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Abstract

Results are presented on J/ψ radiative decays to K+K− and K0
SK

0
S based on a sample of

58M J/ψ events taken with the BES II detector. A partial wave analysis is carried out using the

relativistic covariant tensor amplitude method in the 1-2 GeV mass range. There is conspicuous

production due to the f ′2(1525) and f0(1710). The latter peaks at a mass of 1740± 4+10
−25 MeV with

a width of 166+5
−8

+15
−10 MeV. Spin 0 is strongly preferred over spin 2. For the f ′2(1525), the helicity

amplitude ratios are determined to be x2 = 1.00 ± 0.28+1.06
−0.36 and y2 = 0.44 ± 0.08+0.10

−0.56.

PACS numbers: 14.40.Cs, 12.39.Mk, 13.25.Jx, 13.40.Hq
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I. INTRODUCTION

QCD predicts the existence of glueballs, the bound states of gluons, and the observation

of glueballs is, to some extent, a direct test of QCD. Such gluonic states are expected to give

rise to a rich isoscalar meson spectroscopy, and Lattice Gauge Theory calculations predict,

in particular, that the lowest-lying state should occur in the mass range 1.4-1.8 GeV and

have JPC = 0++ [1]. For a J/ψ radiative decay to two pseudoscalar mesons, only JPC values

in the series 0++, 2++, ... are possible, so such states provide a very clean laboratory to

search for the lowest mass scalar glueball.

There has been a long history of uncertainty about the properties of the f0(1710), one of

the earliest glueball candidates. This history is reviewed in detail in the latest issue of the

Particle Data Group (PDG) [2] and will not be repeated here. The latest analysis of Mark

III data by Dunwoodie [3] favors JP = 0+ over an earlier assignment of 2+, while the latest

central production data of WA76 and WA102 also favor 0+ [4, 5]. In this paper, we present

new results on J/ψ → γK+K− and γK0
SK

0
S based on a sample of 58M J/ψ events taken

with the upgraded Beijing Spectrometer (BES II) located at the Beijing Electron Positron

Collider (BEPC).

II. BES DETECTOR

BES II is a large solid-angle magnetic spectrometer that is described in detail in Ref. [6].

Charged particle momenta are determined with a resolution of σp/p = 1.78%
√

1 + p2(GeV2)

in a 40-layer cylindrical drift chamber. Particle identification is accomplished by specific ion-

ization (dE/dx) measurements in the drift chamber and time-of-flight (TOF) measurements

in a barrel-like array of 48 scintillation counters. The dE/dx resolution is σdE/dx = 8.0%; the

TOF resolution is σTOF = 180 ps for Bhabha events. Outside of the time-of-flight counters

is a 12-radiation-length barrel shower counter (BSC) comprised of gas proportional tubes

interleaved with lead sheets. The BSC measures the energies and directions of photons with

resolutions of σE/E ≃ 21%/
√

E(GeV), σφ = 7.9 mrad, and σz = 2.3 cm. The iron flux

return of the magnet is instrumented with three double layers of counters that are used to

identify muons. The average luminosity of the BEPC accelerator is 4.0 × 1030 cm−2s−1 at

the center-of-mass energy of 3.1 GeV.
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In this analysis, a GEANT3 based Monte Carlo simulation package (SIMBES) with de-

tailed consideration of real detector performance (such as dead electronic channels) is used.

The consistency between data and Monte Carlo has been carefully checked in many high

purity physics channels, and the agreement is quite reasonable.

III. EVENT SELECTION

The first level of event selection requires two charged tracks with total charge zero for

γK+K− candidate events, and requires two positively-charged and two negatively-charged

tracks for γK0
SK

0
S events. These tracks are required to lie well within the acceptance of the

detector and to have a good helix fit. More than one photon per event is allowed because

of the possibility of fake photons coming from the interactions of charged tracks with the

shower counter or from electronic noise in the shower counter.

For J/ψ → γK+K−, the vertex is required to lie within 2 cm of the beam axis (x − y

plane) and within 20 cm of the center of the interaction region (along z). Each of the

charged particles is required to not register hits in the muon counters in order to remove

γµ+µ− events. The following selection criteria are used to remove the large backgrounds

from Bhabha events: (i) The opening angle of the two tracks satisfies θop < 175◦. (ii)

The energy deposit of each track in BSC satisfies ESC < 1.0 GeV. In order to reduce the

background from final states with pions and electrons, each event is required to have at least

one kaon identified by the TOF. Requirements on two variables, U and P 2
tγ, are imposed

[7]. A “missing-neutral-energy” variable U = (Emiss − |
→

Pmiss |) is required to satisfy

−0.10 < U < 0.20 GeV; here Emiss and
→

Pmiss are the missing energy and momentum of

all charged particles respectively. Also a “missing-pt” variable P 2
tγ = 4|

→

Pmiss |2 sin2 θγ/2 is

required to be < 0.002 GeV2, where θγ is the angle between the missing momentum and

the photon direction. The U cut removes most background from events having multipion

or other neutral particles, such as ρπ, γπ+π− events; P 2
tγ is used to eliminate background

photons. The selection criteria for a good photon used here are based on those applied in

previous BES I analyses [8]. In brief, the good photon is required to be isolated from the

two charged tracks and to come from the interaction point.

In order to reduce the J/ψ → π0K+K− and J/ψ → π0π+π− contamination, all events

surviving the above criteria which have two or more photons are kinematically fitted to
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FIG. 1: Invariant mass spectra of a) K+K−, b) K0
SK

0
S for J/ψ → γKK̄ events, where the shaded

histograms correspond to the estimated background contributions.

these hypotheses. Those events with a fit χ2 < 50, and with photon pair invariant mass

within 50 MeV/c2 of the π0 mass, are rejected. Finally, the two charged tracks and photon

in the event are 4-C kinematically fitted to obtain better mass resolution and to suppress

backgrounds further by the requirements χ2
γK+K− < 10 and χ2

γK+K− < χ2
γπ+π−.

For J/ψ → γK0
SK

0
S, the K0

S mesons in the event are identified through the decay K0
S →

π+π−. The four charged tracks can be grouped into two pairs, each having two oppositely

charged tracks with an acceptable distance of closest approach. Signal events are required

to satisfy δ2
KS

< (20MeV/c2)2, where δ2
KS

= (Mπ+π−(1) −MKS
)2 + (Mπ+π−(2) −MKS

)2 and

Mπ+π− is calculated at the K0
S decay vertex. The main backgrounds from γK0

SK
±π∓ and

γK0
SK

0
Sπ

0 events are suppressed by requiring U < 0.10 GeV, P 2
tγ < 0.005 GeV2 and the 4-C

kinematic fit χ2
γ4π < 10.

Fig. 1 shows the K+K− and K0
SK

0
S mass spectra for the selected events, together with

the corresponding background distributions. These two mass spectra agree closely below
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2.0 GeV. The resonant structures in the mass regions of the f ′
2(1525) and the f0(1710)

are very clearly visible in both decay modes. Averaged over the whole mass range, the

detection efficiency for γK+K− is 14.7% and for γK0
SK

0
S is 14.5%. For the γK+K− channel,

the experimental background arises mainly from the non-resonant K+K−π0 and two-body

K∗±K∓ events which are peaked at high K+K− masses. In the entire mass range, 14597

γK+K− events are reconstructed, and the detailed Monte Carlo simulation of the BES

detector estimates a background of 3094 events. The estimation of the background events in

the γK0
SK

0
S sample is obtained from the δ2

KS
side band (28.7MeV/c2)2 < δ2

KS
< (35MeV/c2)2;

this equal-area-selection provides a properly normalized background estimation. In Fig. 1b),

there are 3169 selected γK0
SK

0
S events and 413 background events.

IV. ANALYSIS RESULTS

We have carried out partial wave analyses using relativistic covariant tensor amplitudes

constructed from Lorentz-invariant combinations of the 4-vectors and the photon polariza-

tion for J/ψ initial states with helicity ±1 [9]. Cross sections are summed over photon

polarizations. The relative magnitudes and phases of the amplitudes are determined by a

maximum likelihood fit. The background events obtained from Monte Carlo simulation or

δ2
KS

side band are included into the data samples, but with the opposite sign of log likelihood

compared to data. These events cancel background within the data samples. These analyses

are confined to masses less than 2 GeV in order to ensure that a description containing only

0++ and 2++ amplitudes be appropriate. The mass distributions of K+K− and K0
SK

0
S after

acceptance and isospin corrections for missing γK0
LK

0
L and γK0

SK
0
S with K0

S → π0π0 decays

are shown in Fig. 2. The event topologies of the K+K− and K0
SK

0
S modes are different, so

that acceptance and background effects are rather different also; nevertheless, there is good

quantitative agreement between the two distributions.

A. Bin-by-bin analysis

In the bin-by-bin analysis, the data in mass intervals 40 MeV wide are fitted with four

helicity amplitudes, one for JP = 0+ and three for 2+ amplitudes [3]. The mass interval

width is chosen as a compromise between the desire for high statistics in each mass interval,
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FIG. 2: The mass distributions of KK̄ from J/ψ radiative decays, after acceptance and isospin

corrections for missing γK0
LK

0
L and γK0

SK
0
S with K0

S → π0π0 decays.

and the need for detailed information on the mass dependence of each measured amplitude.

In each mass interval, the γKK̄ data sample is analyzed in terms of the joint production and

decay angular distribution of the pseudoscalar meson system. The S- and D-wave intensity

distributions, |a0,0|
2, |a2,0|

2, |a2,1|
2 and |a2,2|

2 for γKK̄ data resulting from this bin-by-bin

fit are shown as a function of mass in Fig. 3.

The KK̄ S-wave intensity dominates the 1.7 GeV region. The solid curves in Fig. 3

correspond to fits of coherent superpositions of individual Breit-Wigner resonances to the

data points of each intensity distribution. The following channels are considered:

J/ψ → γf ′
2(1525)

→ γf0(1710)

→ γf2(1270)

→ γf0(1500)

→ γ + broad 0++ and 2++ components

The first two are dominant. There is evidence for existence of the f2(1270), and the f0(1500)

8



0

10000
|a0,0|

2

0

10000
|a2,0|

2

0

10000
|a2,1|

2

0

10000

1 1.2 1.4 1.6 1.8 2

|a2,2|
2

EV
EN

TS
 / 

0.
04

0G
eV

M(ΚΚ
–

) (GeV)

FIG. 3: The mass dependence of the amplitude intensities for γKK̄ data. The solid curves

correspond to the coherent superposition of the Breit-Wigner resonances fitted to the acceptance-
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the results of the global fit described in the text.

is included here for consistency with the global fit below.

For the spin 0 amplitude, two interfering resonances (f0(1500, f0(1710)) and an interfering

constant amplitude term, which is used to describe the broad S- wave contribution, are

included. The mass and width of the f0(1500) are fixed to the PDG values; those of the

f0(1710) are to be determined. The f0(1710) is well described by a Breit-Wigner of mass and

width M = 1722 ± 17 MeV, Γ = 167+37
−29 MeV, and the branching fraction for J/ψ radiative

decay to the combined KK̄ modes is B(J/ψ → γf0(1710) → γKK̄) = (11.1+1.7
−1.2) × 10−4.

The errors here are statistical errors.

For the spin 2 amplitudes, the f ′
2(1525) and f2(1270) are included. There is also some 2++
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structure above 2.0 GeV in KK̄ mass, which could contribute to the present fitted range,

and thus the tail of a high mass 2++ state is included in our fit. We choose a resonance mass

of 2250 MeV and width of 350 MeV to represent the structure in the higher mass region. The

mass and width of the f2(1270) are fixed at the values quoted in the PDG. For the tensor

resonance, f ′
2(1525), its mass and width are fixed to the values M = 1519 MeV, Γ = 75

MeV determined by the global fit which is described below, and the total branching fraction

and ratios of amplitude intensities are determined to be B(J/ψ → γf ′
2(1525) → γKK̄) =

(4.02± 0.51)× 10−4; x2 ≡ |a2,1|
2/|a2,0|

2 = 1.32± 0.29, y2 ≡ |a2,2|
2/|a2,0|

2 = 0.38± 0.20. The

intensity of the f2(1270) is poorly measured because of the relatively low statistics and the

weak coupling of this state to KK̄. The amount of spin 2 component in the 1.7 GeV mass

region is small, ∼ (16 ± 9)%. The errors shown above are statistical and are obtained from

the Breit-Wigner fit.

B. Global fit analysis

We now turn to the global fit to the J/ψ → γK+K− and J/ψ → γK0
SK

0
S data. Each

sample is analyzed independently, and the fit results shown below are for their averaged

values. This fit has the merit of constraining phase variations as a function of mass to simple

Breit-Wigner forms. It also performs the optimum averaging of helicity amplitudes and

their phases over resonances. Partial waves are fitted to the data for the same components

described in the bin-by-bin fit. The broad 0++ component improves the fit significantly;

removing it causes the log likelihood value to become worse by 221. For the f2(1270) and

f0(1500), we use PDG values of masses and widths, but allow the amplitudes to vary in the

fit. For the f ′
2(1525), relative phases are consistent with zero within experimental errors. It

is expected theoretically that relative phases should be very small, on order of α ≃ 1/137 for

the electromagnetic transitions J/ψ → γ + 2+. In view of the agreement with expectation,

these relative phases are set to zero in the final fit, so as to constrain intensities further.

A free fit to f ′
2(1525) gives a fitted mass of 1519 ± 2 MeV and a width of 75 ± 4 MeV.

The fitted mass and width of the f0(1710) are M = 1740 ± 4 MeV and Γ = 166+5
−8 MeV,

respectively. The fitted intensities are illustrated in Fig. 4. For the f ′
2(1525), we find the

ratios of helicity amplitudes x2 = 1.00±0.28 and y2 = 0.44±0.08. In this fit, we allow some

0+ contribution under the f ′
2(1525) peak, while previous analyses by DM2 and Mark III

10
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points are the data and the full histograms in the top panels show the maximum likelihood fit.

Histograms on subsequent panels show the complete 0+ and 2+ contributions including all inter-

ferences.

[10, 11] ignored the small 0+ contributions. The branching fractions of the f ′
2(1525) and the

f0(1710) determined by the global fit are B(J/ψ → γf ′
2(1525) → γKK̄) = (3.42±0.15)×10−4

and B(J/ψ → γf0(1710) → γKK̄) = (9.62 ± 0.29) × 10−4 respectively. The errors shown

here are also statistical. An alternative fit to fJ(1710) with JP = 2+ is worse by 258 in log

likelihood relative to 0+ for γK+K− data and by 67 for γK0
SK

0
S. Remembering that three

helicity amplitudes are fitted for spin 2 but only one for spin 0, the fit with JP = 0+ is

preferred by > 10σ after considering the two data samples together.

The separation between spin 0 and 2 is illustrated in Fig. 5, taking the J/ψ → γK+K−

data as the example. Let us denote the polar angle of the kaon in the KK̄ rest frame by

θK , and the polar angle of the photon in the J/ψ rest frame by θγ. The data are fitted

simultaneously including important correlations between θK and θγ . The left panels show

resulting fits to cos θK for J = 0 and 2. There is no significant difference between the two

fits. The distributions should be flat for 0+, but the interference with the tail of f ′
2(1525)
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has a large effect. The right panels show the fits to cos θγ; the optimum fit is visibly better

for J = 0 than for J = 2. [If one fits only the cos θγ distribution, it is possible to fit equally

well with J = 0 or 2, but then the fit to cos θK gets much worse.]

If the f0(1500) is removed from the fit, the log likelihood is worse by 1.65 (3.58) forK+K−

(K0
SK

0
S), corresponding to about 1.3σ (2.2σ). If the f2(1270) is removed, the likelihood is

worse by 57.5 (13.6) for K+K− (K0
SK

0
S), corresponding to > 5σ (3.8σ).

V. SYSTEMATIC ERROR

The systematic error for the global fit is estimated by adding or removing small compo-

nents used in the fit, replacing the f0(1500) with the f0(1429), Γ = 169 MeV, described in

Ref. [3], varying the mass and width of the large f ′
2(1525) within the PDG errors, varying

the mass and width of f0(1710) based on the difference between the K+K− and K0
SK

0
S decay

modes, and varying the background component within reasonable limits in both the global

fit and bin-by-bin fit. It also includes the uncertainty in the number of J/ψ events analyzed

and the difference from two different choices of MDC wire resolution simulation.

The uncertainty about the shape of broad 0++ background is included in the systematic

error also. An incoherent fit with this broad component and a fit with alternative forms for

the s-dependence using the parametrization of Zou and Bugg [12] for the f0(400 − 1200)

12



have been performed to estimate the systematic error from this source. This uncertainty

affects the results significantly, especially the branching fractions, because of the interference

between the broad structure and the other components. Therefore, the error from this

model-dependence for the branching fraction measurements is separated from the statistical

and other systematic errors in our final results. The systematic errors for the global fit are

summarized in Table I. For the mass and width, only the contributions from the model-

dependence, which are large compared to the other errors, are shown in the table.

Mf ′

2
(1525) Γf ′

2
(1525) x2 y2 Bf ′

2
(1525) Mf0(1710) Γf0(1710) Bf0(1710)

remove f0(1500)
+32
−0

+20
−0 ±0 +10

−0

use f0(1429)
+0
−15

+0
−9

+0
−5

+3
−0

remove f2(1270)
+42
−0

+0
−55

+6
−0

+0
−1

use the σ +0.66 +20 +17
−9

+0
−14

+33
−0 −1.44 +9 +29

−0

incoherent 0++ +0.99 — +6
−0

+0
−64

+45
−0 — +3 +28

−0

M, Γ of f ′2(1525)
+49
−15

+0
−34

+11
−8

+4
−5

M, Γ of f0(1710)
+51
−17

+11
−36 ±3 +1

−0

M, Γ of high 2++ +46
−14

+0
−59

+1
−4

+6
−0

background +46
−17

+0
−55

+0
−3

+9
−10

δNJ/ψ — — ±4.7 ±4.7

wire resolution — — ±15 ±15

TABLE I: Estimation of systematic error (%) in the global fit. Bf ′

2
(1525) and Bf0(1710) are the

branching fractions for f ′2(1525) and f0(1710) respectively.

VI. RESULTS AND DISCUSSION

The results of the bin-by-bin and global fits are summarized in Tables II and III respec-

tively. For the bin-by-bin fit, the errors are statistical ones only, and for the global fit, the

first error listed is the statistical error, the second error is the systematic error, and the third

one for the branching fractions is for the model-dependence of the broad components.

The two fit methods, bin-by-bin and global, are based on different analysis concepts.

In the bin-by-bin fit, the S- and D-wave intensities are fairly well determined and nearly
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f ′2(1525) f0(1710)

M (MeV) 1519 (fixed) 1722 ± 17

Γ (MeV) 75 (fixed) 167+37
−29

B(J/ψ → γX,

X → KK̄)(×10−4) 4.02 ± 0.51 11.1+1.7
−1.2

x2 = |a2,1|
2/|a2,0|

2 1.32 ± 0.29 —–

y2 = |a2,2|
2/|a2,0|

2 0.38 ± 0.20 —–

TABLE II: Measurements of the f ′2(1525) and f0(1710) for the bin-by-bin fit. Errors shown are

statistical only.

f ′2(1525) f0(1710)

M (MeV) 1519 ± 2+15
−5 1740 ± 4+10

−25

Γ (MeV) 75 ± 4+15
−5 166+5

−8
+15
−10

B(J/ψ → γX,

X → KK̄)(×10−4) 3.42 ± 0.15+0.69
−0.65

+1.55
−0.00 9.62 ± 0.29+2.11

−1.86
+2.81
−0.00

amp. ratios x2 1.00 ± 0.28+1.06
−0.36 —–

y2 0.44 ± 0.08+0.10
−0.56 —–

TABLE III: Measurements of the f ′2(1525) and f0(1710) for the global fit. The first error is

statistical, the second is systematic, and the third is that corresponding to model-dependence of

the broad components.

model independent. The only model dependence in the bin-by-bin fit is the assumption

that only S- and D-waves need be considered; this is reasonable, since one would not expect

significant 4++ amplitudes below 2 GeV. However, due to limited statistics for each bin and

the limited solid angle coverage of the detector, the relative phases of partial waves cannot

be well determined. This causes larger uncertainties when extracting the mass and width of

resonances by fitting only the partial wave intensities without the constraints of the relative

phases between them. In the global fit, the phase variations as a function of mass are

constrained to simple Breit-Wigner (BW) forms . The stability of the minimum optimizing

procedure and statistical errors are better than those of the bin-by-bin fit. However, if some

non-BW resonance is assumed to be a BW-form amplitude, this will give a model-dependent

14



biased result. The model independent bin-by-bin result for the partial wave intensities can

provide guidance for choosing components for the global fit. The final full amplitudes from

the global fit definitely give a better fit to the whole set of data than the amplitudes obtained

from fitting the partial wave intensities without constraints of relative phases between them.

Fortunately from Tables II and III and the comparison shown in Fig. 3, we see that

the results obtained from the bin-by-bin fit and the global fit for the f ′
2(1525) and f0(1710)

agree with each other well within the errors. The ratios of the helicity amplitudes of the

f ′
2(1525) from the present analysis are in reasonable agreement with Krammer’s predictions

[13]. These ratios provide useful information for testing models of the resonance production

and decay mechanisms. Most importantly, the analysis demonstrates that the mass region

around 1.7 GeV is predominantly 0++ from the f0(1710) [14]; this conclusion is consistent

with that of references [3-5].

VII. SUMMARY

In summary, the partial wave analyses of J/ψ → γK+K− and J/ψ → γK0
SK

0
S using

58M J/ψ events of BES II show strong production of the f ′
2(1525) and the S-wave resonance

f0(1710). This confirms earlier conclusions that the spin-parity of the f0(1710) is JP =

0+. The f0(1710) peaks at a mass of 1740 ± 4+10
−25 MeV with a width of 166+5

−8
+15
−10 MeV.

For the f ′
2(1525), the helicity amplitude ratios are determined to be 1.00 ± 0.28+1.06

−0.36 and

0.44 ± 0.08+0.10
−0.56, respectively. They are consistent with theoretical predictions.
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