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Abstract

Using a sample of 58 million J/ψ events recorded in the BESII detector, the decay
J/ψ → ωπ+π− is studied. There are conspicuous ωf2(1270) and b1(1235)π signals.
At low ππ mass, a large broad peak due to the σ is observed, and its pole position
is determined to be (541 ± 39) - i (252 ± 42) MeV from the mean of six analyses.
The errors are dominated by the systematic errors.

PACS: 13.25.Gv, 14.40.Gx, 13.40.Hq
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1 Introduction

Two important aspects of strong interaction physics at low energies are color
confinement and spontaneous breaking of chiral symmetry. Better experimen-
tal knowledge on the 0++ low energy hadron spectrum is very important to
the understanding of QCD in the nonperturbative region. For example, the
determination of the lowest lying 0++ hadron, named the f0(600) or σ, will be
very helpful in understanding how QCD realizes chiral symmetry.

There has been evidence for a low mass pole in the early DM2 [1] and BESI
[2] data on J/ψ → ωπ+π−. A huge event concentration in the I = 0 S-wave
ππ channel was seen in the region of mππ around 500-600 MeV in a pp central
production experiment [3]. This peak is too large to be explained as back-
ground [4]. There have been many studies on the possible resonance structure
in ππ elastic scattering. A summary of these studies up to 1999 is given by
Markushin and Locher [5]. It was later proved that the σ resonance is unavoid-
able in chiral perturbation theory in order to explain the ππ scattering phase
shift data [6]. An analysis based on chiral symmetry and the Roy equations
has been made by Colangelo, Gasser and Leutwyler [7]; a light and broad res-
onance was found with the result M − iΓ/2 = (470 ± 30) − i(295 ± 20) MeV
for the pole position. Renewed experimental interest arises from E791 data on
D+ → π+π−π+ [8]; they find M = 478+24

−23 ± 17 MeV, Γ = 324+42
−40 ± 21 MeV.

Results on J/ψ → ωπ+π− from 5.8 × 107J/ψ events collected with the up-
graded BES (BESII) detector are presented in this paper. The upgrade of the
BES detector included a new main drift chamber (MDC) and a new time-
of-flight (TOF) system. A detailed description of the BESII detector is given
in Ref. [9]. It has a cylindrical geometry around the beam axis. Trajectories
of charged particles are measured in a vertex chamber (VC) and the main
drift chamber (MDC); these are surrounded by a solenoidal magnet provid-
ing a field of 0.4T. Photons are detected in a lead-gas Barrel Shower Counter
(BSC). Particle identification is accomplished using time-of-flight (TOF) in-
formation from the TOF scintillator array located immediately outside the
MDC and the dE/dx information in the MDC.

Partial wave analyses (PWA) are performed on this channel using two meth-
ods. In the first method, the whole mass region of Mπ+π− which recoils against
the ω is analyzed, the ω decay information is used, and the background
is subtracted by sideband estimation. For the second method, the region
Mπ+π− < 1.5 GeV is analyzed, and the background is fitted by 5π phase space.
In both methods, different parametrizations of the σ pole are also studied.
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2 Event selection

Here, the selection of ωπ+π− events is outlined, where the ω is observed in
its π+π−π0 decay mode. Candidate tracks are required to have a good track
fit with the point of closest approach of the track to the beam axis being
within the interaction region of 2 cm in

√
x2 + y2 and ±20 cm in Z (the beam

direction), polar angles θ satisfying | cos θ| < 0.80, and transverse momenta
> 60 MeV/c. Photons are required to be isolated from charged tracks and
to come from the interaction point. Any photon with deposited energy lower
than 30 MeV in the BSC is rejected. Events are required to have four good
charged tracks with total charge zero and more than one good photon. The
TOF and dE/dx information are used to identify pions; they largely reject
kaons from background reactions such as K+K−π+π−π0.

A four constraint (4C) kinematic fit is applied under the π+π−π+π−γγ hypoth-
esis, and χ2

4C < 40 is required. Events with a 2γ invariant mass |Mγγ −Mπ0 | <
40 MeV/c2 are fitted with a 5C kinematic fit to π+π−π+π−π0 with the two
photons being constrained to the π0 mass. Events with χ2

5C < 40 are selected.
The resulting π+π−π0 mass distribution is shown in Fig. 1(a). If there is more
than one mass combination satisfying requirements, the one closest to the ω
mass is plotted. The ω signal is selected by requiring |Mπ+π−π0 −Mω| ≤ 40
MeV/c2. Separation of ωππ from ωKK is very clean, since the kinematics of
these two processes differ strongly.

Fig. 1(b) shows the π+π− invariant mass spectrum which recoils against the
ω, and Fig. 1(c) shows the ωπ invariant mass. The Dalitz plot of this channel
is shown in Fig. 1(d). There is a large f2(1270) peak in Fig. 1(b) and a strong
b1(1235) peak in Fig. 1(c). At low ππ masses in Fig. 1(b), a broad enhancement
which is due to the σ pole is clearly seen. This peak is evident as a strong
band along the upper right-hand edge of the Dalitz plot in Fig. 1(d). Events
produced according to phase space will be broadly distributed over the whole
Dalitz plot region. Therefore this band does not correspond to phase space. A
detailed Monte Carlo simulation is performed to study the background. The
main background comes from 5π events without an ω and is determined to be
(14.4 ± 1.5)% using a sideband estimation.

3 Partial wave analysis

PWA analyses are performed. Two methods and different parametrizations of
the σ pole are used.

For the first analysis, Method I, the whole region of π+π− mass recoiling
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Fig. 1. (a.) Distribution of π+π−π0 mass. (b.) Distribution of the π+π− invariant
mass recoiling against the ω. (c.) Distribution of ωπ invariant mass. (d.) Dalitz plot.

against the ω is considered. The channels fitted to the data are:

J/ψ→ωf2(1270) (1)

→ωσ (2)

→ωf0(980) (3)

→ b1(1235)π (4)

→ ρ(1450)π (5)

→ f2(1565)ω (6)

→ f2(2240)ω. (7)

Amplitudes are fitted to relativistic tensor expressions which are documented
in Ref. [10]. For spin 0 in ππ, two transitions from J/ψ are allowed with orbital
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angular momenta ℓ = 0 and 2 in the production process. For spin 2, there are
five amplitudes: one with ℓ = 0, three with ℓ = 2 and one with ℓ = 4. In
fitting these, Blatt-Weisskopf centrifugal barrier factors are included with a
radius of 0.8 fm. Each amplitude is fitted with a complex coupling constant
G, following the usual isobar model.

The subtraction of background is made using sidebands 80 MeV/c2 wide,
centered at M(π+π−π0) = 622 and 942 MeV/c2. Signal events in the ω mass
band are given positive weight in log likelihood and sideband events negative
weight; the sideband events (suitably weighted by π+π−π0 phase space) then
effectively cancel background in the data sample. Results are stable when the
position and width of the sidebands are varied.

In the amplitude analysis, information from the ω → π+π−π0 decay is included
in the tensor expressions. The ω polarization is given by ωα = ǫαβγδ(k

+)β(k−)γ(k0)δ,
where k+, k− and k0 are the 4-momenta of π+, π− and π0, and ǫ is the fully
antisymmetric unit tensor. Non-relativistically, this reduces to the vector prod-
uct ~k+ × ~k−, where ~k+ and ~k− are the three-momenta of the π+ and the π−

in the rest-frame of the ω. The spin of the ω therefore lies along the normal
to the ω → 3π decay plane. Angular correlations between this normal and (a)
the beam direction, (b) the π+π− pair provide a delicate separation between
spins 0 and 2 for the pion pair; they also identify different L values in the
production process.

In the second analysis, Method II, the π+π− pairs recoiling against the ω with
Mπ+π− < 1.5 GeV/c2 are studied. The covariant helicity coupling amplitude
method is used [11] to construct the amplitudes. The ω decay information is
not included in the analysis. In the π+π− invariant mass spectrum, the pro-
cesses of ωσ, ωf2(1270), and ωf0(980) are included in the fit, and b1(1235)π
is considered in the ωπ invariant mass spectrum. The background is approxi-
mated by a non-interfering 5π phase space.

In both analyses, the f0(980) is parametrized by the Flatté formula which is
written as:

f =
1

M2 − s− i(g1ρππ(s) + g2ρKK̄(s))
, (8)

where ρ(s) = 2k/
√
s and k is the center of mass momentum of the π or K in

the resonance rest frame; we take M = 0.970± 0.007 GeV, g1 = 0.138± 0.010
GeV, and g2/g1 = 4.45±0.25. The full-width at half maximum is 24±3 MeV.

For the f2(1270), only two of the three possible ℓ = 2 amplitudes are signifi-
cant, and the ℓ = 4 amplitude is small. In Method I, the f2(1270) is optimized
as a Breit-Wigner with a width proportional to k5B2, where B2 is the L = 2
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centrifugal barrier, while in Method II, a constant width Breit-Wigner is used
for the f2(1270). The b1(1235) mass optimizes at 1225±4 MeV and 1231±12
MeV in Methods I and II, respectively. These are consistent with the mean
mass quoted by the Particle Data Group (PDG) [12]. The f2(1270) mass is set
to the PDG value in the final fits. The ratio of D and S-wave decay amplitudes
of the b1(1235) is consistent with the PDG value of 0.29 and is fixed to this
value.

We come now to the σ pole. Several parametrizations of the σ pole are used
in the analyses. The first is a Breit-Wigner with a constant width:

BWσ =
1

M2 − s− iMΓconst.

, (9)

Secondly, the form introduced by Zou and Bugg [13] in fitting ππ elastic
scattering data, consistent with Cern-Munich data on ππ elastic scattering
[14] and with Ke4 data [15], is used for the σ amplitude.

f =
Gσ

M2 − s− iMΓtot(s)
, (10)

Γtot(s) = g1
ρππ(s)

ρππ(M2)
+ g2

ρ4π(s)

ρ4π(M2)
, (11)

g1 = f(s)
s−m2

π/2

M2 −m2
π/2

exp[−(s−M2)/a]. (12)

Here ρππ is the usual ππ phase space 2k/
√
s, and k is the momentum in the ππ

rest frame. The form includes explicitly into Γ(s) the Adler zero at s = m2
π/2;

the exponential factor cuts off the width at large s. A revised fit to ππ elastic
data and Ke4 using this formula is presented in [16].

In Eqn. (12), f(s) = b1 + b2s, where b1 and b2 are adjusted to reproduce the
scattering length and effective range for ππ elastic scattering; these are from
recent Ke4 data of Pislak et al. [15]. In the second term of Eqn. (11), 4π phase

space ρ4π(s) is approximated by
√

(1 − 16µ2/s)/[1 + exp(2.8 − s)/3.5], with

s in GeV2. In practice, the 4π width is significant only at masses above 1200
MeV and has no effect on the σ pole.

Thirdly, we have also tried fitting the σ with:

BWσ =
1

m2
σ − s− i

√
sΓσ(s)

, Γσ(s) =
g2

σ

√

s
4
−m2

π

8πs
, (13)
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which was used by the E791 collaboration [8]. For the Breit-Wigner amplitude
with an s-dependent width shown in Eqn. (13), the pole position M does not
coincide with the mass M where the phase shift goes through 90◦ [16].

Fourth, the form given in Ref. [17], which removes the spurious singularity
hidden in Eq. (13), is used:

BWσ =
1

m2
σ − s− i

√
sΓσ(s)

, Γσ(s) = α

√

s

4
−m2

π, (14)

The fits are made using the maximum likelihood method.

4 Results and discussion

4.1 Method I

In method I, when using Eqns. (10) - (12) to describe the σ pole (Fit A),
the optimum fit is obtained with M = 0.9264, g2 = 0.0024, a = 1.082, b1 =
0.5843, b2 = 1.6663 (all in units of GeV). Fig. 2 shows the projection of the
fit compared with data.

The BES data determine the mass and width of the pole well, but with a
rather strong correlation between them. Fits have been made with 46 variants
for f(s) in Eqn. (12). Optima lie roughly along a line from M = 500 − i270
MeV to 600 − i195 MeV: the fitted width goes down as the mass goes up.
The optimum is at (542± 7 (stat) ±15 (sys) ±30 (extrap)) - i(249± 15 (stat)
±20 (sys) ±30 (extrap)) MeV. Systematic errors arise roughly equally from (i)
varying the choice of sidebins, (ii) varying the magnitude of the background
under the ω peak of Fig. 1(a), and (iii) varying the choice of small components
in the fit (discussed below). The last error accounts for systematic errors in
the extrapolation to the pole. This has been estimated from the 46 variants
used to fit BESII data and therefore covers the error due to different formulae.
The systematic errors dominate.

The mass and width of the f2(1270) optimize at 1271 ± 5 MeV and 174 ± 10
MeV, respectively. The fitted width of the b1(1235) is 195 ± 20 MeV; this is
distinctly larger than the PDG value of 142 ± 9 MeV. A fit with the PDG
width is visibly poorer, and the log likelihood is worse than the optimum fit
by 302, an enormous amount. An adequate fit requires a b1 width of at least
180 MeV to reproduce Fig. 2(b). DM2 found a similar result [1]. However,
changing the width to 142 MeV has almost no effect on the parameters fitted
to the σ amplitude. The reason for this is as follows. The σ band crosses the
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Fig. 2. The projection of the fit compared with data in Method I, using Eqns.
(10)-(12) for the σ parametrization. (a) and (b) show the projections of ππ and
ωπ mass. Histograms show the fit, and the shaded region indicates the background
estimated from sidebands. The dashed curve in (b) shows the fitted b1(1235) sig-
nal (two charge combinations). (c) and (d) show the mass projections of the 0++

and 2++ contributions to π+π− from the fit. In (c), the shaded area shows the σ
contribution alone, and the full histogram shows the coherent sum of the σ and
f0(980).

two b1(1235) signals on the Dalitz plot. The fit effectively integrates over the
whole b1 band, and interferences with the σ are affected little by the precise
line-shape of the b1(1235).

When using the parametrization of Eqn. (13) [8] for the σ pole (Fit B), we
find an optimum at M = 526 ± 15 MeV, Γ0 = 535 ± 50 MeV. This gives a
pole position of M = (570± 7 (stat) ±19 (sys)) - i(274± 14 (stat) ±22 (sys))
MeV, in satisfactory agreement with Fit A.

The Breit-Wigner amplitude of constant width for the σ given in Eqn. (9)
gives a very similar intensity distribution to that of Fig. 2. The mass and width
optimize at M = 470±20 MeV, Γ = 613±60 MeV. Again the mass and width
are strongly correlated; the errors cover these correlations. Table 1 summarizes
the σ pole positions obtained with Method I. In all cases, convergence of the
fit is rapid, and the solution is unique.

Angular distributions are shown in Fig. 3 for different slices of ππ mass. The
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BW Function Pole position (MeV)

Eqns. (10)-(12) 542 ± 7 ± 15 ± 30 (extrap) - i(249 ± 15 ± 20 ± 30 (extrap))

Eqn. (13) 570 ± 7 ± 19 − i(274 ± 14 ± 22)

Eqn. (9) 542 ± 7 ± 20 − i(269 ± 15 ± 25)

Table 1
Pole positions of the σ for three fits from Method I. Here, the first error is statistical,
the second is systematic and the last error (30 (extrap) MeV) accounts for the errors
in the extrapolation to the pole, which can also be applied to other two fits in the
table.

third distribution, cosαπ departs significantly from isotropy. This effect was
observed in the earlier DM2 data [1]. Up to M(ππ) = 800 MeV, the departure
from isotropy is due entirely to interference with the b1(1235).
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Fig. 3. Angular distributions for angles χ, θω, απ and βπ in Method I when Eqns.
(10)-(12) are used for the σ parametrization. Here, χ is the azimuthal angle be-
tween the production plane of J/ψ → ωX and the decay plane X → ππ, θω is the
production angle of the ω in the J/ψ rest frame, απ is the decay angle of the π+ in
the rest frame of X, taken with respect to the direction of the recoil ω, and βπ is
the angle of the π+ with respect to the direction of X in the rest frame of the ω.
Histograms show the fit. Slices of ππ mass are (a) 300-500 MeV and (b) 500-700
MeV.

The changes in log likelihood after removing or adding some components in
the fit are studied with coupling constants of all other contributions being
reoptimised. Our definition of log likelihood is such that a change of 0.5 cor-
responds to a one standard deviation change in one fitted parameter. Fig. 4
shows the fits when some of these components are removed. Fig. 4(a) is the
fit without f0(980). The log likelihood is improved by 224 when f0(980) is
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added. Therefore, f0(980) is required. It contributes about 1.1% of the inten-
sity. Errors quoted above for the σ pole cover the changes when the f0(980)
is removed. A fit without f2(1565) is shown in Fig. 4(b); the log likelihood
is worse by 210. This fit fails to reproduce the dip in the ππ mass spectrum
at 1560 MeV. Alternative fits using f0(1500) fail to reproduce this feature.
Therefore, a small but definite contribution from f2(1565) is required with a
fitted mass optimising at 1540 MeV with a width fixed at 126 MeV.

A π+π− contribution in the mass range 2000-2250 MeV is needed. Spin 2
gives the best fit, and a good fit can be obtained using the f2(2240), listed by
the PDG under f2(2300) and reported by Crystal Barrel with a width of 240
MeV [16]. However, it lies right at the top of the available mass range, so this
identification is not unique. The fit with f2(2240) removed is shown in Fig.
4(c).

A definite contribution is required from ρ(1450). Fig. 4(d) shows the fit omit-
ting this amplitude; it makes the log likelihood value worse by 923. Note that
there are contributions to this mass projection from two ωπ contributions; this
is why removing the ρ(1450) affects also the high mass region.

We have tried adding a further broad contribution to the ππ S-wave with mass
1500–1600 MeV and a large width of order 800 MeV; such a contribution
has been found by Anisovich et al. in fitting other data [18]. This gives no
significant improvement. If f0(1500), f0(1710) or f0(2100) are added, there is
no optimum if their masses are scanned. Fitted contributions are 0.43% for
ωf0(1710), 1.1% for ωf0(1500), and 0.36% for f0(2100). We regard these as
upper limits and omit them from the final fit.

4.2 Method II

The second independent analysis, Method II, described in Section 2, is now
reported. Three parametrizations of the σ pole – Eqn. (9), Eqn. (13), and Eqn.
(14) are used. The background is fitted by a non-interfering 5π phase space.
The width of the σ particle is the width at its mass, i.e., Γσ(mσ). Masses and
widths of the σ particle are obtained from the optimisation.

Fig. 5 shows the projection of the fit compared with data when using a Breit-
Wigner amplitude of constant width (Eqn. (9)). The mass and width of the σ
pole optimise at Mσ = 446+11+30

−9−32 MeV and Γσ = 578+36+114
−23−86 MeV.

The masses, widths, and pole positions of the σ are shown in Table 2 when
different σ parametrizations are used in Method II. The first errors are sta-
tistical errors, and the second are systematic, which are determined from the
variation for different treatments of the background (sideband subtraction or
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Fig. 4. Method I: (a) Fit without f0(980), (b) Fit without f2(1565), (c) Fit without
f2(2240), and (d) Fit without ρ(1450).

direct fit), the changes in the solution when adding or removing small compo-
nents, as well as the differences when changing the background level. The final
global fit to the angular distributions of Mπ+π− < 1.5 GeV/c2 mass region is
shown in Fig. 6. The fit agrees well with the data.

BW Function Mass (MeV) width (MeV) Pole Postion (MeV)

Eqn. (9) 446+11+30
−9−32 578+36+114

−23−86 (512+16+36
−13−31 ) - i (252 +14+40

−9−33 )

Eqn. (13)[8] 530+10+28
−8−35 448+22+119

−27−89 (558+14+42
−17−46) - i (231 +12+58

−14−45)

Eqn. (14)[17] 752+10+76
−10−77 984+36+348

−39−258 (521+19+44
−18−49 ) - i (237 +6+33

−7−36)

Table 2
Masses, widths and pole positions of the σ particle for Method II. The first errors
are statistical, and the second are systematic.

Both the σ and the f0(980) are obviously needed in the data. Omitting the σ
makes the log likelihood worse by 5238. If the f0(980) is removed, the log likeli-
hood is worse by 202. The largest resonance in this channel is the f2(1270) with
a mass and width of Mf2(1270) = 1268± 4 MeV and Γf2(1270) = 180± 10 MeV,
respectively. Another important resonance in this channel is the b1(1235).
The vertical and horizontal bands in the Dalitz plot (Fig. 1d) correspond to
J/ψ → b1(1235)±π∓. In the π+π− mass spectrum, the b1(1235)π contribu-
tion extends below the f2(1270). They interfer with the σ-particle. The mass
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Fig. 5. The projection of the fit in Method II when Eqn. (9) is used as the σ
parametrization compared with data,. (a.) The shaded histogram is all 0++ con-
tributions including the σ, the f0(980), and their inteference. (b.) The shaded his-
togram is all 2++ contributions. (c.) The shaded histogram shows the contribution
from the b1(1235). (d.) The lower shaded area represents the background, where the
curve shows the fitted phase space background and the histogram is the background
estimated from ω sidebands.

and width of the b1(1235) are M = 1231 ± 12 MeV and Γ = 244 ± 24 MeV,
respectively. As in Method I, the width of the b1(1235) is much larger than
that of the PDG. However, fixing the width of the b1(1235) to the PDG value
does not change the parameters of the σ appreciably. The contribution of the
background is shown in Fig. 5(d).

5 Summary

In summary, the essential features to emerge from these data are the existence
of the σ and the determination of the σ pole position. Two independent anal-
yses are performed, and different parametrizations of the σ pole are applied.
The mass and width of the σ are different when using different σ parametriza-
tions. However, the pole position of the σ is stable. Different analysis methods
and different parametrizations of the σ amplitude give consistent results for
the σ pole. From a simple mean of the six analyses, the pole position of the σ
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Fig. 6. The angular distributions in the mass region Mπ+π− < 1.5 GeV in Method
II when Eqn. (9) is used for the σ parametrization. Here, φ1 is the azimuthal angle
and θ1 is the polar angle of X in J/ψ rest frame for J/ψ → ωX, and φ2 and θ2 are
the corresponding angles of the π+ in the X rest frame. The histogram is the fit,
and the crosses are data.

is determined to be (541 ± 39 - i (252 ± 42)) MeV. Here, the errors from the
constant width Breit-Wigner parametrisation in Method II are chosen, which
are larger than the errors of the fitted results in Method I. The systematic
errors dominate.
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