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This article describes the algorithm used by QUAERO to automate the testing of specific hypotheses

against high-pr data.
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I. INTRODUCTION

An algorithm for testing an arbitrary hypothesis
against high-py data exists — it is implemented by ex-
perimental physicists in meetings, in hallway discussions,
and at their terminals. It is natural to wonder whether
gains in efficiency and robustness might be achieved by
streamlining this algorithm, making it completely pre-
scriptive, and implementing it in code.

Ref. [1] specifies the QUAERO interface in detail. The
interface has a back end to collider experiments, into
which each collaboration inserts its data and expert
knowledge. Each participating collaboration provides

e data, in the form of the four-vectors of all high-pr
objects seen in all events collected in the detector;
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e backgrounds, in the form of the four-vectors of all
high-pr objects seen in Monte Carlo events pre-
dicted by the Standard Model;

e events that have been run through the experiment’s
detector simulation, so that an algorithm called
TURBOSIM [2] can learn the detector response;

e systematic errors, including specification of the
sources, the correlations among those sources, and
their effect on each four-vector quantity; and

e specification of any requisite post-processing.

A physicist presents a hypothesis to QUAERO’s front
end. The hypothesis is some “signal,” in the form of com-
mands to one of the standard event generators. Interfaces
to PYTHIA [3], SUSPECT [4], and MADEVENT [5] are cur-
rently supported. This signal, together with whatever
background processes the physicist wishes to include, de-
fines the hypothesis to be tested. QUAEROQ’s response
is a single number quantifying the extent to which the
data (dis)favor that hypothesis, relative to the Standard
Model.

Section II describes the steps in the QUAERO algo-
rithm, using a measurement of the Z boson mass in
1 pb~! of Tevatron Run II data as an illustrative ex-
ample. Comparison of QUAERO’s performance with tra-
ditional means requires the performance of parallel anal-
yses on real data, handling all details; this work is in
progress, and the subject of articles in preparation. The
present article provides a clean introduction to the in-
ner workings of QUAERO in a toy scenario, allowing fo-
cus on the algorithm itself. In the examples provided,
all Standard Model processes have been included in the
background estimate, with realistic object identification
efficiencies, geometric acceptances, and object misiden-
tification probabilities. To keep this article standalone,
the Pretty Good Simulation (PGS) [6] provides a rough
parametrized detector simulation appropriate for either
of the two Tevatron experiments, and 1 pb~! of “data’
is drawn from the Standard Model expectation, rather
than from physical collisions.

II. ALGORITHM

For a particular hypothesis H, the quantity of interest
is log,o L(H), where

_ (0
(M) = oD (1)
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D are the data, and SM is the Standard Model.
The computation of this quantity requires

e devising an analysis strategy that respects the al-
lotted time,

e generating the events predicted by H,

e simulating the response of each detector to these
events,

e partitioning the events into exclusive final states,

e choosing variables for each final state in each ex-
periment,

e binning each variable space,

e calculating a binned likelihood for each final state
in each experiment,

e combining these likelihoods for all final states
within an experiment,

e combining these likelihoods among experiments,
and

e incorporating systematic errors.

This section considers each of these steps in turn, con-
cluding with a brief discussion on the interpretation of
results. The measurement of M in 1 pb~! of Tevatron
Run II data is used as a toy example for illustrative pur-
poses throughout.

A. Time

The querying physicist provides a target time for anal-
ysis completion, in units of kiloseconds. QUAERO is
designed to adjust its analysis strategy to perform the
most sensitive achievable test of the provided hypothesis
within the allotted time.

QUAERO can better learn the shapes of distributions
by generating more signal events; it can construct better
kernel estimates from these signal events if allowed more
attempts; it can make use of a larger subset of the data
if allowed the time to access more events; and it can per-
form a more robust integration over systematic errors if
allowed time to sample more points in the space of sys-
tematic shifts. The time cost of QUAERO’s analysis as
a function of these four parameters (the number of gen-
erated signal events, the number of starting points for
the construction of kernel estimates, the number of indi-
vidual Standard Model background events that QUAERO
is allowed to touch, and the number of points sampled
in the space of systematic shifts) has been emperically
determined. QUAERO begins its analysis by optimizing
a figure of merit as a function of these four parameters,
respecting the provided time constraint.

¥ TEVAI
=L )
® Pythia Input
msub (1) =1 ™ Sianal File
pmas (23,1)=88.0 =ldnaire
ckin(3)=20 | Browse..

Backgrounds M|iMpMp MudzFMw &t

FIG. 1: An example of PYTHIA input to QUAERO. The first
line selects Z /™ production; the second line sets the Z boson
mass to 88 GeV; the third line restricts the generation to
hard interactions. These events replace previously generated
Z events with Mz = 91.2 GeV, removed from the background
estimate by the unchecked box.

B. Event generation

If the signal is provided in the form of commands
to PYTHIA, QUAERO uses PYTHIA to generate the pre-
dicted events. The number of events generated corre-
sponds to an integrated luminosity one hundred times
that collected. To more clearly illustrate the effect of
limited Monte Carlo statistics, an integrated luminosity
ten times that collected will be used for the example in
this section.

An example of PYTHIA input to QUAERO is provided in
Fig. 1; this section describes in detail QUAERO’s analysis
of this input. QUAERO passes these commands directly
to PYTHIA, which creates a STDHEP file with generated
events. These events, together with events from all in-
cluded background processes, define the hypothesis H to
be tested. Previously generated events from all Standard
Model processes, provided by each experiment, define the
reference model SM to which the hypothesis will be com-
pared.

C. Detector simulation

A TURBOSIM detector simulation takes the STDHEP
file with generated events, simulates the response of the
detector to those events, and produces a file in QUAERO
format with the four-vectors of reconstructed objects.

D. Final states

Most collider analyses are performed on inclusive fi-
nal states. QUAERO takes the more natural view that
events containing different objects (e*, pu*, 7%, ~, 4, b,
p) are fundamentally dissimilar, and should be treated
separately.

The events predicted by the hypothesis H are parti-
tioned into exclusive final states according to the objects
observed in each event. The events predicted by the ref-



erence model SM and the events observed in the data D
are similarly partitioned. This partitioning is orthogonal;
each event is placed in one and only one exclusive final
state.

QUAERO determines which final states to consider
by ordering the final states according to decreasing
5/(v/b Nasc), where s is the sum of the weights of the
signal events in a particular final state, b is the sum of
the weights of the Standard Model events in that final
state, and Nys¢ is the number of Standard Model monte
carlo events QUAERO would need to touch if it decides to
consider that final state. Starting from the top of the list,
QUAERO adds each final state to the set of final states
it will consider if the total number of events it will be
considering is smaller than the total number of events
QUAERO decided it has time to consider in Sec. ITA. In
the example of this section, QUAERO realizes the final
states eTe™ and pTp~ (among others) need to be con-
sidered.

E. Variables

The partitioning of the data into exclusive final states
enables a straightforward method of variable selection.

Hadron collider events with n final state objects popu-
late a 3n— 2 dimensional space, where typically 2<n < 6.
The full-dimensional space usually cannot be reliably
modeled with the limited number Nj;c of Monte Carlo
events at hand. Attention is thus restricted to a d-
dimensional subspace, where d = |log,q Nare|. [9]

For a hadron collider experiment, the variables consid-
ered in each final state are

e the transverse momentum (pr) of each object,
e the pseudorapidity (1) of each object,

e the distance in azimuthal angle (A¢) between each
object pair,

e the distance (AR) in pseudorapidity and azimuth
of each object pair, and

e the invariant masses of all combinations of two or
more objects.

For lepton collider experiments the same list holds, with
the substitution of energy (E) for transverse momentum,
and polar angle () for pseudorapidity.

These variables are ordered according to decreasing
values of the Kolmogorov-Smirnov (KS) statistic
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the maximal difference between the cumulative distribu-
tion functions of H and SM in the variable . Beginning
with the first variable in this ordering and continuing un-
til d variables have been chosen, each variable is added
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FIG. 2: (Upper) Histograms of the prediction of the hypoth-
esis H (green) and of the Standard Model SM (red), together
with the data D (solid points), in QUAERO’s chosen variables
in the final state eTe™. QUAERO’s variable selection algorithm
picks the invariant mass of the two electrons mass(e+,e-)
(left) as the first variable, and selects the pseudorapidity of
the positron (right) as an inferior second variable. The ver-
tical axis shows the number of events predicted in each bin.
(Lower) One-dimensional projections of the kernel estimates,
obtained by integrating the two-dimensional densities in Fig. 3
over the other variable. The vertical axis shows the number
of predicted events per GeV (left) and per unit of pseudora-
pidity (right). In all four panes, the integral of the red curve
is 18 events, the number predicted in this final state by SM.
The integral of the green curve in all four panes is 20 events,
the number predicted in this final state by H. As expected,
the Z boson cross section o(pp — Z) is larger for smaller
values of M.

to those considered unless the smallest eigenvalue of the
correlation matrix of this variable and the ¢ — 1 variables
already chosen is smaller than 1/q.

In the example at hand, the final state eTe™ contains
~ 200 SM Monte Carlo points, allowing the use of two
variables. QUAERO chooses m.+.- as the first variable,
as expected, and picks the positron’s pseudorapidity as
a second variable. Figure 2 shows the prediction of the
hypothesis H, the reference model SM, and the data D
in these variables. [10] In the final state u*u~, QUAERO
chooses m,+,~ as the first variable, and the azimuthal
angle of the positively charged muon as a throw-away
second variable.
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FIG. 3: Two-dimensional kernel estimates in QUAERO’s cho-
sen variable space for the prediction of the reference model
SM (red, left) and of the hypothesis H (green, right) in the
final state eTe™. The estimates are intrinsically multivariate,
and are not simply products of one-dimensional densities, al-
though the difference is moot for loosely correlated variables
such as these.

F. Kernel estimate

The discrete Monte Carlo events predicted by H and
SM in the chosen variable space in each final state are
used to construct smooth estimates using FEWKDE, a
fast kernel density estimation algorithm [7]. FEWKDE
provides multivariate density estimates p(Z|H) and
p(Z|SM), where Z denotes an arbitrary point in the cho-
sen variable space. Figure 3 shows the two-dimensional
kernel estimates for the predictions of H and SM in the
variable space of m.+.- and positron pseudorapidity in
the final state eTe™. The lower panels of Fig. 2 show the
one-dimensional projections, obtained by integrating out
the other variable, for comparison with the histograms in
the upper panels of Fig. 2.

G. Binning

QUAERO then forms the discriminant

p(Z|H)
(ZIH) + p(Z]SM)

D(@) =~ 3)

from the two density estimates p(Z|H) and p(Z|SM).
The discriminant D(Z) takes on values between zero and
unity, approaching zero in regions in which the number
of events predicted by the reference model SM greatly ex-
ceeds the number of events predicted by the hypothesis
‘H, and approaching unity in regions in which the number
of events predicted by H greatly exceeds the number of
events predicted by SM.

The value of the discriminant D at the position of each
Monte Carlo event predicted by H is computed, together
with the value of D at each Monte Carlo event predicted
by SM. The resulting distributions in D are binned using
a prescription for optimal binning [8].

The resulting binned histogram in D in the example
of this section in the final state eTe™ is shown in Fig. 4.
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FIG. 4: (Left) The optimally-binned histogram of the discrim-
inant D for the predictions of SM (red), H (green), and for
the data D (solid points). (Right) The mapping of the bins
in D back into regions in the original variable space. The
dark region corresponds to points Z in the variable space for
which D(Z) < 0.4; the light region corresponds to points &
in the variable space for which D(Z) > 0.4. Recall that H
differs from SM in asserting Mz = 88.0 GeV; thus the light
region, for which the discriminant is large, is roughly the re-
gion mg+.- < 90 GeV.

QUAERO chooses to consider only two bins, placing a bin
edge at D = 0.4. As advertised, SM Monte Carlo events
tend to lie at variable values Z for which D(Z) is small,
and H Monte Carlo points tend to lie at variable values
Z for which D(Z) is large. From the red histogram in
the left panel of Fig. 4, the reference model SM predicts
18.0 events in the final state ete™; of these, 8.0 events are
predicted to lie in regions of the chosen variable space for
which the discriminant D is less than 0.4, and 10 events
are predicted to lie in regions for which the discriminant
is greater than 0.4. From the green histogram in the
same panel, the hypothesis H predicts 3.0 events in re-
gions of variable space with D < 0.4, and 17.0 events in
regions with D > 0.4. The discriminant evaluated at the
positions of the events observed in the data yield 8 data
events with D < 0.4, and 13 data events with D > 0.4.

The right panel of Fig. 4 shows how the two bins in the
discriminant map back onto the original variable space
of m.+.- and positron pseudorapidity. The dark region
corresponds to points & in the variable space for which
D(Z) < 0.4; the light region corresponds to points & in
the variable space for which D(Z) > 0.4. In the reference
model SM, Mz =91.2 GeV; in H, Mz = 88.0 GeV. The
boundary between the light and dark regions, defined
by those points & for which D(Z) ~ 0.4, is at roughly
Mete— = 90 GeV, in accord with intuition. Correspond-
ing figures for the final state u*u~ are similar.

In both the final states eTe™ and p*u~ QUAERO uses
only two bins in the discriminant because of limited
Monte Carlo statistics, and because the predictions of
‘H and SM are not widely different. Dozens of bins may
be used if the predictions are sufficiently different to war-
rant the finer binning, and if QUAERO has enough Monte
Carlo points to robustly estimate the predicted number of
events from H and from SM in each bin. Nothing is signif-




icant about the placement of the bin edge at D = 0.407;
QUAERO optimizes the position of the bin edges on its
own.

H. Likelihood

The probability of observing the data D in a particular
final state (fs) within a particular experiment (exp), as-
suming the correctness of the hypothesis H and a vector
§ of systematic offsets, is

Nbpins e—hip, Ni
p(D(exp)(fs) |H7 54) = H N,L' ’ (4)
=1

where h; is the number of events predicted by H in the
i*" bin in this final state in this experiment, and N is the
number of data events observed in that bin. Similarly,

Nbins

e_b'ibiNi
p(D(cxp)(fs)|SM7§) = I |
=1

N O

where b; is the number of events predicted by SM in the
i*® bin in this final state in this experiment.

In this example, ignoring the uncertainty in the pre-
diction in each bin due to finite Monte Carlo statistics,

e™303.08  17017,013
P(D(coF)(ete) M, 8) = 3! % 13! ©
= 0.0081 x 0.066
= 0.00053,
and
e 80808  ¢710010.0"
P(Dcpr)(ete)|SM, 5) = 8! x 13! Q
= 0.14 x 0.073
= 0.010,

indicating that the data D favor SM relative to H by
a factor of 0.010/0.0005 = 20 in the ete™ final state
at CDF. After accounting for the significant uncertainty
(= +£5 events) in the prediction in each bin due to limited
Monte Carlo statistics, the evidence provided by D in
support of SM relative to H is only a factor of 2.5. Here
as elsewhere, QUAERO’s performance improves with the
number of Monte Carlo points at its disposal.

I. Combination of final states

Probabilities p(D(exp)(ts)|H, 5) from individual final
states are combined into a probability p(D(exp)|H, 5) for
the experiment by multiplication:

p(D(exp) |H7 5‘) = Hp(p(exp)(fs) ‘Ha §') (8)
fs

Similarly,
P(D(exp)|SM, ) = [ [ D(D(exp) 1) |SM, ). (9)
fs
In this example,
P(Dcor)|H, 3) = p(Dcpryete)H,5) x  (10)

P(D(cor)(u+ ) H, 8) %
(other final states)

and similarly for p(D(cpr)|SM, 5). Factors in Eq. 10 from
final states for which the predictions of H and SM are
similar cancel when the ratio of likelihoods is taken.

J. Combination of experiments

Probabilities p(D(exp)|H, 5) from each experiment are
combined into a total probability p(D|H, s) by another
multiplication:

p(D|H7§) = Hp(D(exp)|H7§>' (11)
exp
Similarly,
p(D‘SMag) = HP(D(exp)|SMa§) (12)
exp

In this example, assuming data from both Tevatron
experiments,

p(DIH, 5) = p(D(cpr) M, 5) x p(Dey [, 5);  (13)

similarly,

p(DISM, 5) = p(D(cpr)|SM, 5) x p(Dpg)|SM, 5);  (14)

K. Systematic errors

Systematic errors are incorporated by repeating the
above steps many times with different systematic offsets
§, allowing the Monte Carlo computation of the integrals

p(DIM) = / p(DIM, H)p(3) d5 (15)
and
p(OISM) = [ DM Ip@ s (10)

The final number of interest is the ratio of these likeli-
hoods,

_ p(DIH)
( ) - ZW (17)



The data D favor H if L(H) > 1, and favor SM if
L(H) < 1. For convenience of interpretation, QUAERO
reports log,o L(H), conveniently thought of as units of
“evidence” for or against H.

Systematic errors reduce the evidence the data is able
to provide for or against H relative to SM. In the example
of this section, with systematic errors neglected, QUAERO
determines

log,o L(H) = —1.4, (18)

providing 1.4 units of evidence against H relative to the
Standard Model. When the systematic errors considered
include

e a 5% error on the integrated luminosity,

e a 1% error on the electromagnetic energy scale,
e a 3% error on the hadronic energy scale, and

e a 1% error on electron efficiency,

QUAERO determines
log,q L(H) = —0.7, (19)

providing 0.7 units of evidence against H relative to the
Standard Model. In this way the incorporation of sys-
tematic errors leads to greater uncertainty on the mea-
surement of model parameters, as illustrated in Figs. 5
and 6.

QUAERO'’s sole output is thus a single number — the
evidence provided by the data for or against H relative to
SM, after incorporation of systematic errors. The result
of an analysis is condensed into 4 bytes.

L. Interpretation of results

For a given hypothesis H, QUAERO’s result takes the
form of the single number £(H). In words, £(H) quan-
tifies the extent to which the data support H in favor
of the Standard Model. If prior prejudice places the bet-
ting odds for H over the Standard Model at p(H)/p(SM),
then QUAERO’s use of the data D modifies those odds to

p(H|D)
p(SM|D)

 (DIH) p(H)
= p(DISM) p(SM)” (20)

The new betting odds are obtained from the old simply
by multiplication by L(H).

The likelihood ratio £(H) can be converted into a more
familiar, if perhaps less natural, form. Results in high en-
ergy physics are often presented either in terms of a mea-
surement of one or more parameters of a model (central
value with one standard deviation errors), or in terms of
an exclusion limit for one or more parameters of a model
(typically at the 95% confidence level).

In either case the hypothesis H is taken to depend
upon one or more parameters @. If prior prejudice places

Log,,L
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FIG. 5: QUAERO’s result log,, £ as a function of the as-
sumed Z boson mass Mz with systematic errors neglected
(light green) and incorporated (dark green). Systematic er-
rors act to reduce the amount evidence provided by the data,
flattening the curve. The numerical error on each point is
~ 0.3.

the betting odds for H(&) over the Standard Model at
p(H(&))/p(SM), then QUAERO’s result modifies those
odds to

p(H(®)|D)
p(SM|D)

(D) p(H(&))
= o) pen Y

The new betting odds are obtained from the old simply
by multiplication by £(H(&)). In the example of this sec-
tion, with & — My, if you had been willing to bet $10 at
even odds that Mz = 88.0 GeV (rather than 91.2 GeV)
before seeing the data, then after observing these data
you should be willing to put up $10 only if the payoff is
$50 or more.

Using QUAERO to test a number of different hypothe-
ses, each differing from the others only in assuming differ-
ent values of Mz, leads to the result shown in Fig. 5. The
scale of the numerical error on each point is set by the
square root of the weight of the Monte Carlo points; in
this example 10 pb~! of Monte Carlo events were gener-
ated for 1 pb~! of data, so the numerical error is roughly
0.3 ~ v0.1. QUAERO’s run time increases linearly with
the number of Monte Carlo events. This numerical un-
certainty is therefore inversely proportional to the square
root of the time taken by the algorithm. The example in
this section took two CPU minutes on one 1 GHz Linux
box.

The posterior distribution p(Mz|D) obtained from the
likelihood in Fig. 5 and a flat prior is shown in Fig. 6.
The posterior peaks at the Standard Model value of My,
as expected.

The difference between making a measurement, mak-
ing a discovery, and setting exclusion limits is then
loosely as follows. A measurement is being made if
L(H(&)) shows a demonstrable peak in &; a discovery
is being made if the hypothesis involves physics beyond
the Standard Model and L(H(&)) > 1; exclusion limits
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FIG. 6: The posterior distribution p(Mz|D), obtained from
the likelihood in Fig. 5 and a flat prior, with systematic er-
rors neglected (light green) and incorporated (dark green).
The broadened posterior distribution reflects the 1% uncer-
tainty on the electromagnetic energy scale and the 5% uncer-
tainty on the integrated luminosity. The posterior peaks at

the Standard Model value of Mz, as expected.

are set in all other cases.

In the case of a measurement, the distribution
p(H(&)|D) is typically fit to a multivariate gaussian in
& — the mean of the gaussian then corresponds to the
measured central values and the covariance matrix to the
errors on those values.

In the case of a discovery, the peak value of L(H(&))
can be quoted directly as a quantitative measure of the
traditional “significance” of the result.

In the case of exclusion limits, we typically introduce
a cross section o as a free parameter, ignoring for a mo-
ment that the predicted cross section o(&) is generally
a definite function of the parameters &. The hypothesis
H(&) is then said to be excluded at the 95% confidence
level if

o(d)
/ p(H(&,0)|D) do > 95%, (22)
0

assuming some prior p(o) for the cross section.
In all cases, the desired form of the result is easily
obtained from the number that QUAERO provides.

III. EXAMPLES

The previous section described the QUAERO algorithm
in some detail, using a single example — measuring the
Z boson mass — to illustrate each step. This section
provides three additional examples.

Figure 7 shows the result of using QUAERO to measure
the Z production cross section o(pp — Z) at Tevatron
Run II. This is easily accomplished using the pseudo-
PYTHIA commands kfactor=1.1 or xsec=600 to adjust
the level of the signal, and submitting several QUAERO

FIG. 7: The posterior distribution p(c(pp — Z)|D) (right),
obtained from a flat prior and the likelihood (left) returned
by QUAERO. One unit on the horizontal axis corresponds to
the Standard Model cross section.
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FIG. 8: The posterior distribution p(Mrg|D) (right), ob-
tained from a flat prior and the likelihood (left) returned by
QUAERO. Units on the horizontal axis are GeV.

requests varying the values of kfactor or xsec. One
unit of kfactor corresponds to the Standard Model cross
section (obtained from PYTHIA); one unit of xsec corre-
sponds to one picobarn. The expected result — a peak
at kfactor ~ 1 is obtained, with reasonable errors. This
and subsequent examples incorporate the systematic er-
rors referred to in Sec. I1 K, and use Monte Carlo corre-
sponding to one hundred times the 1 pb~! of data.

Figure 8 shows a search for leptoquark pair produc-
tion as a function of assumed leptoquark mass. Lepto-
quarks with small masses, which would be more copi-
ously produced in the Tevatron than their heavier coun-
terparts, are disfavored by the data. Figure 9 shows the
region selected in QUAERO’s chosen variable space in the
final state ete™2j at mpg = 50 GeV. QUAERO sep-
arates the SM-enhanced region with small unclustered
transverse momentum and m.+.- =~ 91 GeV from the
‘H-enhanced region with me+.- < 80 GeV and large un-
clustered transverse momentum.

Figure 10 shows a search for a heavy Z’ as a func-
tion of assumed Z’' mass. Z’'s with small masses, which
would be more copiously produced in the Tevatron than
their heavier counterparts, are disfavored by the data.
The posterior probability p(mz/|D) flattens out beyond
my =~ 250 GeV, indicating that the 1 pb~! of data D is
insufficiently sensitive to provide evidence for or against
Z's at this mass.

QUAERO’s treatment of these toy examples is straight-
forward, and the results easily understood. The toy-like
nature of these examples, although conducive to devel-
oping an understanding of the algorithm, precludes a
direct assessment of QUAERO’s performance relative to
its competition. Such an assessment requires the perfor-
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FIG. 9: In the final state e e~ j, QUAERO chooses as variables
Me+.— and the unclustered transverse momentum. Bins in
the discriminant D (left) map to regions in the original vari-
able space (right) that separate Standard Model Z production
from leptoquark production.

FIG. 10: The posterior distribution p(Mz/|D) (right), ob-
tained from a flat prior and the likelihood (left) returned by
QUAERO. Units on the horizontal axis are GeV.

mance of parallel analyses using QUAERO and using a
top-notch graduate student, and a direct comparison of
results. Work on this front is ongoing.

IV. CONCLUSIONS

QUAERO is a C++ implementation of the analy-
sis algorithm traditionally executed via analysis group
meetings, hallway discussions, and hard-working gradu-
ate students. The steps of this algorithm, detailed in

J

Sec. II and illustrated through the example of measur-
ing the mass of the Z boson in 1 pb~! of Tevatron
data, do not differ greatly from the traditional approach.
QUAERO’s successful measurement of o(pp — Z) relative
to the Standard Model prediction, search for a heavy Z’,
and search for first generation leptoquarks, described in
Sec. III, provide confidence that the algorithm and its
implementation in code perform as expected. The proce-
dure described here may prove useful in quickly testing
future new physics hypotheses.
APPENDIX A: USE OF DIFFERENT
GRADUATE STUDENTS

How do we ensure log,,(p(D|H)/p(D|SM)) = 0 when
‘H = SM? The only answer is to use sufficiently large
bins. How large is sufficiently large? If we desire
log,o(p(DIH = SM)/p(D|SM)) = 0 to within dlog,, L,
the maximal weight w in QUAERO’s background file must
be w < (dlogyy £)?/10. The following derives this rela-
tion.

Consider a bin with d events observed in the data and h
events predicted by hypothesis H. Assume all the Monte
Carlo events predicted by H have equal weight w, so
that the bin contains n = h/w individual Monte Carlo
events. The question at hand is how much log;, £ varies
under changes in the random number seed used to gen-
erate these Monte Carlo events. The magnitude (up to
factors of order 2) of this variation is roughly given by

p(d = h+ Vh|h + wy/n)

p(d = h+ vVhlh —wy/n) (A1)

0logy £ ~ logyg

In words, we are considering the case in which the data
d has fluctuated one standard deviation v above the
prediction h, and are comparing QUAERO’s result in the
case that the Monte Carlo estimate has fluctuated one
standard deviation low to the case that the Monte Carlo
estimate has fluctuated one standard deviation high. The
statistical error of the data is v/h, and the statistical error
o on the Monte Carlo prediction is o = w/n = h/\/n.
Assuming Gaussian distributions and w < 1,

dlogyy L (logyp€) <_
2(log 6)\/1;
~ Vuw.

This result is interesting. Several points are worth not-
ing:

e The variation depends upon the total number of
predicted events h and the total number of gener-

(h+Vh— (h+wyn))?®  (h+Vh— (h—wyn))?
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ated Monte Carlo events n only through the weight
w of each event.

e A dependence linear in w is obtained if the number
of observed data events d is fixed at h, with the



scale of variation given by

p(d = hlh)
(d = hlh —wy/n)

dlog,o L =~ logg p (A5)

e If £ bins are used by QUAERO, the variation under
changes of random number seed grows as V/k.

e The weight w that enters in this derivation is the
weight of the events that are used to populate
QUAERO’s chosen bins, after kernels are estimated
and bin edges chosen, which is three times the
largest weight appearing in the file provided to
QUAERO.

The magnitude of this effect is in agreement with that
observed in actual QUAERO requests.

How should this variation in QUAERO’s results be un-
derstood? It is of the same nature as the variation ob-
tained under choosing different graduate students to per-

form the same analysis. This is a variation not typically
considered or reported. If one hundred graduate students
all take an identical hypothesis H and compute d log;, £,
there will be a resulting spread of answers.[11] Jane may
elect not to use the final state ep 37, Ken may decide to
use pr® and Sandra pr*, Burkhard may decide to cut at
> pr > 100 and Mark at > pp > 120. Similarly, de-
pending upon where the Monte Carlo events happen to
fall, QUAERO may choose to consider the final state ey 37,
to use pr© rather than pr*, and to cut at > pr > 110.

QUAERO needs to return numbers accurate to within
dlogo £ ~ 0.1 in order for measurements corresponding
to one standard deviation (log;, £ ~ —0.2) to be made.
Bounding the number of bins considered by QUAERO to
three at minimum, and recalling that only the last third
of the events is used to populate the chosen bins, the
largest weight w presented to QUAERO should be w <
(0.1)2/3/3 ~ 1073.
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