �nal deision is madeby the majority vote of all the trees, the algorithmdelivers a high preditive power.Random forest7, typially used in onjuntionwith bagging, is a tehnique that randomly selets asubset of input variables for eah deision split. Thisapproah an make individual trees more indepen-dent of eah other and inrease the overall preditivepower.Boosting and bagging algorithms o�er ompeti-tive preditive power. It is really hard, if possible, topredit outright whih algorithm will perform bet-ter in any lassi�ation problem. For optimizationof the signal signi�ane, however, bagging is thehoie favored by intuition. Reweighting events hasan unlear impat on the e�etiveness of the opti-mization routine with respet to the hosen asym-metri FOM. While it may be possible to design areweighting algorithm eÆient for optimization of aspei� FOM, at present suh reweighting algorithmsare not known. Bagging, on the other hand, o�ersan obvious solution. If the base lassi�er diretlyoptimizes the hosen FOM, bagging is equivalent tooptimization of this FOM integrated over bootstrapreplias.
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34. Separation of Signal and Bakgroundin a Searh for the RadiativeLeptoni Deay B ! l� at BABARA searh for the radiative leptoni deay B ! l� isurrently in progress at BABAR; results of this anal-ysis will be made available to the publi in the nearfuture. The analysis fouses on measuring the Bmeson deay onstant, fB , whih has not been pre-viously measured.Several samples of simulated Monte Carlo (MC)events are used to study signal and bakground sig-natures in this analysis: B ! l� signal sampleswith about 1.2M events in eah hannel, large sam-ples of generi B+B�, B0 �B0, �, uds and �+��MC events, as well as several exlusive semileptonimodes generated separately with a typial samplesize of several hundred thousand events.Various preliminary requirements have been im-posed to enhane the signal purity and at the sametime redue the MC samples to a manageable size.After these preliminary requirements have been im-posed, eleven variables are inluded in the �nal opti-mization proedure. Distributions of these variablesand more details on applied seletion requirementsan be found elsewhere4.The signal and ombined bakground MC sam-ples are used by various optimization algorithms tomaximize the signal signi�ane expeted in 210 fb�1of data. The training samples used for this opti-mization onsist of roughly half a million signal andbakground MC events in both eletron and muonhannels, appropriately weighted aording to the in-tegrated luminosity observed in the data. The train-ing:validation:test ratio for the sample sizes is 2:1:1.Signal MC samples are weighted assuming a branh-ing fration of 3� 10�6 for eah hannel.The authors of this analysis deploy an originalut optimization routine4 for separation of signal andbakground. This proedure divides the availablerange for eah variable into intervals of preseletedlength and �nds an optimal set among all possibleombinations of orthogonal uts. Besides the originalmethod designed by the analysts, several lassi�ershave been used:� Deision tree optimizing the signal signi�-ane S=pS +B.� Bump hunter8 optimizing the signal signi�-ane.

� 700 boosted binary splits.� 50 boosted deision trees with minimal nodesize 100 events.� Combiner of sublassi�ers trained on in-dividual bakground omponents usingboosted binary splits.� 100 bagged deision trees with eah tree op-timizing the signal signi�ane; the minimalnode size has been set to 100 events.Parameters of all lassi�ers have been optimized byomparing values of the statistial signi�ane ob-tained for the validation samples.Results are shown in Table 1. The output ofthe desribed bagging algorithm for the B ! e�test data is shown in Fig. 1. The bagging algorithmprovides the best value of the signal signi�ane. Itgives a 24% improvement over the original methoddeveloped by the analysts, and a 14% improvementover boosted deision trees; both numbers are quotedfor the B ! e� hannel.
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Fig. 1. Output of the bagging algorithm with 100 trained de-ision trees for the B ! e� test sample. The ut maximizingthe signal signi�ane, obtained using the validation sample,is shown with a vertial line.The bagging algorithm with deision trees opti-mizing the Gini index showed an 8% improvementin the B ! e� signal signi�ane ompared tothe boosted deision trees. But the signal signi�-
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4Table 1. Signal signi�anes, Strain, Svalid, and Stest, for the B ! l� training, validation, and test samples obtained with variouslassi�ation methods. The signal signi�ane omputed for the test sample should be used to judge the preditive power of theinluded lassi�ers. W1 and W0 represent the signal and bakground, respetively, expeted in the signal region after the lassi�ationriteria have been applied; these two numbers have been estimated using the test samples. All numbers have been normalized to theintegrated luminosity of 210 fb�1. The best value of the expeted signal signi�ane is shown in boldfae.Method B ! e� B ! ��Strain Svalid Stest W1 W0 Strain Svalid Stest W1 W0Original method 2.66 - 2.42 37.5 202.2 1.75 - 1.62 25.8 227.4Deision tree 3.28 2.72 2.16 20.3 68.1 1.74 1.63 1.54 29.0 325.9Bump hunter with one bump 2.72 2.54 2.31 47.5 376.6 1.76 1.54 1.54 31.7 393.8Boosted binary splits 2.53 2.65 2.25 76.4 1077.3 1.66 1.71 1.44 45.2 935.6Boosted deision trees 13.63 2.99 2.62 58.0 432.8 11.87 1.97 1.75 41.6 523.0Combiner of bakground sublassi�ers 3.03 2.88 2.49 83.2 1037.2 1.84 1.90 1.66 55.2 1057.1Bagged deision trees 9.20 3.25 2.99 69.1 465.8 8.09 2.07 1.98 49.4 571.1ane obtained with this method was 9% worse thanthat obtained by the bagging algorithm with deisiontrees optimizing the signal signi�ane. The 14% im-provement of the proposed bagging algorithm overthe boosted deision trees therefore originated fromtwo soures: 1) using bagging instead of boosting,and 2) using the signal signi�ane instead of theGini index as a FOM for the deision tree optimiza-tion.In an attempt to improve the signal signi�aneeven further, the random forest approah has beenattempted with the number of randomly sampled(with replaement) input variables taking values 1, 6,and 11. No signi�ant improvement over the baggingalgorithm has been found.This note desribes a somewhat unusual appli-ation of boosted and bagged deision trees to dataanalysis with the ultimate goal of lassi�ation de-�ned as maximization of the signal signi�ane. Thelassi�er performane in this ase is driven by a smallfration of the data set inluded in the signal re-gion. In a typial appliation of boosted deisiontrees, one minimizes the exponential loss averagedover the whole data set. The optimal node size forboosted deision trees is typially muh larger thanthe optimal node size for bagged deision trees. Inthis analysis, the optimal node sizes for both boostedand bagged deision trees are omparable.5. SummaryA bagging algorithm suitable for optimization of anasymmetri FOM for HEP analyses has been de-sribed. This algorithm has been shown to give asigni�ant improvement of the signal signi�ane inthe searh for the radiative leptoni deay B ! l�at BABAR.
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